LECTURE 1:
Disordered solids: Structure properties

• What is an disordered solid
• How do we measure disorder
• How are amorphous solids typically formed
What are amorphous solids?
• inorganic compounds (e.g. SiO$_2$/silicates, B$_2$O$_3$/borates, GeO$_2$/germanates, etc)
• organic compounds (e.g. polymers)
• elements (e.g. sulfur)
• metal alloys (e.g. Fe$_{80}$B$_{20}$)
• Granular matter

Where do we encounter amorphous materials?

- Food products: mayonnaise, chocolate mousse, ketchup
- House products, cosmetics
- Plastic
- Transformers core material,
- Biomedical implants,
- Watches
- Fiber optics
- etc
Crystals

- Long-range order
- Regular atomic arrangement

Amorphous solids

- Short-range order
- Random atomic arrangement
B_2O_3 (crystal)

Borate glass
How do we measure disorder?

• Statistical measures: Probability distribution functions

• Thermodynamics measures: Excess volume
How do we measure disorder?

- **Statistical measure:** Probability distribution functions
 - Statistical description of atomic positions
 - Describes important features of the atomic arrangements
 - Accessible experimentally through scattering experiments
Single particle distribution function

- N atoms in the volume V of the material
- Average density $n_0 = \frac{N}{V}$
- Single particle distribution function

 $$n_1(r) = \langle \sum_i \delta(r - r_i) \rangle$$

- Ensemble average over possible configurations (statistical description)
- $n_1(r)dr$ is the average number of atom centers in a volume element dr around r
- $n_1(r)dr$ can be interpreted as the probability to find an atom center between r and $r+dr$
Two-particles distribution function

• N atoms in the volume V of the material

\[n_2(r_1, r_2) = \langle \sum_i \sum_{j \neq i} \delta(r_i - r_1)\delta(r_j - r_2) \rangle \]

• Probability to find atom centers simultaneously in a shell of thickness \(dr_1 \) around \(r_1 \) and a shell \(dr_2 \) around \(r_2 \) is \(n_2(r_1, r_2) dr_1 dr_2 \)

\[\int dr_2 n_2(r_1, r_2) = (N - 1)n_1(r_1) \]
Atomic correlations

• Probability of having an atom at \(\mathbf{r}_2 \) is correlated with the probability for an atom at \(\mathbf{r}_1 \), if these positions are not too far apart.

• This is expected due to inter-particle forces and constraints due to chemical bonds.

• Homogeneous material: \(n_1(\mathbf{r}_1) = \rho \)

• If \(|\mathbf{r}_1 - \mathbf{r}_2| \gg 1 \), atoms are uncorrelated and: \(n_2(\mathbf{r}_1, \mathbf{r}_2) \sim \rho^2 \)

• Generally we can write

\[
n_2(\mathbf{r}_1, \mathbf{r}_2) = \rho^2 g(\mathbf{r}_1, \mathbf{r}_2)
\]
Pair distribution function (PDF)

- General definition: \(g(r_1, r_2) = \frac{n_2(r_1, r_2)}{n_1(r_1)n_1(r_2)} \)

- Put \(r_2 = 0 \), then define \(r = r_1 - r_2 \)

- Homogeneous material

- \(g(r_1, r_2) = g(r) = n_2(r)/\rho^2 \) describes the correlations in the atom positions

- \(\rho g(r) dr \) is interpreted as the probability to find an atom in \(dr \), a vector distance \(r \) from another atom at the origin.

- \(\rho \int g(r) dr = N - 1 \)
Isotropic materials

- r is the distance between r_1 and r_2, $r ≡ r_2 - r_1$
- $\rho g (r)$ can be integrated to give the average density of atoms in a spherical shell around the origin

$$\int_{r_0}^{r_0+\Delta r} dr \ \rho g (r) = 4\pi^2 r_0^2 g(r_0) \Delta r = \rho R(r_0) \Delta r_0$$

- Radial distribution function $R(r)$

$$R(r) = 4\pi^2 r^2 g(r)$$

- Integrate $R(r)$ around the first peak -> Coordination number of the first shell
Pair Distribution Function (PDF)

• PDF show oscillations due to nearest neighbor next nearest neighbor shells, etc.

• Oscillations damped out as r increases

• $g(r) \sim 1$ for large r
PDF for ideal crystal vs glasses
Radial distribution function

The number of neighbors to the origin atom situated between r_1 and r_2 is given by the area integral under the first peak.

\[
\# \text{neighbors}_{(r_1,r_2)} = \int_{r_1}^{r_2} dr \ R(r)
\]

http://www.globalsino.com/EM/page3097.html
Radial distribution function

http://www.globalsino.com/EM/page3097.html
How do we measure disorder?

• Statistical measures: Probability distribution functions

• Thermodynamics measures: Excess volume
What is glass (amorphous solid)?

