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Course content  
   

Å  Periodic structures, understanding of diffraction  experiment and reciprocal lattice 
 

Å  Crystal binding, elastic strain and waves 
  

Å  Imperfections in crystals: point defects and diffusion 
 

Å  Crystal vibrations: phonon heat capacity and thermal conductivity  
 

Å  Free electron Fermi gas: density of states, Fermi level, and electrical conductivity  
 

Å  Electrons in periodic potential: energy bands theory classification of metals,    

 semiconductors and insulators  
 

Å  Semiconductors: band gap, effective masses, charge carrier  distributions,  

 doping, pn-junctions  
 

Å  Metals: Fermi surfaces, temperature dependence of electrical conductivity  
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Carrier charge density in semiconductors 

Previously, the density of states is given by 2
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How this states are going to be filled is termined but a purely statistical process, 

governed by a proper distribution function, in particular for electrons, Fermi-Dirac 
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where Ec is the conduction band minimum 

Now, the density of states 
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T = 0K 

fFD is a step 

function. 

By symmetry, it is 

reasonable 

That EF = ½Eg 

T > 0K 

when DC(E) = 

DV(E) 

It is true that E F 

remains at ½Eg 

Carrier charge density in semiconductors 
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Carrier charge density in semiconductors 
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        Schematic band diagram, 

density of states, FermiïDirac 

distribution, and the carrier 

concentrations for  

 

(a) intrinsic,  

 

 

 

 

 

 

 

 

(b) n-type  

 

 

 

 

 

 

 

 

(c) p-type semiconductors  

        at thermal equilibrium.  

Carrier charge density in semiconductors 



Carrier charge density in semiconductors 
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p-n junctions: two identical materials having different movable  

                         charge particle on each side 

 

What happens when we bring the two together? 
 



p-n junctions: two identical materials having different movable  

                         charge particle on each side 



p-n junctions: microscopic scenario 

When junction is formed, electrons from n-type and holes from p-type are free 

movable charges and will diffuse leaving behind ionized (charged) dopant atoms. 

Remember, the dopant atoms are fixed in the lattice sites and do not move. 

Effectively, electrons diffused from the n-type leave behind positively charged 

donors while holes diffused from the p-type leave behind negatively charged 

acceptors. Electron/hole diffusion ï as long as charged particles are involved ï 

causes causes corresponding òdiffusionò currents. 

 

 

The net result is a build up of uncompensated charge (called space charge or 

depletion region) and, consequently, an electric field that is directed from ò+ò to ò-ò 

charged parts of the semiconductor in the vicinity of the interface, i.e. from the n-

type to p-type. The application  of this field on electrons/holes causes òdriftò 

currents of the same charge carriers directed in the oposite way to the diffusion 

currents and at a certain value of the electric field diffusion is no longer possible. 

This state is called thermal equilibrium of the junction when the net current 

through the junction is zero. 



Donor and acceptor concentration 

on either side of the junction.  

Concentration gradients give rise 

to diffusion currents. 

p-n junctions: diffusion current  



Å Diffusion currents lead to uncompensated charge density 
distribution in the vicinity of the p-n interface. 

Å Gaussô law predicts an electric field due to the charge distribution: 

 

 

 

Å Assuming constant permittivity, 

 

 

 

 

Å Resulting electric field gives rise to a drift current.  With no 
external circuit connections, drift and diffusion currents cancel 
each other.  There is no actual drift current if fact, rather the 
electric field cancels the diffusion current ñtendencyò. 
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p-n junctions: drift current  
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p-n junctions: finding built -in potential considering a balance  

                         between the drift and diffusion currents 
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p-n junctions: finding built -in potential considering a balance  

                         between the drift and diffusion currents 
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p-n junctions: depletion region 



p-n junctions: electrostatics 
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p     n 

VA = 0 VA > 0 VA < 0 

Hole diffusion current 

Hole drift current 

Electron diffusion current 

Electron drift current 
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p-n junctions: forward/reverse bias 
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p-n junctions: forward bias 
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p-n junctions: reverse bias 
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ÅThe charge stored in the depletion region changes with 

applied voltage.  This is modeled as junction capacitance 
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charge density (C/cm3) 

distance 

p-n junctions: capacitance 
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       Uniformly doped p-type and n-

type semiconductors before 
the junction is formed.  Internal electric-field occurs in 

a depletion region of a p-n 

junction in thermal equilibrium 

p-n junctions: solar cells 
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p-n junctions: solar cells 
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ZnO 

Si 

Si obviously absorbs solar light - why to search for other òabsorbersò? 

It may sound inconsistent to employ 

wide band gap semiconductors but 

letôs compare with a fisherman 

strategy  

Interesting properties of semiconductors: multijunction solar cells 
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The idea is to explore 

alternative, less expensive 

semiconductors and one 

alretnative is to look into 

abandunt oxides specifically in 

the range blue-green spectral 

range and ZnCdO-system is 

interesting to investigate  

Interesting properties of semiconductors: multijunction solar cells 
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Stacks of ZnCdO multilayers were 

fabricated showing interesting light 

absorbing properties 

(a) absorption, (b) photoluminescence, and (c) RBS measurements of a ZnCdO multilayered 

absorber. Arrows in panel (b) indicate exitonic emission components originating from individual 

layers correlating with Cd concentration steps in the depth profile in panel (c).  
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Interesting properties of semiconductors: multijunction solar cells 
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Interesting properties of semiconductors: multijunction solar cells 


