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PREFACE

Presented are computer problems connected to the lecttes na “Fundamental of Atmo-
spheres and Oceans on Computers”. A certain number of thheseoenpulsary and must be
submitted for evaluation. The students may, however, @eaidich problems to turn in them-
selves. The mandatory problems replace the mid term exascdimpulsory problems must be
approved before the student is allowed to take the (oraknexa

Solving atmospheric and oceanographic problems, somstieferred to as metocean prob-
lems, using numerical methods consist of three stages. @tesfito develop a numerical ana-
logue of the continuous mathematical problem formulatesetaon the physical problem at
hand. The second is to construct a computer code (or progyara)given computer. This stage
includes debugging and verification. Debugging means telchiwat the code has no formal
errors, and that the code is a true replica of the numericalogie. Verification is a bit harder.
It implies checking the results against what is known abbatttue solution, e.e.g, analytic so-
lutions. The final and third stage is to be able to visualizerésults, and finally to discuss them
in light of what physics the solution represent. All threagsts are equally important. | therefore
strongly recommend all students to solve as many of the pneblas possible in order to get the
neccessary hands-on experience and insight into stageshvthree.

The problems will be continuously amended to adjust to thile notes. The author would
like to thank the many colleagues who has contributed toldpwubese exercises over the years,
and to the many students for pointing out misprints and atistakes.

Good luck!

Blindern, November 21, 2008
Lars Petter Rged (sign.)
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_ Computer problem 1:
Truncation error in a recursion formula with two terms

a.
Let
7w = 4arctan(1l), Z; = 7, andS; = 7. (1)
Compute
Ziy1=317; — 217y andS;; = <§—) S; — (g—) S1 (2)
for i = 1(1)100. Compute also theelative error (e.g.,c; = Z;.1 — Z;) for eachi. Write ,

Z;, S; and the relative error in percent. The output should be teladand self explanatory, e.g.,
should have headings for each column. Enclose the progra® aod the printout when you
turn in your paper. Do the problem on different platformo(fr handholds to portables, PCs
and supercomputers) available to you. Experiment by usiffigreint constants in the recursion
formulas. Does it make a difference in the answer?

The purpose of the exercise is twofold: 1) It is simple enotgyanable you to refresh your
knowledge of FORTRAN or FORTRAN skills without having to ¥&ilengthy codes, and 2) it
demonstrates the dramatic consequences of the presemségoifificant truncation errors always
present in numerical computations.

b.

Show analytically why the recursion formulas 8y and.S; do not computer correctly.



Computer problem 2:
Diffusive processes in the ocean and atmosphere

In the ocean and atmosphere the vertical (and horizontat)dhehange is dominantly a turbulent
process. Commonly the vertical turbulent heat exchangarampetrized as a diffusion process,
that is, governed by the equation

00 + 0.F =0, (3)

wheref = 0(z, t) is the potential temperature,is the vertical coordinate,is time andF’ is the
vertical component of the diffusive flux vector.
In its simplest form the heat exchange is parametrized asva tlee gradient diffusion pro-
cess. Thus
F = —£k0.0, 4)

wherex is the diffusion coefficient, and (3) becomes
0,0 = 0, (k0.0) . (5)

Note that since the heat exchange is due to turbulent mixiegliffusion or mixing coefficient
x is normally a function of space and time. We underscore #ten be any active tracer like
temperature, humidity and salinity, or a passive tracer ;.
In this exercise we assume that the diffusion coefficientisstant. Under these circum-
stances (5) reduces to
0,0 = k020. (6)

You are are asked to solve (6) numerically for two appliaagiol he first is associated with mix-
ing in the atmospheric planetary boundary layer, while #hesd is associated with mixing in
the oceanic mixed layer. The mixing or diffusion coefficienthe two spheres are dramatically
different. While the mixing coefficient for the atmosphebpicundary layer is: = 30 m?s™1, the
similar mixing coefficient for the oceanic mixed layer is atfar 10~ less, namely: = 3 - 1073
m?s~! (Gill, 1982).

In this exercise we assume that the fluid is contained betweerfixed z-levels, where the
boundary conditions replace (6). Regarding the atmosplagplication we assume that the
bottom level is located at = 0, while the top levek = D is at the top of the planetary mixed
layer. For the ocean application the bottom level is the ohibeger at depthe = —D while
the top level is the surface at= 0. Thusz €< 0, D > for the atmospheric application and
z €< —D,0 > for the oceanic application. For both cases you are askedddlie numerical
solution fort € [0, NAt] whereN = 401, that is,t = nAt,n = 0(1)N, wheren is the time
step counterAt is the time step andV is the total number of time levels. We assume that the
mixed layers aré) = 100 m deep in both cases. Furthermore wellet= (J,,.. — 1)Az where
Az is the space increménand J,,., = 27 is the total number of grid points including the two
boundary points at the bottom and top levels.

1Also commonly referred to as the mesh or grid size.



a.

