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PREFACE

Presented are exercises connected to the lecture notesumddfmental of Atmospheres and
Oceans on Computers”. A certain number of these are obhgaiiod must be submitted for
evaluation. The students may themselves decide which sbigms to submit. The exercises
replace the middle week exam, and must be approved befogutent is allowed to take the
(oral) exam.

| strongly encourage and recommend those students who tieadscture notes also to go
through the exercises contained herin. The main reasorglibat to solve atmospheric and
oceanographic problems using numerical methods consikted stages. The first is to develop
what one think is a reasonable numerical algorithm that eanded to replace the underlying
continuous, mathematical problem. The scond is to prograoda for this algorithm on a given
computer so that the computer calculates the results. Tagesalso includes what is called
debugging and verification, that is, checking that the cedetrue replication of the numerical
algorithm and actually is doing what one think one has pnognad. The final and third stage
is to visualize the results in a reasonable way and to digbesesults. While the lectures notes
gives some insight into the first stage and may be gives sorngelqes into the second stage,
these exercises gives the practical hands-on experiecessery to get some insight into the two
latter stages.

The exercises will be continuously amended with more ezegcio adjust to the new lecture
notes. Some of the exercises are based on exercises maaeli@r edition of the lecture notes,
and the authors would like to thank the many colleagues wisocbatributed to develop these
exercises over the years, and to the many students for pgiatit misprints and other mistakes.
Good luck!

Blindern, September 19, 2007
Lars Petter Rged (sign.)
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Computer problem 1.
Truncation error in arecursion formulae with two terms

a.
Let
7w = 4arctan(l), Z, = m, 095, = 7. 1)
Compute
Ziv1=31Z;—217,095;11 = (2—) S; — (;’f—) S (2)

for i = 1(1)100. Compute also theelative error (in percent) for each Write 7, Z;, S; and
the realtive error in percent. The output should be readaht easy to understand in itself
and should have headings for each column. Enclose the pnogoale. Do the problem on
different platform (from handhelds to PC’s and supercoratif possible and available to you.
Experiment by using differnt contants in the recursion folae. Does it make a difference in the
answer?

The purpose of the exercise is twofold: 1) It is simple enotgyanable you to refresh your
knowledge of FORTRAN, and (although you don't have to do tker@se using FORTRAN)
without having to write lengthy codes, and 2) it demonstgaéite dramatic consequences of even
small or insignificant truncation errors (which is alwaysith in numerical computations).

b.

Show analytically why the recursion formulas 6y og S; do not computer correctly.



Computer problem 2:
Diffusive processesin the ocean and atmosphere

In the ocean and atmosphere the vertical (and horizontal) édechange is a dominantly a tur-
bulent process. Commonly this turbulent heat exchangerepeterized as a diffusion process,
or down the gradient parameterization. Thus in its simpdest purest form the vertical heat
exchange is governed by a diffusion equation, that is,

00 =V - (kV0) (3)

whered is the potential temperature andis the diffusion coefficient; is time, andV is the
three-dimensional del-operator, that is,

Vo =i9,0 + jo,0 + k. 0. (4)

wherex, y are the two horizontal axes ands the vertical coordinate in a geopotential coordi-
nate system. Since the heat exchange is turbulent the idiffgsefficient is a function of space
and time, and thus is inside the del-operator. Mathem#tioad say that is the dependent vari-
able, whilez, y, z, t are the independent variables. In fAatan be any active (like temperature,
humidity and salinity) or passive tracer (like €O

In this exercise we will simplify the diffusion to a verticatocess only, that ig) = 6(z,t).
Furthemore, we let the diffusion coefficient be a constamidés these circumstances (3) reduces
to the one-dimensional, diffusion equation, that is,

0,0 = k020, (5)

a.

Develop a numerical scheme (or finite difference analog) ihérward in time and centered
in space for (5). There are two boundaries, one at the bottahoae at the top. We will
assume that the bottom is locatedzat 0 and that the top is located at= D. At the bottom
and top boundaries we will assume that the temperature id fikeéhe freezing point, that is,
0(z =0,t) =6(z = D,t) = 0°C. Initially the temperature is a certain function of deptlsay
0(z,t =0) =0(2).

b.

