Glacier mass balance modelling

GEO 4420 Glaciology
12.10.2006

Thomas V. Schuler
t.v.schuler@geo.uio.no

Why modelling?

Background

- Glaciers have retreated worldwide during the last century and are expected to continue retreating
- Socio-economic implications:
 - Sea-level rise
 - Hazard mitigation (floods)
 - Hydropower (e.g., Norway, 99% of power generation, 10% is glacier derived)
- Significant contributor to streamflow: modify runoff quantity and timing (glacier as 'water storage')

How can we investigate the glacier-climate relationship?
Reasoning

• Climate provides upper boundary conditions of the ice sheets/glaciers:
 accumulation, ablation → geometry changes

• Thermodynamics effects:
 Internal ice temperature
 Flow law coupling (cold ice is more stiff)

• Surface melt water
 Water resource, Sea level change

Glacier *surface* mass balance

- Accumulation: gain of mass (e.g. snow deposition)
- Ablation: loss of mass (e.g. snow/ice melting)
- Accumulation area: acc > abl
- Ablation area: acc < abl
- Equilibrium line altitude (ELA) in (m a.s.l.)
Methods

- Simple integrated schemes
 - Regression models
- Mass-balance models driven by specified/modelled climate:
 - Degree day methods
 - Energy balance models

Guidelines for Model Selection

1. Operation and calibration data availability
2. Expected physiographic and climatic conditions
3. Detail and type of results required.

Primary approaches to modeling

- Regression Analysis (linear or multiple)
- Temperature Index Approach
- Energy Balance Approach

Data: Engabreen, Norway, NVE
a regression model using winter precipitation and summer temperature may work well
but only for diagnostic applications!
for prognostic applications we need a deterministic model!

Regression analysis

\[MB = 3.3962 - 0.4503^\text{T\(\text{jun-sep}\)} + 0.0019^\text{P\(\text{oct-mar}\)} \]

\[r = 0.81 \]

Simple integrated approaches

- Analytical expressions for mass-balance
- Based on observation that accumulation occurs at higher elevation, and ablation lower down
- Simplest is a linear variation of mass-balance with height:

\[\dot{l}(z) = \beta(z - E) \]

Mass balance (m a\(^{-1}\))
Balance gradient (a\(^{-1}\))
Equilibrium line altitude (m)

- Typically, the equilibrium line altitude will decrease with higher latitude

At ELA:
\[T_{\text{summer}} = P_{\text{winter}} \]

But how to determine mass balance??

Regression analysis

\[\Delta \text{ELA}(x, y) = \alpha_0 + \alpha_1 x + \alpha_2 y \]

\[\Delta \text{ELA}(\text{ELA}) \]

Fig. 7. Temporal change in the ELA for the measured years.
Regression analysis

Advantages:
- Provides an estimate of total discharge from basin
- Simple
- Minimum data requirements
- Provide a good index for water resource managers

Disadvantages:
- Does not provide information on factors such as peak discharge.
- Threshold effects may occur.
- Assumes stationarity.
 - Climate boundary conditions can’t change.

Simple integrated approaches

Advantages:
- Very simple indeed
- Migration of ELA may be linked to climate change
- Attractive for use in situations where there is little data

Disadvantages:
- Entirely empirical
- In reality, ELA depends on local climate, aspect, etc.
- A blunt instrument for a complex problem

Energy balance

\[0 = Q_K + Q_H + Q_L + Q_G + Q_P + Q_M \]

\[Q_K = S \downarrow - S \uparrow + L \downarrow - L \uparrow \]

SURFACE ENERGY BALANCE

\[Q_0 = L_f \frac{dm}{dt} + M_i c_{pi} \frac{dT_i}{dt} \quad [\text{W m}^{-2}] \]

Energy exchange with atmosphere, melting / freezing, heating / cooling of the ice or snow

- \(Q_0 \): energy flux atmosphere to glacier
- \(L_f \): latent heat of fusion \((0.334 \times 10^6 \text{ J kg}^{-1})\)
- \(m \): amount of melt water
- \(M_i \): mass of the ice
- \(c_{pi} \): specific heat capacity of ice \((2009 \text{ J kg}^{-1} \text{ K}^{-1})\)
- \(T_i \): ice temperature
TRANSFER FORCING FROM CLIMATE STATION TO GLACIER

Some commonly used assumptions

<table>
<thead>
<tr>
<th>Variable</th>
<th>Assumption</th>
</tr>
</thead>
<tbody>
<tr>
<td>Temperature</td>
<td>Constant lapse rate, i.e. dT/dz constant</td>
</tr>
<tr>
<td>Wind speed</td>
<td>Constant</td>
</tr>
<tr>
<td>Humidity</td>
<td>Constant relative humidity</td>
</tr>
<tr>
<td>Cloud amount</td>
<td>Constant</td>
</tr>
<tr>
<td>Precipitation</td>
<td>Linear in elevation (used for tuning)</td>
</tr>
</tbody>
</table>