Develop a numerical scheme (or finite difference approxiomtthat is forward in time and
centered in space for (6). Show that the derived schemelitestader the conditiodX < 1,

where At
K
K=——. 7
AL (7)

b.

Next develop a finite difference approximation for (6) thecentered in both time and space,
and show that this algorithm is unconditionally unstabla mumerical sense.

C.

Let K = 0.45. Compute the time step you will have to use for the atmosphard oceanic
applications, respectively. Discuss why there is such aldifference and its possible conse-
quences.

d.

Consider first an atmospheric application. We assume tlté&ilip the temperature distribution
is a sinusoidal function of height as shown in Figure 1. Thesassume
Tz

0(z,0) = 6y sin(ﬁ), z € [0, D], (8)

whered, = 10°C. Furthermore we let the temperature at the bottom levedfdiace): = 0 and
the top level: = D be fixed at the freezing point for all times, that is,

0(0,t) = 0(D,t) = 0°C V4. 9)

Use the stable forward in time, centered in space schemdapedceunder a. to find the
numerical solution to (6) for two cases; one with= 0.45 and a second witlik’ = 0.55. Plot
the results fom = 0, n = 50, n = 100 andn = 200 in which the height and temperature are
made dimensionless by dividing through byand6,, respectively.

Assess and discuss the solutions. Explain in particulartivaysolution fork” = 0.55 devel-
ops a “saw tooth” pattern.

e.
Consider next an oceanographic application. In this casasseme that the initial condition is
0(z,0) =0°C, =z¢€]l0,D], (10)

throughout the water column. Thus the initial conditionhs trivial solution to (6). In contrast
to the atmospheric application the diffusion process iegated by letting the ocean surface be

7
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th0=10 degrees Celsius, D=100 m tc = 6 days, th0=10 degree Celsius
100 — —— 7 10— 11— ———
n /
2
80 1 s 8F A 8
(@) /
~ [N ,/
£ o /
g %1 ] > 6 [/ ]
= ° /
< =) / — tmp=tho*tanh(1.5*/tc)
‘% 401 b o 4- [/ —- tmp=thO*t/tc for t<tc else tmp=th0|
20 1 g 2 e
£ q
w 1
|_
0 P T T T T T T NS SO SO NI 0\\\\\‘\\\\\‘\\\\\‘\\\\\‘\\\\\‘\\\\\
0 2 4 6 8 10 0 5 10 15 20 25 30
Temperature (in degree Celsius) Time (in days)

Figure 1: Left-hand panel displays the initial temperatisgribution according to (8), while the
right-hand panel shows the time evolution of the surfaceeature according to (11) and (12),
respectively.

heated from above. Specifically, we let the boundary comdlititz = 0 increase from zero to
a fixed temperatur@, = 10°C after som finite time. This can be achieved either by lettiregy
boundary condition be specified according to

Lo 0<t<t,
H(O,t):Oo{ic D sy : (11)

Y

wheret. = 6 days determines how fast the surface temperature reachsal temperaturé,
(cf. the left-hand panel of Figure 1), or by using a hypemtdingent (a good function), that is,

t—t,

0(0,t) = Oy tanh(~y ) (12)

wherey = 1.5 together witht, determines how fast the temperature approaches its fingleiem
ature (cf. the right-hand panel of Figure 1). At the bottonthef ocean mixed layer = — D the
temperature is fixed at the freezing point. Thus

0(—D,t) = 0°C (13)

Again choose the time step so thiat= 0.45. Plot the results fon = 0, n = 100, n = 200 and
n = 400. Use either (11) or (12) as your surface boundary condition.

Assess and discuss the solution. In particular you are askeaimpare the solution with the
steady state solution to (6), that is, the solutiort as oo given the above initial and boundary
conditions.



Computer problem 3:
Advection in atmosphere and oceans

Since tracers such as temperature, salinity and humid#&yahdecisive impact on the dynamics
of the atmosphere and ocean through its influence on theyseedsstribution through density,
advection (transport) of these tracers is of zero order mamze. Moreover, transport of con-
taminants in the ocean and atmosphere is one crucial elewtest discussing environmental
issues. For instance emissions of radionuclide in oneilmtare transported via atmospheric
and oceanic circulation patterns to quite other locati@iher examples are trans-boundary ad-
vection of chemical substances such as sulfur (mostly gihreye) and nutrients (mostly ocean).
In the ocean advection processes are also of crucial impmeteegarding search and rescue, oil
drift, and drifting objects (e.qg, fish larvae, rafts, humamnys, ship wrecks, etc.)

Commonly all transport and spreading of the above are gexkby an advection equation,
say

00+ V - (vh) =V - (kV0) (14)

wheref is the concentration of the tracer,is the three-dimensional wind or current vector and
r is the mixing or diffusion coefficient. We note that commotfiig transport is associated with
the advection part of (14), while the spreading is assodiatéh the mixing part of (14). While
the mixing was exemplified in Computer Problem #2 we focus @ advection part in this
Computer Problem #3. Thus we will neglect the mixing parthia temainder of this problem
except in the very last question.