Show that the forward in time, centered in space scheme lidestender the conditiod < %

where
KAt

K=— 6

AZ27 ( )
At is the times step and - is the distance between two consequtive discrete depthsntomly
referred to as the mesh or grid size).
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Figure 1: Initial temperature distribution according t9.(7

C.

Find the numerical solution to (5) using the above scheme fer0, N At whereN = 200 and
At the time stepi(= nAt,n = 0(1)N). Let

w4

O(z) =6 sin(ﬁ), z €0, D], (7)

as shown in Figure 1D = 100 m, Az = D/26, and®, = 10°C. n = 0(1)200 wheren is the
time step countert(= nAt). Do this twice once with' = 0.45 and next withK' = 0.55. Plot
the results forn = 0, n = 100 ogn = 200.

d.

Assess and discuss the solutions.

e.

Develop a finite difference analog or algorithm for (5) whisltentered in both time and space
and show that this algorithm is unconditionally unstable imumeric sense, i.e., unstable for any
choice made foAt andAz.



Computer problem 3:
Advection in atmosphere and oceans

In some cases an environmental problem in one location bawigin in quite another loca-
tion. For instance an emission of sulfurous substances énlacation is transported with the
atmospheric circulation and deposited in another locatiOther oceanic examples are trans-
portation of nutrients and fish larvae, oil drift, and dnifgi objects of any kind. Other common
examples in the atmosphere and ocean are transportatiospaedding of radionuclide’s and
heavy metals and other contaminants and/or chemical sutesta Commonly these substances
are tracers just like, e.g., temperature and their trartapon and spreading is governed by an
advection-diffusion equation, say

00+ V - (vh) =V - (kV0) (8)

whered is the concentration of the tracer,is the three-dimensional wind or current vector and
r is the diffusion coefficient. While, as shown in Computerlpeon 2, the diffusive part (the
term on the right-hand side of eq. 8) acts to spread the ttacemoothing any differences, the
advective part (second term on the left-hand side of eq. 8)tadransport or advect the tracer
concentration form one location to the other. This is esaythe background for the present
computer problem.

We will first simplify the problem and consider a pure adveegprocess only. The problem
is then reduced to

00+ V- (vl) = 0. 9

To simplify further we will also assume that the advectioan$y in the direction of the horizontal
xz-axis and that the velocity is constant. Thus- ui wherew is independent of time and space.
Our task is thus to solve the one-dimensional advectiontexjua

0 +ud,0 =0 forxe<0,L> (10)

with appropriate boundary and initial conditions, oneiatitondition fort = 0 and one condition
in space, say at = 0.
To this end we will make use of three schemes, namely theriegstheme,
n—l—l n—l n n
07 — 0 0"

J+1 V-1
_ 11
oAt YT oA 0, (11)

the upwind scheme

7t — 07w (0, — 0" ifu<0
JJ - J+1 J _
At +Ax{ or — 6 ifu>0 0, (12)
and the diffusive scheme
QT.Hrl — w n o Qn
J 2 Jj+1 j—1
=U. 13
At TUTTORS 0 (13)
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for j = 1(1)J wherex = 0 is associated with = 1 andz = L with j = J. In contrast to the
leapfrog scheme, which is centered in time and space, thendseheme is a simple forward in
time and forward in space scheme. The diffusive scheme igapdt is centered in space and
forward in time, except that] is replaced by%—(@;ﬂrl +07_4).

a.

Show that all schemes are numerically stable under the tondi

|u| At

¢= Ax

<1 (14)

whereC is the Courant number.

b.

Show that a scheme which solves (10) employing a forwaranie &ind centered in space scheme
is unconditionally unstable for all choices A andAx.

C.

Show that the upwind scheme (12) inherently includes a nigzalediffusion with a diffusion
coefficients given by

%\U\Ax(l _0) (15)

where C' is still the Courant number. Show also that the the diffusebeme (13) likewise
introduces a numerical diffusion with a coefficient given by
Ax?