- A metastable solid with no long-range atomic order

Graph:**

- **E**
- **Structure**
- Metastable glassy state
- Thermodynamically stable crystalline state

- Glasses are metastable with respect to their stable crystalline phase
- Atoms can rearrange to form a more stable state given enough time and thermal energy

Open Course MIT 3.017
Measure of disorder: Excess molar volume

• Energetics of bond density

• Ordered crystal has higher packing -> more bonds per unit volume

• Binding energy $E_{xtal} < E_{glass}$

• Binding energy <-> molar volume V

• $V_{glass} > V_{xtal}$

• Excess molar volume $\Delta V = V_{glass} - V_{xtal}$ is a measure of disorder
Glass formation from liquid

Cooling curve
Heating curve

Volume

Glass transformation range
Super-cooled liquid
Stable liquid
Process of melting and crystallization

Glass on fast cooling
Glass on slow cooling
Crystal

T_g
Glass transition temp.

Open Course MIT 3.017 26
Glass formation from liquid

Cooling curve
Heating curve

T_m function of composition

T_m glass transition temp.

T_m glass transformation range

glass on fast cooling

glass on slow cooling

process of melting and crystallization

super-cooled liquid

stable liquid

volume
Glass formation from liquid

![Diagram showing cooling and heating curves for glass formation.](image)
Glass formation from liquid

Cooling curve
Heating curve

- glass on fast cooling
- glass on slow cooling
- glass transformation range
- super-cooled liquid
- stable liquid
- process of melting and crystallization
- crystal

T_g
glass transition temp.

volume

temperature
Glass formation from liquid

T_g depends on

(1) \((\text{atom mobility})^{-1}\)
(2) \((\text{complexity of crystal structure})\)
(3) \((\text{cooling rate})\)
(4) \((\text{composition})\)
Glass formation from liquid

Excess Volume (disorder)

- Cooling curve
- Heating curve

- Glass transformation range
- Super-cooled liquid
- Stable liquid
- Process of melting and crystallization

- Glass on fast cooling
- Glass on slow cooling
- Crystal
- \(T_g \) (glass transition temp.)
Summary LECTURE 1:
Disordered solids: Structure properties

• What is an disordered solid
• How do we measure disorder
• How are amorphous solids typically formed
Summary LECTURE 1:
• What is an disordered solid
 • Solids with short-range disorder

• How do we measure disorder
 • Pair-correlation function
 • Excess volume

• How are amorphous solids typically formed
 • Glass transition
LECTURE 2
Atomic diffusion: equilibrium and non-equilibrium structures

• Diffusion of atoms

• Diffusion limited aggregation, crystal growth

• Fractals and fractal measure
Diffusion

• At any $T > 0K$, all atoms irrespective of their aggregation (gas, liquid, solid, etc) are in constant motion -> thermal motion

• Movement of atoms is associated with collisions -> single particle trajectory is a zigzag – diffusive particle

• A collection of diffusive particles has an observable drift from high to lower concentrations
Flow and dispersion

Molecular dispersion (Diffusion)

Dispersion by laminar channel flow
Molecular mixing - diffusion

Diffusion coefficient

\[D_0 = \frac{1}{2d} \lim_{t \to \infty} \frac{\langle x^2 \rangle}{t} \]

Related to microscopic constants (length of random steps, time between steps)

\[D_0 = \frac{a^2}{2\tau} \]

Macroscopic Law

\[\partial_t C = D_0 \nabla^2 C \]

\[C(r, t) = \frac{1}{\sqrt{4\pi Dt}} e^{-\frac{(r-r_0)^2}{4Dt}} \]
Mean-square displacement

- **Superdiffusion**
 \[\langle r^2 \rangle \propto \tau^\alpha, \quad \alpha > 1 \]

- **Normal diffusion**
 \[\langle r^2 \rangle \propto D \tau \]

- **Subdiffusion**
 \[\langle r^2 \rangle \propto \tau^\alpha, \quad \alpha < 1 \]
Fick’s law

- Flux = (conductivity) x (driving force)
- For atomic or molecular diffusion: “conductivity” = diffusivity constant D
 - D reflects the mobility of the diffusing particles and depends on the environment: e.g. D is larger for particles in gases, than in liquids.
- “Driving force” = - concentration gradient

\[
J = -D \nabla C
\]

\[
J \left(\frac{\text{moles}}{\text{cm}^2 \text{s}} \right) = -D \frac{dC}{dx} \left(\frac{\text{moles} \cdot \text{cm}^{-3}}{\text{cm}} \right)
\]

$[D] = \text{cm}^2 / \text{s}$
Fick’s second law (dynamics)

- \(J_x - J_{x+dx} = \frac{\partial c}{\partial t} \, dx \)

- Taylor series for \(dx \to 0 \):
 \[J_{x+dx} = J_x + \frac{\partial J_x}{\partial x} \, dx + \ldots \]

- \(\frac{\partial}{\partial x} \left(D \frac{\partial c}{\partial x} \right) \, dx = \frac{\partial c}{\partial t} \, dx \)

- \(\frac{\partial c}{\partial t} = D \frac{\partial^2 c}{\partial x^2} \)
Steady-state concentration

