
The momentum equation. 

 

Using z (height) as vertical coordinate, the horizontal momentum equation (in vector notation) 

is, 
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where tD is the material derivative zztt wvD ∂+∇⋅+∂=
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denotes friction forces and subscript z means derivation along a constant z-surface. The 

vertical component of the momentum equation is assumed simplified to the hydrostatic 

equation ρgpz −=∂ . Recall that in a general vertical coordinate system (s) the material 

derivative is 
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and that the gradient transforms to, 
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The horizontal component of the momentum equation then transforms to:  
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where gz=ϕ is the geopotential. 

 

We recognize that the horizontal pressure force is replaced by two terms. This comes from the 

fact that the s-surfaces may slope in relation to z. Taking derivatives along this sloping 

surface instead of the horizontal z-surface introduces an error which is compensated by the 

second term. 

 

The first law of thermodynamics 

 

The first law of thermodynamics in z-coordinates is, 
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which becomes unaltered in general coordinates except that the we must remember to use the 

definition of the material derivative in s-coordinates (1). Here Q is diabatic heating. 

 

The equation of state 

The equation of state (for the atmosphere) is 
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Since this equation contains no derivation is (of course) unaltered. 

 



 

Transformation to specific coordinate systems 

 

a) pressure coordinates 

Using pressure as vertical coordinate is common in meteorology and oceanography 

because it simplifies the equations. We use s=p. The momentum equation then transforms 

into, 
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Since 0=∇ pp  (pressure does not change along a constant pressure surface!), we obtain 

The momentum equation in pressure coordinates 
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The hydrostatic equation becomes, 
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The continuity equation in general coordinates is, 
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introducing s=p and noticing that 1=∂ pp give,  
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The first law of thermodynamics and the equation of state are unchanged. 

Equations  5, 6 and 7 together with 3 and 4 are the pressure coordinate equations. 

Note that the material derivative is 
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and that the vertical velocity in pressure coordinates ω is defined as 
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Note that the equations appear simplified; the continuity contains no explicit time 

derivative and density is removed from the pressure force term in the momentum 

equation. This set of equations is widely used in meteorological theory and was used in 

the first generation of numerical models. They have however some drawbacks: First of all, 

a constant pressure surface in general never coincides with the earth’s surface so there 

exists no simple lower boundary condition. Secondly, high mountains will cut through the 

surfaces creating areas where the dependent variables are undefined (see figure below). 



 
Figure 1. Sketch of surfaces of constant pressure and the underlying terrain. 

 

Pressure varies between zero at the top of the atmosphere and 0p (pressure at ground). The 

upper boundary (p=0)  is therefore a nice property of the pressure surface coordinate 

system while for instance in z-coordinates one will have to put the top of the system at 

some height H (where the pressure is different from zero) or at infinity.  

 

Today, other alternatives are used; some even combine the nice property of the pressure 

coordinates at the top of the atmosphere while having a terrain following system close to 

ground, see below. 

 

The Sigma coordinate system 

The Sigma coordinate system (or variants) of it is based on normalized pressure. 

σ is defined as 
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where 0p is pressure at the earth’s surface ),,(00 tyxpp =  

This coordinate system has the property that σ varies between zero at the top of the 

atmosphere and 1 at ground. Since these coordinate surfaces also are material surfaces (air 

does not move through them) we also has the nice property that 0=σ& at the upper and 

lower boundaries. 

 

Using σ=s in the momentum equation, (2) give 
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The hydrostatic equation becomes, 
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which, by using the (10) is simplified to, 
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The continuity equation becomes, 
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which, by use of the definition (10) changes to, 
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As for the pressure coordinate system, the first law of thermodynamics and the equation of 

state are not changing, (except of course that the material derivative for the sigma 

coordinate system has to be used), i.e. 
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and that we must remember to calculate horizontal derivatives along a constant σ surface. 

To solve these equations (11, 12, 13, 3, 4) we need to calculate the geopotential as well as 

the vertical velocity σ& at the σ surfaces. The geopotential is computed from (12) by 

integrating upwards from 1=σ , i.e. the earth’s surface where 0gh=ϕ , 0h is the height of 

the terrain (above sea level). We may write (12) as, 
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or numerically, 
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To calculate σ& we manipulate the continuity equation. First it is integrated from  0=σ to 

1=σ , i.e. 
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From the definition of σ , we have 0pp σ=  so that ),,(0 tyxpp =∂σ  

The integral on the left hand side becomes simply 0pDt and the right hand side transforms 

into σσσ dvp )(
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Thus, we obtain an equation for the change of surface pressure;  
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where we have used the property that 0=σ&  at 0=σ and 1=σ . 



By writing 000 pvppD tt ∇⋅+∂= and using the boundary conditions, (17) simplifies 

further, 
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Since vp
r

0 is the flux of air into the grid column, this equation states the obvious fact that 

surface pressure increases (decreases) if more (less) air moves into the column above than 

out. In (18) we have derived an equation for the change of surface pressure with time. 

 

To find the vertical velocity σ& we apply the continuity equation once more, but now we 

integrate from the surface to a σ level, i.e. 
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which, since 0p  is not a function of σ , transforms into, 
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writing out the material derivative at the left hand side, gives finally, 

 

)(
1

)( 0

0

0

0

σσσσ
σ

dvpp
p

t

r
& ∫ ⋅∇+∂=         (19) 

 

The equations are solved by first integrating the hydrostatic equation (15) upwards from 

the surface to obtain the geopotential at all σ levels. Then the surface pressure tendency is 

computed from (18) and vertical velocity σ& from (19). We have then sufficient 

information to calculate the material derivative and the rest of the terms of the horizontal 

momentum equation to obtain values for ut∂ and vt∂ . From the first law of 

thermodynamics we compute temperature tendencies Tt∂  and we have enough 

information to progress forward in time by for instance the Leapfrog scheme. 

 

The σ system has the nice property of following the ground surface as the lower boundary 

by definition is at the ground. The surfaces undulate up and down according to the terrain 

below.  

Figure 2. Sketch of sigma coordinate surfaces and the underlying terrain. 



 

There exists several variants of the σ system. At the Norwegian Meteorological Institute 

they used to have a model where σ was defined as  
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where pT   is the top of the model, different from zero.  

 

The European Centre for Medium Range Weather Forecasts (ECMWF) uses a coordinate 

system which follows ground at the lower levels, but turns smoothly into a pressure 

coordinate system at upper levels. This is done in order to make use of the benefits of both 

the σ  and the pressure systems. A problem with the σ system is that the coordinate 

surfaces bulb up and down all the way to the model top. Since the pressure force is 

computed as a difference between two (large) terms, this may introduce errors. 

In their coordinate system,η , pressure in coordinate surfaces is defined as, 
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Close to ground 0)( =ηb and the system have the same properties as the σ system. 

(Remember that in the σ system 0)( pp σσ = ). At high levels 0)( =ηa and pb =)(η , i.e. a 

pressure coordinate system. The same approach is used in the operational weather 

prediction model HIRLAM which at present is used at the Norwegian Meteorological 

Institute. Other alternatives employs using normalized height, i.e. variants of
0

0
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hz −
=η . 

Where h0 is terrain height. The operational weather prediction model (and the climate 

model) at the UK Meteorological Office (Hadley centre) have chosen this approach.  

 

 