E(l - C?). (16)

In the following we will make use of periodic boundary comaiits, that is, we will require
thatf(x,t) = 6(x + L,t). Numerically this implies tha#? = 07, 05 = 67, ,, and so forth.
Furthermore, we will make two experiments who differs omithe specification of the initial
condition. The first is a simple sinusoidal distribution,

2w,

07 = O sin (T) j=1(1)J, (17)

whereO, is a reference value. The second is
0.00 forj <48

0.75 forj =49
09 =©04 1.00 forj =50, (18)
0.75 forj =51

0.00 forj > 52

and is constructed in order to display the peculiaritiesheftarious schemes in the presence of
sharp gradients.



d.

Replace (10) by its dimensionless counterpart, and solgeuting the three numerical algo-
rithms (or schemes). In this we will make use of the the twéed#nt initial conditions (17) and
(18), and the periodic boundary condition. Furthermorezle= (j — 1)Az and.J = 101. Do
one experiment witlt' = 0.5 and another witlC' = 1. Do also other experiments in which the
Courant number takes on values betwéemdl. Let the time step counter start at0 and stop
the calculation whem = 200. The increment of. should bel, thusn = 0(1)200). Plot the
solution for each of the two initial conditions, that is, gjraphs total fom = 0, n = 30 and

n = 100. Furthermore, plot the solution far = 0 andn = 200 in the same graph using (18) as
initial condition for each of the three schemes.

e.

Discuss the solution based on the plots. How does the soldgeelop in time? Which of the
solutions are dissipative and which are dispersive? Wh#tdscharacteristics of these latter
processes?

10



Computer problem 4.
Yoshida'sequatorial jet current

We consider an “infinite” equatorial ocewan consisting ad timmiscible layers of with a density
differenceAp (Figure 2). The lower layer, with a density given by the refese density,, is
thick with respect to the upper layer. At time= 0 the ocean is at rest, at which time the
thickness of the upper layer equals its equilibrium defthAt this particular time the ocean is
forced into motion by turning on a westerly wind (wind fronetivest).

A

».
Z = = — — — ~— 1z=0
h(x,y,t)
P AP —u>
- — |- = — — — z=-H
Po
>

Figure 2: Sketch of a reduced gravity ocean model consistigo layers with a density differ-

ence given by\p.

The governing equations of such a “reduced gravity” modé¢hefocean, is

Oyu — Byv

o + Pyu
ath + HayU

TCC

7 (19)
—g'd,h (20)
0 (21)

Here u, v are the respectively the eastbound and westbound comoaotitie velocity in a
Cartesian coordinate systefm,y, z) with x directed eastward along the equatgrdirected
northwards withy = Oat the equator, and directed along the negative gravitational force,
that is upwards (Figure 2). The impact of the Earth’s rotaigiven by the Coriolis parame-
ter f = 2Qsin ¢ where(? is the Earth’s rotation rate anglis the latitude. The westerly wind

11



is given by the wind stress componerit which is fixed in time. Furthermore, we define the
reduced gravity by = g(Apoy/p) whereg is the gravitational acceleration. The instantanuous
thickness of the upper layer is given by The notatiord, andd, is used to denote differentiation
with respect tad andy respectively.

Note that at the equatgf = 0 and that it increases with increasing latitude. A simplified
parameterization of this effect is through the so callgplane approximation,

f=py, hvor 3=20,fl—o (22)

We note thes3 is just a measure of the first term in a Taylor serieg @it the equator. Thus it
represents the effect to first order of the impact of the ckanghe Earth’s rotation rate with
latitude.

a.

Show that the inertial oscialltions (that is oscialltiortva frequency equal the inertial frequency
f) is eliminated by neglecting,v in (20).

b.