2 D PICTURE OF THE TEMPERATURE

In case the surface is melting

$dT/dz = \text{constant (e.g. } -0.007 \text{ K/m)}$

Free atmosphere \downarrow

$\begin{aligned}
\text{surface (0 °C) and free atmosphere (> 0 °C)} \\
\text{boundary layer: temperature compromise between}
\end{aligned}$

$dT/dz = ?$

Surface: temperature = 0 °C \downarrow

$dT/dz = 0$

MEASURED CLIMATE SENSITIVITY

46 daily means during the ablation season, Pasterze, Austria

<table>
<thead>
<tr>
<th>Temperature (°C) at glacier (2205 m a.s.l.)</th>
<th>Temperature (°C) at climate station (3106 m a.s.l.)</th>
</tr>
</thead>
<tbody>
<tr>
<td>4</td>
<td>0, 10</td>
</tr>
<tr>
<td>5</td>
<td>1, 10</td>
</tr>
<tr>
<td>6</td>
<td>2, 10</td>
</tr>
<tr>
<td>7</td>
<td>3, 10</td>
</tr>
<tr>
<td>8</td>
<td>4, 10</td>
</tr>
<tr>
<td>9</td>
<td>5, 10</td>
</tr>
<tr>
<td>10</td>
<td>6, 10</td>
</tr>
</tbody>
</table>

Constant lapse-rate can be a bad description, because: Climate sensitivity over glacier smaller than over snow-free terrain
SHORT-WAVE INCOMING RADIATION

\[S = I_o \cos(\theta_s) \left(T_{c+} - T_{c-} \right) \]

DIRTY ICE - PASTERZE

\[\alpha \approx 0.2 \]

FEEDBACK ALBEDO ⇔ SNOW AND ICE MELT

1) Faster metamorphosis of snow
2) Ice appears earlier
3) More meltwater on top of ice
4) More water between snow grains

SENSITIVITY INCREASES DUE TO ALBEDO FEEDBACK

1) Faster metamorphosis of snow
2) Ice appears earlier
3) More meltwater on top of ice
4) More water between snow grains

Turbulent fluxes
Incoming long-wave radiation
Energy Balance Models

\[0 = Q_R + Q_H + Q_L + Q_C + Q_P + Q_M \]

- Point or spatially distributed
- Run on measured data
 - contrast to empirical models, which run on only a few measured parameters and which rely on calibration parameters at the heart of the model.
- Only as good as your measured data and understanding of the system
- Includes some empirism anyway (turbulent exchange…)
- Sacrifice simplicity for complicated measurements and algorithms.

Energy Balance problems

- Energy Balance model (parameterizations of turbulent exchange)
- Spatial distribution
- Precipitation
- Snowpack model (refreezing, metamorphism, water retention)

Temperature-Index Methods

Based on the concept that changes in air temperature provide an index of snowmelt.

T-index approach:
\[M = C \cdot (T - T_0) \]

Air temperature
- commonly measured meteorological variable.
- secondary meteorological variable that provides an integrated measure of heat energy.
Temperature-Index Methods

Based on the concept that changes in air temperature provide an index of snowmelt.

T-index approach:

\[M = C \times (T - T_0) \]

Air temperature
- commonly measured meteorological variable.
- secondary meteorological variable that provides an integrated measure of heat energy.

Advanced T-index models

Strategy: include the second most important energy source (global radiation)

Hock 1999:

\[M = (C_1 + C_2 \times I) \times (T - T_0) \]

Pellicciotti et al. (2005):

\[M = C_1 \times (T - T_0) + C_2 \times (1 - \alpha) \times I \]

\(I \) - potential clear-sky solar radiation
\(\alpha \) - albedo

Modelling: Discharge

Limitations of Degree-Day Method

Calculation of degree-day factors for various points on the Greenland ice sheet with a sophisticated atmospheric and snow model (thesis Filip Lefebre)
Importance of individual components

<table>
<thead>
<tr>
<th>Sources/Melts</th>
<th>~ 70%</th>
<th>~ 20%</th>
<th>< 10%</th>
<th>~ 70%</th>
<th>~ 10 - 30%</th>
<th>< 10%</th>
</tr>
</thead>
<tbody>
<tr>
<td>Longwave incoming radiation</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Absorbed global radiation</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Sensible heat flux</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Melts</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Ground heat flux</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

More trouble...

- The sensible heat flux contributes < 10%
- T-index approach:
 \[M = C \times (T - T_0) \]

Why does the T-index approach perform that well??

LONG-WAVE INCOMING, PARAMETERISATION

\[
L \downarrow = \left[\varepsilon_{cs}(1 - n^4) + \varepsilon_{oc}n^4 \right] \sigma T_{2m}^4
\]

Clear-sky term \((cs)\) and overcast term \((oc)\)

Emittance \((\varepsilon)\) is 1.0 for a black body.

\[
\varepsilon_{cs} = 0.23 + c_L \left(\frac{T_{2m}}{T_{2m}} \right)^{0.8}
\]

Three tunable parameters: \(a\), \(\varepsilon_{oc}\), and \(c_L\)

The longwave incoming radiation is the largest contribution to melt (~ 70%)

About 70% of the longwave incoming radiation originates from within the first 100m of the atmosphere.

