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PREFACE

Presented are exercises connected to the lecture notes on “Fundamental of Atmospheres and
Oceans on Computers”. A certain number of these are obligatory and must be submitted for
evaluation. The students may themselves decide which six problems to submit. The exercises
replace the middle week exam, and must be approved before thestudent is allowed to take the
(oral) exam.

I strongly encourage and recommend those students who readsthe lecture notes also to go
through the exercises contained herin. The main reason being that to solve atmospheric and
oceanographic problems using numerical methods consist ofthree stages. The first is to develop
what one think is a reasonable numerical algorithm that can be used to replace the underlying
continuous, mathematical problem. The scond is to program acode for this algorithm on a given
computer so that the computer calculates the results. This stage also includes what is called
debugging and verification, that is, checking that the code is a true replication of the numerical
algorithm and actually is doing what one think one has programmed. The final and third stage
is to visualize the results in a reasonable way and to discussthe results. While the lectures notes
gives some insight into the first stage and may be gives some guidelines into the second stage,
these exercises gives the practical hands-on experience necessary to get some insight into the two
latter stages.

The exercises will be continuously amended with more exercises to adjust to the new lecture
notes. Some of the exercises are based on exercises made for earlier edition of the lecture notes,
and the authors would like to thank the many colleagues who has contributed to develop these
exercises over the years, and to the many students for pointing out misprints and other mistakes.
Good luck!

Blindern, September 19, 2007
Lars Petter Røed (sign.)
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Computer problem 1:
Truncation error in a recursion formulae with two terms

a.

Let
π = 4 arctan(1), Z1 = π, ogS1 = π. (1)

Compute

Zi+1 = 3.1Zi − 2.1Z1 ogSi+1 =

(

9.

5.

)

Si −
(

4.

5.

)

S1 (2)

for i = 1(1)100. Compute also therelativeerror (in percent) for eachi. Write π, Zi, Si and
the realtive error in percent. The output should be readableand easy to understand in itself
and should have headings for each column. Enclose the program code. Do the problem on
different platform (from handhelds to PC’s and supercomputers) if possible and available to you.
Experiment by using differnt contants in the recursion formulae. Does it make a difference in the
answer?

The purpose of the exercise is twofold: 1) It is simple enoughto enable you to refresh your
knowledge of FORTRAN, and (although you don’t have to do the exercise using FORTRAN)
without having to write lengthy codes, and 2) it demonstrates the dramatic consequences of even
small or insignificant truncation errors (which is always there in numerical computations).

b.

Show analytically why the recursion formulas forZi ogSi do not computeπ correctly.

5



Computer problem 2:
Diffusive processes in the ocean and atmosphere

In the ocean and atmosphere the vertical (and horizontal) heat exchange is a dominantly a tur-
bulent process. Commonly this turbulent heat exchange is parameterized as a diffusion process,
or down the gradient parameterization. Thus in its simplestand purest form the vertical heat
exchange is governed by a diffusion equation, that is,

∂tθ = ∇ · (κ∇θ) (3)

whereθ is the potential temperature andκ is the diffusion coefficient,t is time, and∇ is the
three-dimensional del-operator, that is,

∇θ = i∂xθ + j∂yθ + k∂zθ. (4)

wherex, y are the two horizontal axes andz is the vertical coordinate in a geopotential coordi-
nate system. Since the heat exchange is turbulent the diffusion coefficient is a function of space
and time, and thus is inside the del-operator. Mathematically we say thatθ is the dependent vari-
able, whilex, y, z, t are the independent variables. In factθ can be any active (like temperature,
humidity and salinity) or passive tracer (like CO2).

In this exercise we will simplify the diffusion to a verticalprocess only, that is,θ = θ(z, t).
Furthemore, we let the diffusion coefficient be a constant. Under these circumstances (3) reduces
to the one-dimensional, diffusion equation, that is,

∂tθ = κ∂2

zθ. (5)

a.

Develop a numerical scheme (or finite difference analog) that is forward in time and centered
in space for (5). There are two boundaries, one at the bottom and one at the top. We will
assume that the bottom is located atz = 0 and that the top is located atz = D. At the bottom
and top boundaries we will assume that the temperature is fixed at the freezing point, that is,
θ(z = 0, t) = θ(z = D, t) = 0oC. Initially the temperature is a certain function of depthz, say
θ(z, t = 0) = Θ(z).

b.