Show that the problem, given that the inertial oscillatiome@iminated, is reduced to the ordinary
differential equation
L4(95v —y* = aly (23)

c T
L= ) a = ) ¢ = 'H 24
\/; poBLH g (24)

The boundary condtions are given bly_, = 0 andv|,_... = 0.

where

C.

make (23) dimensionless by letting = Ly, (u,v) = a(a,0), andt = (BL)"'f. Use a
tridigaonal, for instance Gauss eliminatio, to solve thmehsionless expression of (23). Let
Ay = 0.1 and ploto and at timet = 1 as a function of) from § = 0 to § = 8. Note thato is
different from zero afy = 8. You have to figure out for yourself how to obtain the conditad

Yy — OQ.

d.

Discuss briefly the solution. Let” = 0.1Pa, 8 = 2.-107 " (ms)~!, L = 275km, p = 103kgm 3
andH = 200m. What is the maximum current in the equatorial jetfee 1?

12



e.

Solve (23) analytically. Hint: Make a series using Hermnmtigolynomials (se for instance
Abramowitz and Stegui965).

13



Computer problem 5:
Multiple solutions - Rossby and gravity waves

We will solve the one dimensional shallow water equationslémonstrate multiple solution
modes, the role of initial conditions and the use of the Flos¥aiRation Scheme (FRS) as an
open boundary condition.

We assume that the derivatives with respect toittigrection are zero, except for the back-
ground pressure force which gives rise to a (constant) ggaisic flow, sayu,, in thez-direction.
Letu, v be the the velocity components along, respectively;theaxes, and: the geopotential
height. Then the one dimensional, shallow water equaticmnare

Oth = —ud,h — hoyu, (25)
ou = fv—udyu— go;h, (26)
v = —fu—udv+ fug, (27)

wheref is the Coriolis parameter that we will assume is constangaveh by f = 1.26-10"*s™!
which is its value at 6IN.
Initially the fluid is at rest, i.e.uw = v = 0, while the geopotential height is given by

h=H+ Ae (552) (28)

whereH = 1000m, A = 15m, u, = Oms™! andz,, is the middle point of the domain.
a)

Show that by introducing/ = hu,V = hv andh as the new variables the above equation
becomes

Oh = —0,U, (29)
U 1.,
oV = —f(U-U,) -0, <U—}Y) . (31)

whereU, = hu,.

b)

To solve the above equations numerically we will adopt ttepleg scheme. Show that the
numerical algorithm then becomes

) A,

W= R - Az (U = Ufy) (32)
Ut = U4 2fVRAL+ ADVU + PRES, (33)
‘/;n+1 _ V}nfl _ Qf(Ujﬂ —U,)At + ADVV (34)

14



where

At (U U

ADVU = —— {—J —{—ﬁ : (35)
Ax( h i h i1

ADVY - _At Fﬂ% _{QK} (36)
Az h il h i1

constitute the advection terms and
gAt 91 n 91n
PRES = —3= (1], - [1*]],) (37)

is the pressure term.

C)

Solve the above equations for the domaig (0, D) using the above scheme. Assume that the
variablesu, v, h retain their initial values at the boundaries= 0 andz = D. Further, let the
grid length beAz = 100km, D = 32Az andxzy = HAx.

How long time step\t can be used? Explain your chotce

As is common we may regarkl as the geopotential height of a pressure surface in the at-
mosphere and as the depth of a water column in the ocFas.then equilibrium height in the
atmosphere associated with a pressure surface 600hPa, while it is the equilibrium depth
in the ocean. In the latter cage— H is the deviation of the surface away from its equilibrium
position.

Ploth or h — H after1.5,3.0, 4.5, and6 hours into the future. Discuss the solution.

d)

Repeat the above experiment using the the FRS method tathelamner solutiorii, 7, i towards
the externally specified valués, o, 1) = (0,0, H) in a buffer zone where the relaxation param-
eter)\; is given by1.0,0.69, 0.44, 0.25,0.11, 0.03, and0, where the first value is used at= 1
andj = 33, the next value foj = 2 andj = 32, etc.

Discuss by comparing this solution to the solution of expertc). Then compute the
geostrophic component of the velocity

z@:%@h (38)

aftert = 6 hours, that is, at the end of the integration. Compgrandv. What do you think
have happened?

