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Carrier charge density in semiconductors

Previously, the density of states is givenby D(E) = 2\/2 (2m)2 EE

Take a unit volume l.e. V=1

21,2
For conduction band Ec- EC = > k* where E_is the conduction band minimum
k Zm
Now, the density of states
1 2m;
D.(E) =55 ( n) (E - E)2
2p?

How this states are going to be filled is termined but a purely statistical process,
governed by a proper distribution function, in particular for electrons, Fermi-Dirac

'(E' EF)
f(E) = 1 oo T
(E- EF%
e KeT +1




Carrier charge density in semiconductors
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Carrier charge density in semiconductors
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Carrier charge density in semiconductors
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Carrier charge density in semiconductors
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pP-n junctions: two identical materials having different movable
charge particle on each side
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What happens when we bring the two together?

p type n type




pP-n junctions: two identical materials having different movable
charge particle on each side

p type n type
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P-N junctions: microscopic scenario

When junction is formed, electrons from ntype and holes from ptype are free
movable charges and will diffuse leaving behind ionized (charged) dopant atoms.
Remember, the dopant atoms are fixed in the lattice sites and do not move.
Effectively, electrons diffused from the ntype leave behind positively charged

donors while holes diffused from the ptype leave behind negatively charged
acceptors. Electron/hole diffusiori as long as charged particles are involved
causes causes corresponding odiffusior

The net result is a build up of uncompensated charge (called space charge or
depl etion region) and, consequentl!l y-0 ¢
charged parts of the semiconductor in the vicinity of the interface, i.e. from the-n
typetopt ype. The application of this f1 e
currents of the same charge carriers directed in the oposite way to the diffusion
currents and at a certain value of the electric field diffusion is no longer possible.
This state is called thermal equilibrium of the junction when the net current

through the junction is zero.



pP-n junctions: diffusion current
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pP-n junctions: drift current

A Diffusion currents lead to uncompensated charge density
distribution in the vicinity of the p-n interface.

A Gaussod | aw predicts an electric
. T
PE=—"
eS

A Assuming constant permittivity,

E(X) :ei N7 (x)dx

A Resulting electric field gives rise to a drift current. With no
external circuit connections, drift and diffusion currents cancel
each other. There is no actual drift current if fact, rather the
el ectric field cancels the di ffu



pP-n junctions: finding built -in potential considering a balance
between the drift and diffusion currents
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pP-n junctions: finding built -in potential considering a balance
between the drift and diffusion currents
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P-n junctions: depletion region

 NeutralRegion | Depletion Layer | Neutral Region
N | | p
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The electric field 1s continuous at x = 0.
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one-sided junction 1s called a N*P junction or P*N junction



P-n junctions: electrostatics
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pP-n junctions: forward/reverse bias
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pP-n junctions: forward bias
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P-N junctions: reverse bias
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P-N junctions: capacitance

VD P
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A The charge stored in the depletion region changes with
applied voltage. This is modeled as junction capacitance

_ A6
C = W.S

J
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pP-n junctions: solar cells
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pP-n junctions: solar cells
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Interesting properties of semiconductors: multijunction solar cells

Si obviously absorbs solar light-why t o search f or

Wavelength (nm)
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It may sound inconsistent to employ

wide band gap semiconductors but
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Interesting properties of semiconductors: multijunction solar cells
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Interesting properties of semiconductors: multijunction solar cells
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Stacks of ZnCdO multilayers were
fabricated showing interesting light

absorbing properties
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(a) absorption, (b) photoluminescence, and (c) RBS measurements of a ZnCdO multilayered
absorber. Arrows in panel (b) indicate exitonic emission components originating from individual
layers correlating with Cd concentration steps in the depth profile in panel (c).
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PL Intensity (Counts/sec)

Interesting properties of semiconductors: multijunction solar cells
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