Show that the forward in time, centered in space scheme is stable under the conditionK ≤ 1

2
,

where

K =
κ∆t

∆z2
, (6)

∆t is the times step and∆z is the distance between two consequtive discrete depths (commonly
referred to as the mesh or grid size).
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Figure 1: Initial temperature distribution according to (7).

c.

Find the numerical solution to (5) using the above scheme fort = 0, N∆t whereN = 200 and
∆t the time step (t = n∆t, n = 0(1)N). Let

Θ(z) = Θ0 sin(
πz

D
), z ∈ [0, D], (7)

as shown in Figure 1,D = 100 m, ∆z = D/26, andΘ0 = 10oC. n = 0(1)200 wheren is the
time step counter (t = n∆t). Do this twice once withK = 0.45 and next withK = 0.55. Plot
the results forn = 0, n = 100 ogn = 200.

d.

Assess and discuss the solutions.

e.

Develop a finite difference analog or algorithm for (5) whichis centered in both time and space
and show that this algorithm is unconditionally unstable ina numeric sense, i.e., unstable for any
choice made for∆t and∆z.
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Computer problem 3:
Advection in atmosphere and oceans

In some cases an environmental problem in one location has its origin in quite another loca-
tion. For instance an emission of sulfurous substances in one location is transported with the
atmospheric circulation and deposited in another location. Other oceanic examples are trans-
portation of nutrients and fish larvae, oil drift, and drifting objects of any kind. Other common
examples in the atmosphere and ocean are transportation andspreading of radionuclide’s and
heavy metals and other contaminants and/or chemical substances. Commonly these substances
are tracers just like, e.g., temperature and their transportation and spreading is governed by an
advection-diffusion equation, say

∂tθ + ∇ · (vθ) = ∇ · (κ∇θ) (8)

whereθ is the concentration of the tracer,v is the three-dimensional wind or current vector and
κ is the diffusion coefficient. While, as shown in Computer problem 2, the diffusive part (the
term on the right-hand side of eq. 8) acts to spread the tracerby smoothing any differences, the
advective part (second term on the left-hand side of eq. 8) acts to transport or advect the tracer
concentration form one location to the other. This is essentially the background for the present
computer problem.

We will first simplify the problem and consider a pure advective process only. The problem
is then reduced to

∂tθ + ∇ · (vθ) = 0. (9)

To simplify further we will also assume that the advection isonly in the direction of the horizontal
x-axis and that the velocity is constant. Thusv = ui whereu is independent of time and space.
Our task is thus to solve the one-dimensional advection equation

∂tθ + u∂xθ = 0 for x ∈< 0, L > (10)

with appropriate boundary and initial conditions, one initial condition fort = 0 and one condition
in space, say atx = 0.

To this end we will make use of three schemes, namely the leapfrog scheme,

θn+1

j − θn−1

j

2∆t
+ u

θn
j+1 − θn

j−1

2∆x
= 0, (11)

the upwind scheme
θn+1

j − θn
j

∆t
+

u

∆x

{

θn
j+1 − θn

j if u < 0
θn

j − θn
j−1 if u ≥ 0

= 0, (12)

and the diffusive scheme

θn+1

j − θn
j+1

+θn
j−1

2

∆t
+ u

θn
j+1 − θn

j−1

2∆x
= 0. (13)
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for j = 1(1)J wherex = 0 is associated withj = 1 andx = L with j = J . In contrast to the
leapfrog scheme, which is centered in time and space, the upwind scheme is a simple forward in
time and forward in space scheme. The diffusive scheme is special. It is centered in space and
forward in time, except thatθn

j is replaced by1
2
(θn

j+1 + θn
j−1).

a.

Show that all schemes are numerically stable under the condition

C =
|u|∆t

∆x
≤ 1 (14)

whereC is the Courant number.

b.

Show that a scheme which solves (10) employing a forward in time and centered in space scheme
is unconditionally unstable for all choices of∆t and∆x.

c.