Variations of screen-level temperatures can be regarded as representative of this boundary layer.
Temperature-index models:
+ low data demand
+ applicable in all scales
- trouble with quality control

Accumulation
• Treated in a very simple way:
 • Precipitation = snow for $T < 2\, ^\circ C$
 • Precipitation = rain for $T \geq 2\, ^\circ C$
 • Linear distribution with elevation

Snow radar:
GPR mapping of snow thickness

$S = F(x,y,z)$
F is a multiple regression function
Accumulation model

- **Spatial distribution** using an index map
- **Temporal distribution** using a scaled precipitation series from Ny-Ålesund

\[
\text{acc} = C_3 \left(\frac{\text{P}_{\text{rad}}}{\sum \text{P}_{\text{rad}}} \right) C_4
\]

Scales & snow distribution

- **micro**
 - Surface roughness
 - Surface cover (vegetation)
 - Wind exposure
 - Microclimate

- **meso**
 - Large-scale topography (mountain range)
 - Distance to moisture source
 - Geogr. latitude

- **macro**

Transition

roughness

precipitation
SURFACE ENERGY BALANCE

\[Q_0 = L_f \frac{dm}{dt} + M_i c_{pi} \frac{dT_i}{dt} \quad [\text{Wm}^{-2}] \]

- **Energy exchange with atmosphere**
- **Melting / Freezing**
- **Heating / Cooling of the ice or snow**

- **Energy flux atmosphere to glacier:** \(Q_0 \)
- **Latent heat of fusion:** \(L_f \)
- **Amount of melt water:** \(m \)
- **Mass of the ice:** \(M_i \)
- **Specific heat capacity of ice:** \(c_{pi} \)
- **Ice temperature:** \(T_i \)

Melt physics

- To **melt** 1 kg snow/ice requires 334 000 J kg\(^{-1}\)
- Latent heat of fusion
- To **sublimate** 1 kg of snow requires 2 600 000 J kg\(^{-1}\)
- Latent heat of sublimation (8x \(L_f \)!!!)
- To **warm** 1 kg of snow 1 K requires 2009 J kg\(^{-1}\) K\(^{-1}\);
 - Ice: 2097 J kg\(^{-1}\) K\(^{-1}\)

Specific heat capacity

- Refreezing of 1 g water \(\rightarrow \) warms 160 g snow by 1 K

Removing cold content

- Melt-water
- Snow

- Condition for melt: snow must be at melting temperature, otherwise refreezing will occur

- Cold content = energy needed to bring the snow / ice to 0 °C.

- In the given example, refreezing of 2.5 l melt-water is needed to compensate for the cold content of the snow pack (snow density, \(\rho_s = 400 \text{ kg m}^{-3} \)).

Stake data vs model

- We measure mass balance, but model melt
refreezing

- Using a simple model:
 \[
 p_{\text{max}} = 0.6
 \]
 the proportion of the winter snow pack that refreezes within one year

 \[
 \text{if (si+melt-p_{\text{max}}*ini_snow)} \rightarrow \\
 \text{si=si+melt & abl=0}
 \]
 & snow = snow-melt

- Alternative:
 Woodward model
 (pmax is a function of MAAT)

Summary

- predictive power, assessability
- Interpolation
 Regression models
 T-index model
 Enhanced T-index
 Energy balance models

Fig. 16. Effects of an increase in equilibrium line altitude on a small ice cap and a valley glacier. Observe the large sensitivity of the ice cap (Strodder & John 1984, p. 185).
Climate sensitivity

Static sensitivity:
Apply a change to the climate data set, the glacier geometry does not change

Dynamic sensitivity:
Changes of the glacier geometry are considered as well

Uniform temperature or precipitation changes to the input data:
Temp increase $\rightarrow -1.06$ m a$^{-1}$ K$^{-1}$ (-0.99)
Prec increase $\rightarrow +0.35$ m a$^{-1}$ (10%)$^{-1}$ (+0.35)

Seasonal sensitivity characteristic
Sensitivity varies with season

SSC (Oerlemans & Reichert, 2000):
Monthly perturbations in precipitation or temperature

Model input: meteo data

Continuous time series from 1974 to date

DNMI station Glomfjord, ca. 20 km N of Engabreen at 39 m a.s.l.
Potential clear-sky solar radiation

DEM of 25m resolution

Model output: glacier mass

Engabreen
Norway

Mass balance measurements

Mass balance data (NVE) available since 1970

Model performance

\[r^2 = 0.885 \]
\[n = 174 \]
Model performance

Winter balance
$r^2 = 0.91$

Net balance
$r^2 = 0.90$

Summer balance
$r^2 = 0.90$

- measured - modelled

Model performance

$r^2 = 0.74$

Calibration period

- measured - modelled