• Equilibrium concentration satisfies

\[\nabla \cdot (D \nabla C) = 0 \]

• Boundary conditions

constant flux \(\rightarrow D \nabla C = \text{const.} \)

zero flux at the boundaries \(\rightarrow D \nabla C = 0 \)
Example of diffusion on a crystal lattice

Discretized model:
if 1 step = move by 1 bond length, we expect:

$$RMS = \sqrt{\langle R_N^2 \rangle} = \sqrt{N} \ d_{NN}$$

fcc: \(d_{NN} = a_0 \frac{\sqrt{2}}{2} = 0.71a_0\)

bcc: \(d_{NN} = a_0 \frac{\sqrt{3}}{2} = 0.87a_0\)

sc: \(d_{NN} = a_0\)

lattice parameter = 1A

RMS displacement (Angstrom)

(number of steps)

(\(\Rightarrow D \text{ depends on the structure of the lattice}\))
Diffusion mechanisms in solids

Interdiffusion: e.g. alloys
Atoms migrate from high concentration to low concentration regions

https://www.slideshare.net/IbrahimAbuawwad1/ch05-48057054
Diffusion mechanisms in solids

Vacancy diffusion

- Atoms exchange positions with vacancies
- Applies to substitutional impurities atoms

https://www.slideshare.net/IbrahimAbuawwad1/ch05-48057054
Diffusion mechanisms in solids

Self-diffusion: single element solids, eg monoatomic metals

- Atoms hop in the crystal lattice and diffuse when their thermal motion exceeds an activation energy for self-diffusion

https://www.slideshare.net/IbrahimAbuawwad1/ch05-48057054
Diffusion mechanisms in solids

Interstitial diffusion

- Interstitial atoms diffuse between atoms

![Diagram showing interstitial diffusion](https://www.slideshare.net/IbrahimAbuawwad1/ch05-48057054)
Diffusion-limited aggregation: crystal vs amorphous structures

- Limited – a seed particle is placed at the center and cannot move
- Diffusion – another particle is added at an arbitrary position and is diffusing towards the seed particle
- Aggregation – the diffusing particle can stick with the seed particle or any particle within the aggregate cluster (probability of aggregation)
- The process of diffusion-aggregation is repeated several times.

Meakin, Jamtveit, PNAS 2009
Diffusion-limited aggregation: crystal vs amorphous structures

Meakin, Jamtveit, PNAS 2009
Diffusion-limited aggregation: crystal vs amorphous structures

Random cluster growth

Preferred lattice growth

Meakin, Jamtveit, PNAS 2009
Diffusion-limited aggregation: amorphous structures

The amorphous clusters tend to be fractals and have a fractal dimension.

What is a fractal?

What is a fractal dimension?
What is a fractal?

- Self-similarity across many scales (scale-invariant)
 - Lack of an intrinsic lengthscale
- Don’t fill the Euclidean space which embeds them
- Their intrinsic (fractal) dimension is smaller than the Euclidean dimension of the space in which they are embedded
Dimensions and rescaling objects

Double the size, double the mass
\[M = kL^1 \]
\[2M = k(2L)^1 \]

Double the size, quadruple the mass
\[M = kL^2 \]
\[4M = k(2L)^2 \]

Double the size, mass increases by a factor of \(2^3 = 8 \)
\[M = kL^3 \]
\[8M = k(2L)^1 \]
Dimensions and rescaling objects

\[M = kL^d \]

\[aM = k(sL)^d \]

\[a = s^d, s > 1 \]

\[d = \frac{\log (\text{# of pieces})}{\log (\text{scale factor})} \]
Fractal dimension: Sierpinski Gasket

• $a = s^D$

• At each iteration, two sides of the triangle are doubled
• $s = 2$
• The number of new triangles increases by a factor of 3
• $a = 3$

$$D = \frac{\log 3}{\log 2}$$
Fractal dimension: the Koch curve

• What’s the fractal dimension?
Fractal dimension: the Koch curve

- $a = \left(\frac{1}{s}\right)^D$
- $s = 1/3$
- The number of segments increases by a factor of 4
- $a = 4$

$$D = \frac{\log 4}{\log 3} > 1$$
Koch snowflake

- Equilateral triangle
- Apply Koch curve to each edge
- Perimeter increases by 4/3 at each iteration → ∞
- Area is bounded

https://en.wikipedia.org/wiki/Koch_snowflake
Fractal dimension

- Amount of mass (or other measure that scales with the size) of an object inside a circle of radius r has a power-law relation.

- DLA cluster in 2D, $D \approx 1.7$
Are real snowflakes fractal?
Are real snowflakes fractal?

Figure 3. Typical log-log plot of the cluster mass \(M \) within a box of edge \(L \) as a function of \(L \). Compared are the model and experimental pattern of figure 1(b). The same slope, \(d_t = 1.85 \pm 0.06 \), is found for both. The experimental data extend to larger values of \(L \), since the digitiser used to analyse the experimental photograph has 20,000 pixels while the cluster has only 4000 sites.
Are real snowflakes fractal?