Show that the upwind scheme (12) inherently includes a numerical diffusion with a diffusion
coefficients given by

1

2
|u|∆x(1 − C) (15)

whereC is still the Courant number. Show also that the the diffusivescheme (13) likewise
introduces a numerical diffusion with a coefficient given by

∆x2

2∆t
(1 − C2). (16)

In the following we will make use of periodic boundary conditions, that is, we will require
that θ(x, t) = θ(x + L, t). Numerically this implies thatθn

1 = θn
J , θn

2 = θn
J+1, and so forth.

Furthermore, we will make two experiments who differs only in the specification of the initial
condition. The first is a simple sinusoidal distribution,

θ0

j = Θ0 sin

(

2πxj

L

)

j = 1(1)J, (17)

whereΘ0 is a reference value. The second is

θ0

j = Θ0























0.00 for j ≤ 48
0.75 for j = 49
1.00 for j = 50
0.75 for j = 51
0.00 for j ≥ 52

, (18)

and is constructed in order to display the peculiarities of the various schemes in the presence of
sharp gradients.
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d.

Replace (10) by its dimensionless counterpart, and solve this using the three numerical algo-
rithms (or schemes). In this we will make use of the the two different initial conditions (17) and
(18), and the periodic boundary condition. Furthermore, let xj = (j − 1)∆x andJ = 101. Do
one experiment withC = 0.5 and another withC = 1. Do also other experiments in which the
Courant number takes on values between1

2
and1. Let the time step countern start at0 and stop

the calculation whenn = 200. The increment ofn should be1, thusn = 0(1)200). Plot the
solution for each of the two initial conditions, that is, sixgraphs total forn = 0, n = 30 and
n = 100. Furthermore, plot the solution forn = 0 andn = 200 in the same graph using (18) as
initial condition for each of the three schemes.

e.

Discuss the solution based on the plots. How does the solution develop in time? Which of the
solutions are dissipative and which are dispersive? What isthe characteristics of these latter
processes?
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Computer problem 4:
Yoshida’s equatorial jet current

We consider an “infinite” equatorial ocewan consisting of two immiscible layers of with a density
difference∆ρ (Figure 2). The lower layer, with a density given by the reference densityρ0, is
thick with respect to the upper layer. At timet = 0 the ocean is at rest, at which time the
thickness of the upper layer equals its equilibrium depthH. At this particular time the ocean is
forced into motion by turning on a westerly wind (wind from the west).

x

z

z = 0

z = -H

h(x,y,t)

τ

u

ρ0

ρ −∆ρ
0

Figure 2: Sketch of a reduced gravity ocean model consistingof two layers with a density differ-
ence given by∆ρ.

The governing equations of such a “reduced gravity” model ofthe ocean, is

∂tu − βyv =
τx

ρ0H
(19)

∂tv + βyu = −g′∂yh (20)

∂th + H∂yv = 0 (21)

Here u, v are the respectively the eastbound and westbound components of the velocity in a
Cartesian coordinate system(x, y, z) with x directed eastward along the equator,y directed
northwards withy = 0at the equator, andz directed along the negative gravitational force,
that is upwards (Figure 2). The impact of the Earth’s rotation is given by the Coriolis parame-
ter f = 2Ω sin φ whereΩ is the Earth’s rotation rate andφ is the latitude. The westerly wind

11



is given by the wind stress componentτx which is fixed in time. Furthermore, we define the
reduced gravity byg′ ≡ g(∆ρ0/ρ) whereg is the gravitational acceleration. The instantanuous
thickness of the upper layer is given byh. The notation∂t and∂y is used to denote differentiation
with respect tot andy respectively.

Note that at the equatorf = 0 and that it increases with increasing latitude. A simplified
parameterization of this effect is through the so calledβ-plane approximation,

f = βy, hvor β = ∂yf |y=0. (22)

We note theβ is just a measure of the first term in a Taylor series off at the equator. Thus it
represents the effect to first order of the impact of the change in the Earth’s rotation rate with
latitude.

a.

Show that the inertial oscialltions (that is oscialltion with a frequency equal the inertial frequency
f ) is eliminated by neglecting∂tv in (20).

b.