IHint: Neglect the non-linear terms and then proceed usimgNeumanns method.

15



f)

Note: Thispart isnot obligatory

Repeat the experiment of replacing the initial condion by

= omeac () (39)
— 0, (40)
v o= %&h (41)

Discuss the solution by comparing it to that of experimgnt

16



Computer Problem 7:
The storm surge problem

In this problem we will consider the so called storm surgeopgm. This gives you an experience
in constructing numerical solutions to problems that idelsimore than one dependent variable.

In contrast to the atmosphere the astronomical forcingggnse to an important periodic
water level response called tides. In addition to this phesmon the water level in the ocean
also changes due to atmospheric wind and sea level pre3hedatter is called the storm surge
response and the water level change caused by it the stoga.sbrom time to time the joint
occurence of high tides and high storm surges can lead tostigireg high water levels even
along the Norwegian coast. One such example is from mid @ctb®87 where the water level
in Oslo Harbour reached 1.96 meters above normal sea lavéhct since the early 1980s the
Norwegian Meteorological Institute has forecasted seal lelvanges due to storm surges using
numerical models.

h(x,y.1)

Figure 3: Sketch of a storm surge model along a straight cmasteniently showing some of the
notation used.

Many of the earlier studies of storm surges, (eRped 1979;Gjevik and Rgedl976;Mar-
tinsen et al., 1979, to mention a few of the Norwegian ones), have showttliesstorm surge is
mainly a barotropic response. Storm surge models therefmr@monly assume that the density
is constant in time and space. The equations therefore ectuthe well known shallow water
egautions. Let

¢
U= / udz, (42)
—H

with componentgU, V') along thex, y-axes, respectively, be the transport of water in a water
column of deptth = H + ( where( is the sea level deviation away from the equilibrium depth

17



H (see Figure 3). Then the shallow water equations may beanritt

OU + Vi - (h'UU) + fkx U= —gHVy(h — H) + py (T, = 70),

(43)
Oih+ V- U =0.

wherer, and T, are respectively the wind and bottom stresses with comgsrief, 7¥) og
(77, 7)), g is the gravitational acceleration ang is the (uniform in time and space) density.
Linearizing (43) and neglecting variations in thelirection then gives

U — fV = —gHO,h + p, (77 — 77),

s

OV + fU = py ' (r¥ — 1), (44)

In the following we will assume that changes in the equilibtridepth are so small th&f to a
good approximation can be considered as being constant.

a.

Show that (44) follows by linearizing (43) under the assuompthat changes in the equilibrium
depthH are insignificant and thatJ|*> < |U].

b.
What changes are introduced to (44) if the changes in théilequm depth H are significant?

C.

We will solve (44) using numerical methods. To this end wd wdle a centered in space and
forward-backward in time scherheHence, one such scheme, called the Sielecki sch&me (
elecki, 1968), is

grtt _yr [y (2 — ()"
J J N < Jj+1 Jj—1 s/j b/j
At Vit =9 2Ax + 00 ’
-y () - ();
J J n+1 s/j b/j 45
N L (45)
n+1 n n+1 n+1
hj+ — hj _ _Ujjl - Ujjl
At 2Ax '

Here we have assumed that all variables are evaluated atathe point in time and space,
that is, are evaluated in a non-staggered grid (Arakawaid)}gShow that the scheme (45) is

2Forward-backward in time means that as soon as one depevalgaitle is updated (in time) we use these
values when updating the other dependent variables.

18



numerically stable under the condition

2
se 22 [ (120) @0

using von Neumanns methbd

In the following we will first solve the storm surge problem bgnd. Although the analytic
solution only constitutes an approximation to the problécan nevertheless be used to verify
that the numerical solution is well behaved. ng analytichods det videre skal vi se pa lgs-
ninger av stormfloproblemet langs en rett kyst, that is, yiskle og numeriske lgsninger av det
lineariserte systemet (44). For dette formal skal modsliearametere, dersom intet annet er
nevnt settes som fglger,

T, =(0,0.1)Pa , po=10°kg/m?>,
U

Ty = poRﬁ , R=24-10"m/s. (47)

Begynnelsestilstanden er gitt ved at havet ved tiden er grolikevekt, that is,
U(z,0)=0 og (=0. (48)

Merk at havet bare er begrenset av den rette kystenved. Her forlanges at det ikke strammer
vann gjennom kysten altsaatU = 0. Forz — —oo har vi en apen rand. Her er det rimelig &
forlange at Igsningen tilngermet er lik Ekmanlgsningert,ighdner er det ingen endringer i havets
vannstand,

hle——oo = H ellero h|, . o = 0. (49)

d.