Show that the problem, given that the inertial oscillation are eliminated, is reduced to the ordinary
differential equation

L4∂2

yv − y2v = aLy (23)

where

L =

√

c

β
, a =

τx

ρ0βLH
, c =

√

g′H (24)

The boundary condtions are given byv|y=0 = 0 andv|y→∞ = 0.

c.

make (23) dimensionless by lettingy = Lŷ, (u, v) = a(û, v̂), and t = (βL)−1t̂. Use a
tridigaonal, for instance Gauss eliminatio, to solve the dimensionless expression of (23). Let
∆y = 0.1 and plotv̂ andû at timet̂ = 1 as a function of̂y from ŷ = 0 to ŷ = 8. Note that̂v is
different from zero at̂y = 8. You have to figure out for yourself how to obtain the condition at
ŷ → ∞.

d.

Discuss briefly the solution. Letτx = 0.1Pa, β = 2. ·10−11(ms)−1, L = 275km,ρ = 103kgm−3

andH = 200m. What is the maximum current in the equatorial jet fort̂ = 1?
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e.

Solve (23) analytically. Hint: Make a series using Hermitian polynomials (se for instance
Abramowitz and Stegun, 1965).
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Computer problem 5:
Multiple solutions - Rossby and gravity waves

We will solve the one dimensional shallow water equations todemonstrate multiple solution
modes, the role of initial conditions and the use of the Flow Relaxation Scheme (FRS) as an
open boundary condition.

We assume that the derivatives with respect to they-direction are zero, except for the back-
ground pressure force which gives rise to a (constant) geostrophic flow, sayug, in thex-direction.
Let u, v be the the velocity components along, respectively, thex, y-axes, andh the geopotential
height. Then the one dimensional, shallow water equations are are

∂th = −u∂xh − h∂xu, (25)

∂tu = fv − u∂xu − g∂xh, (26)

∂tv = −fu − u∂xv + fug, (27)

wheref is the Coriolis parameter that we will assume is constant andgiven byf = 1.26·10−4s−1

which is its value at 60oN.
Initially the fluid is at rest, i.e.,u = v = 0, while the geopotential height is given by

h = H + Ae
−

“

x−xm
x0

”2

, (28)

whereH = 1000m,A = 15m, ug = 0ms−1 andxm is the middle point of the domain.

a)

Show that by introducingU = hu, V = hv and h as the new variables the above equation
becomes

∂th = −∂xU, (29)

∂tU = fV − ∂x

(

U2

h

)

− 1

2
g∂xh

2, (30)

∂tV = −f(U − Ug) − ∂x

(

UV

h

)

. (31)

whereUg = hug.

b)

To solve the above equations numerically we will adopt the leapfrog scheme. Show that the
numerical algorithm then becomes

hn+1

j = hn−1

j − ∆t

∆x

(

Un
j+1 − Un

j−1

)

, (32)

Un+1

j = Un−1

j + 2fV n
j ∆t + ADV U + PRES, (33)

V n+1

j = V n−1

j − 2f(Un
j − Ug)∆t + ADV V (34)
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where

ADV U = −∆t

∆x

(

[

U2

h

]n

j+1

−
[

U2

h

]n

j−1

)

, (35)

ADV V = −∆t

∆x

(

[

UV

h

]n

j+1

−
[

UV

h

]n

j−1

)

(36)

constitute the advection terms and

PRES = − g∆t

2∆x

(

[

h2
]n

j+1
−
[

h2
]n

j−1

)

(37)

is the pressure term.

c)

Solve the above equations for the domainx ∈ 〈0, D〉 using the above scheme. Assume that the
variablesu, v, h retain their initial values at the boundariesx = 0 andx = D. Further, let the
grid length be∆x = 100km, D = 32∆x andx0 = 5∆x.

How long time step∆t can be used? Explain your choice1.
As is common we may regardh as the geopotential height of a pressure surface in the at-

mosphere and as the depth of a water column in the ocean.H is then equilibrium height in the
atmosphere associated with a pressure surface of≈ 900hPa, while it is the equilibrium depth
in the ocean. In the latter caseh − H is the deviation of the surface away from its equilibrium
position.

Ploth or h − H after1.5, 3.0, 4.5, and6 hours into the future. Discuss the solution.

d)

Repeat the above experiment using the the FRS method to relaxthe inner solutioñu, ṽ, h̃ towards
the externally specified values(û, v̂, ĥ) = (0, 0, H) in a buffer zone where the relaxation param-
eterλj is given by1.0, 0.69, 0.44, 0.25, 0.11, 0.03, and0, where the first value is used atj = 1
andj = 33, the next value forj = 2 andj = 32, etc.

Discuss by comparing this solution to the solution of experiment c). Then compute the
geostrophic component of the velocity

vg =
g

f
∂xh (38)

after t = 6 hours, that is, at the end of the integration. Comparevg andv. What do you think
have happened?

1Hint: Neglect the non-linear terms and then proceed using von Neumanns method.
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f)

Note: This part is not obligatory

Repeat the experiment ofc) replacing the initial condion by

h = H + Ae
−

“

x−xm
x0

”2

, (39)

u = 0, (40)

v =
g

f
∂xh. (41)

Discuss the solution by comparing it to that of experimentc).
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Computer Problem 7:
The storm surge problem

In this problem we will consider the so called storm surge problem. This gives you an experience
in constructing numerical solutions to problems that includes more than one dependent variable.

In contrast to the atmosphere the astronomical forcing gives rise to an important periodic
water level response called tides. In addition to this phenomenon the water level in the ocean
also changes due to atmospheric wind and sea level pressure.The latter is called the storm surge
response and the water level change caused by it the storm surge. From time to time the joint
occurence of high tides and high storm surges can lead to devastating high water levels even
along the Norwegian coast. One such example is from mid October 1987 where the water level
in Oslo Harbour reached 1.96 meters above normal sea level. In fact since the early 1980s the
Norwegian Meteorological Institute has forecasted sea level changes due to storm surges using
numerical models.

x

z

z = 0

h(x,y,t)

H(x,y) ρ0

z = -H

ζ 

Figure 3: Sketch of a storm surge model along a straight coastconveniently showing some of the
notation used.

Many of the earlier studies of storm surges, (e.g.,Røed, 1979;Gjevik and Røed, 1976;Mar-
tinsen et al., 1979, to mention a few of the Norwegian ones), have shown that the storm surge is
mainly a barotropic response. Storm surge models thereforecommonly assume that the density
is constant in time and space. The equations therefore reduce to the well known shallow water
eqautions. Let

U =

∫ ζ

−H

udz, (42)

with components(U, V ) along thex, y-axes, respectively, be the transport of water in a water
column of depthh = H + ζ whereζ is the sea level deviation away from the equilibrium depth
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H (see Figure 3). Then the shallow water equations may be written

∂tU + ∇H · (h−1UU) + fk × U = −gH∇H(h − H) + ρ−1

0 (τ s − τ b),

∂th + ∇H · U = 0.
(43)

whereτ s andτ b are respectively the wind and bottom stresses with components (τx
s , τ y

s ) og
(τx

b , τ y
b ), g is the gravitational acceleration andρ0 is the (uniform in time and space) density.

Linearizing (43) and neglecting variations in they direction then gives

∂tU − fV = −gH∂xh + ρ−1

0 (τx
s − τx

b ),

∂tV + fU = ρ−1

0 (τ y
s − τ y

b ),

∂th + ∂xU = 0.

(44)

In the following we will assume that changes in the equilibrium depth are so small thatH to a
good approximation can be considered as being constant.

a.

Show that (44) follows by linearizing (43) under the assumption that changes in the equilibrium
depthH are insignificant and that|U|2 ≪ |U|.

b.

What changes are introduced to (44) if the changes in the equilibrium depthH are significant?

c.

We will solve (44) using numerical methods. To this end we will use a centered in space and
forward-backward in time scheme2. Hence, one such scheme, called the Sielecki scheme (Si-
elecki, 1968), is

Un+1

j − Un
j

∆t
= fV n

j − gH
hn

j+1 − hn
j−1

2∆x
+

(τx
s )n

j − (τx
b )n

j

ρ0

,

V n+1

j − V n
j

∆t
= −fUn+1

j +
(τ y

s )n
j − (τ y

b )n
j

ρ0

, (45)

hn+1

j − hn
j

∆t
= −

Un+1

j+1
− Un+1

j−1

2∆x
.

Here we have assumed that all variables are evaluated at the same point in time and space,
that is, are evaluated in a non-staggered grid (Arakawa A-grid). Show that the scheme (45) is

2Forward-backward in time means that as soon as one dependentvariable is updated (in time) we use these
values when updating the other dependent variables.
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numerically stable under the condition

∆t ≤ 2∆x√
gH

√

1 −
(

f∆t

2

)2

(46)

using von Neumanns method3.