Vis at svingninger pa treghetsfrekvensen slgyfes ders@anhort ifra ledded, U i (44). Sannsyn-
liggjer ogsa at Ekmanlgsningen (49) er den naturlig raridgetsen nar: — oo.

e.

Anta geostrofisk balansejj-retningen (that is hastigheten langs kysten balanseresylkk-
kraften pa tvers av kysten) som matematisk reduserer fiiksiag i (44) til

fV = gHO,h. (50)

3Hint: When analysing the instability neglect all forcingréss) terms. Also let the discrete Fourier representa-
tion of the dependent variables be= U,e'*(i-1Az 'y =V, ¢icG-DA2 andh = H,e'*U-DA% respectively.
To arrive at (46) eliminate firdv,,, U,,+1 andV,,, V,, 11 to arrive at one equation involving on¥,, andH,, ;1.
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Vis sa at den analytiske Igsningen, under forutsetning a2k gjelder medk = 0 (ingen
bunnspenning), kan skrives pa formen

U = Ug(l—e/?) (51)
V o= ftUge”? (52)
ho— (14 Y (53)
ANH
hvor A\ = \/gH/ f er Rossbys deformasjonsradius og

Yy
Up =, (54)

poh

er Ekmanhastigheten, that is, den hastigheten du far vesedden stasjonzere utgaven (that is
0, =0)av (44) med), =00gR = 0.

f.

Sgk deretter en analytisk l@sning hvor vi tar med bunnspyami iy-retningen, that is7y =
0,77 = poRv. Se ogsa her bort ifra treghetssvingningene ved & antargéisktbalanse i-
retningen. (Hint: Gjar bruk av Laplace transformasjoner).

g.

Fremstill Igsningene a%, U og V' under punktene e. og f. grafisk i hvert sitt— ¢ diagram
(Hovmgller diagram).

h.

Lgs deretter stormfloproblemet numerisk med bruk av fullertspenninger. Bruk et forskjgvet
gitter slik at h-punktet er forskjgvet i forhold til/, V-punktene og slik ak-punktene ligger
midt mellomU, V -punktene. Avstanden mellompunktene eiDx. Velg denne slik at Rossbys
deformasjonsradius), er opplgst, that isAxz ~ \/10. Anta videre at Ekmanlgsningen er
gyldig langt fra kysten, that is, i en avstand mye lengre emsdRyradien, that is minst en
stgrrelsesordenc(= 10)), og bruk dette som randkrav far >> ). Randkravet forr = 0
er som angitt en “slip” betingelse, thatis = 0,V # 0. Fremstill lgsningen aw, U og V'
grafisk i et Hovmgller diagram, og sammenlign med de andgtigsningene. Drgft eventuelle
forskjeller og likheter.

20



References

Abramowitz, M., and |. Stegurtlandbook of Mathematical Functions - ninth printing, Dover
Publications, Inc., 1965.

Gjevik, B., and L. P. Rged, Storm surges along the westerst adaorway,Tellus, 28, 166—-182,
1976.

Martinsen, E. A., B. Gjevik, and L. P. Rged, A numerical modellong barotropic waves and
storm surges along the western coast of norwakhys. Oceanogr., 9, 1126-1138, 1979.

Rged, L. P., Storm surges in stratified sé@Hus, 31, 330-339, 1979.

Sielecki, A., An energy-conserving numerical scheme fergblution of the storm surge equa-
tions,Mon. Weather Rev,, 96, 150-156, 1968.

21