In the following we will first solve the storm surge problem byhand. Although the analytic
solution only constitutes an approximation to the problem it can nevertheless be used to verify
that the numerical solution is well behaved. ng analytic methods det videre skal vi se på løs-
ninger av stormfloproblemet langs en rett kyst, that is, analytiske og numeriske løsninger av det
lineariserte systemet (44). For dette formål skal modellens parametere, dersom intet annet er
nevnt settes som følger,

τ s = (0, 0.1)Pa , ρ0 = 103kg/m3,

τ b = ρ0R
U

H
, R = 2.4 · 10−3m/s. (47)

Begynnelsestilstanden er gitt ved at havet ved tiden er i ro og i likevekt, that is,

U(x, 0) = 0 og ζ = 0. (48)

Merk at havet bare er begrenset av den rette kysten vedx = 0. Her forlanges at det ikke strømmer
vann gjennom kysten altså ati · U = 0. Forx → −∞ har vi en åpen rand. Her er det rimelig å
forlange at løsningen tilnærmet er lik Ekmanløsningen, that is, her er det ingen endringer i havets
vannstand,

h|x→−∞ = H eller∂xh|x→−∞ = 0. (49)

d.

Vis at svingninger på treghetsfrekvensen sløyfes dersom viser bort ifra leddet∂tU i (44). Sannsyn-
liggjør også at Ekmanløsningen (49) er den naturlig randbetingelsen nårx → ∞.

e.

Anta geostrofisk balanse iy-retningen (that is hastigheten langs kysten balanseres avtrykk-
kraften på tvers av kysten) som matematisk reduserer førstelikning i (44) til

fV = gH∂xh. (50)

3Hint: When analysing the instability neglect all forcing (stress) terms. Also let the discrete Fourier representa-
tion of the dependent variables beU = Uneiα(j−1)∆x, V = Vneiα(j−1)∆x, andh = Hneiα(j−1)∆x, respectively.
To arrive at (46) eliminate firstUn, Un+1 andVn, Vn+1 to arrive at one equation involving onlyHn andHn+1.
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Vis så at den analytiske løsningen, under forutsetning av at(47) gjelder medR = 0 (ingen
bunnspenning), kan skrives på formen

U = UE

(

1 − ex/λ
)

(51)

V = ftUEex/λ (52)

h = H

(

1 +
tUE

λH
ex/λ

)

(53)

hvorλ =
√

gH/f er Rossbys deformasjonsradius og

UE =
τ y
s

ρ0h
, (54)

er Ekmanhastigheten, that is, den hastigheten du får ved å løse den stasjonære utgaven (that is
∂t = 0) av (44) med∂x = 0 ogR = 0.

f.

Søk deretter en analytisk løsning hvor vi tar med bunnspenningen iy-retningen, that is,τx
b =

0, τ y
b = ρ0Rv. Se også her bort ifra treghetssvingningene ved å anta geostrofisk balanse iy-

retningen. (Hint: Gjør bruk av Laplace transformasjoner).

g.

Fremstill løsningene avh, U og V under punktene e. og f. grafisk i hvert sittx − t diagram
(Hovmøller diagram).

h.

Løs deretter stormfloproblemet numerisk med bruk av fulle bunnspenninger. Bruk et forskjøvet
gitter slik at h-punktet er forskjøvet i forhold tilU, V -punktene og slik ath-punktene ligger
midt mellomU, V -punktene. Avstanden mellomh-punktene erDx. Velg denne slik at Rossbys
deformasjonsradius,λ, er oppløst, that is,∆x ≃ λ/10. Anta videre at Ekmanløsningen er
gyldig langt fra kysten, that is, i en avstand mye lengre enn Rossbyradien, that is minst en
størrelsesorden (x = 10λ), og bruk dette som randkrav forx >> λ. Randkravet forx = 0
er som angitt en “slip” betingelse, that isU = 0, V 6= 0. Fremstill løsningen avh, U og V
grafisk i et Hovmøller diagram, og sammenlign med de analytiske løsningene. Drøft eventuelle
forskjeller og likheter.
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