To make the problem as simple as possible, but no simpleredigce the advection problem
to one dimension in space. Furthermore we let the advecpeadbe constant, say = wuyi.
Thus we will consider numerical solutions to the equation

00 +uyd,0 =0 for ze€<0,L, > (15)

with appropriate boundary and initial conditions. To thislave will make use of three schemes,
namely thdeapfrog scheme

n+1 n—l n n
;" — 0 1 — 0

7j—1
_ 16
oAt U oA 0, (16)

theupwind scheméor upstream scheme

grtt —gn  pr_
: At B JAxJIZO’ (17)
where . )
Fi = §(U0 + [uo| )05 + §(U0 — |uo])0}4, (18)
and theLax-Wendroff schemzonsisting of the two steps
9;?+1 - % (H?Jrl + 0;}*1) — ‘9?+1 — ‘9?—1 (19)
At " 2Ar



n+2 n n+1 n+1
2At 2Ax

for j = 1(1).J wherez = 0 is associated with = 1 andz = L with j = J.

We note that in contrast to the leapfrog scheme, which isecedtin time and space, the
upwind scheme is a simple forward in time and one-sided itesgaheme. The Lax-Wendroff
scheme is special. It consists of a diffusive step thatradtiess with a leapfrog step. Note that the
diffusive step looks like a forward in time, centered in spacheme, except thét is replaced
by 5(6}1 + 07_1).

Part 1:

a.
Show that all schemes are numerically stable under the tondi

UQAt

< =
|IC| <1 where C N

(21)

is the Courant number.

b.

Show that a forward in time, centered in space (FTCS) finitieidince approximation applied
to (15) results in an unconditionally unstable scheme.

C.

Show that the upwind scheme (17) inherently includes a nigzalediffusion with a diffusion
coefficients given by

*uolAa(1 - C) (22)

whereC' is the Courant number given in (21).

d.
Show that theD(Az?) andO(At?) terms neglected in the Lax-Wendroff scheme are
2 n
—gquxQ(l - C?) (8;”;0)]. : (23)

and hence that the Lax-Wendroff scheme avoids the low oinffastbn inherent in the upstream
scheme diffusion.

2Hint: Combine (19) and (20) by substituting (19) into (20ya@hen plug in the respective Taylor series to the
order needed.

10



Part 2:

To solve (15) we need conditions at the two boundaries 0 andx = L,, as well an initial
condition at time = 0. Atz = 0 andx = L, we will make use of periodic boundary conditions.
Hence we require that(x, t) = 0(x + L,,t). The numerical analogue #§ = 07, 05 = 07,
and so forth, wherg = 1 is associated withh = 0 and;j = J is associated withh = L,. We let
the initial condition be a Gaussian bell, that is, initialat timet = 0) the tracer concentration
has the distribution

0(2,0) = boe () Vae<0,L, >, (24)

wheref, is the maximum tracer concentration, is the position of the initial maximum tracer
concentrationg is a measure of the width of the bell (the largeis, the wider the bell is) and
L, is the width of the computational domain.

Below we will make use of dimensionless variables. Thus vweduced’, 2’ andt’ as our
dimensionless variables. Furthermore, since the advespeed is constant the dimensionless
speed becomesg, = 1. Scaling the tracer concentration by its maximum initiahcentratiort,
andz by the width of the computational domain we get

/ 6 / x / t
6_00’ x_Lm’ t_T (25)
whereT' is some as yet unknown time scale. If we substitute theserdiimeless variables into
(15) we get
ROy0" +0,0"=0 for ze€<0,1> (26)

where the dimensionless numbeiis

L
R=—""=1 27
T 27)

and hence that' = L, /uq.
In summary, dropping primes, the system you are requiretbbeess the dimensionless
advection equation
00 +0,0=0 for ze€<0,1> (28)

subject to the initial condition

T—x( )2

0(z,0) = e (% ;o Vre<0,1>, (29)
at timet = 0, and the the periodic boundary conditiorvat 0, 1.
You are asked to perform two experiments one in which thelwadthe Gaussian bell spec-
ified in (29) is wide ¢ = L, /10 = 0.1), and one in which it is narronws( = 0.001). The latter

experiment is constructed to display the peculiaritieshef tarious schemes in the presence of
fronts (large gradients).

11



e.

Solve (28) using each of the three numerical schemes aboyecsto the specified initial condi-
tion (29) and the periodic boundary condition. ket= (j—1)Az and.J = 101, and lett™="4t,
Stop the computations after 10 cycles. Do one experimehttvé Courant number = 0.5 and
another withC' = 1. Please also feel free to experiment with other Courant rme#K C <1
Plot the solution after 1/2, 1, 2, 5 and 10 cycles togethel Wit initial tracer distribution for
each of the two Courant number values. Plot the graphs fdr selteme together in one graph
(six graphs for each scheme) for the two Courant numbersighatotal of six plots (3 schemes
x 2 Courant numbers).

f.

Discuss the solutions based on the plots. What charactaheesolution as it evolves in time?
Which of the solutions are diffusive and which are dispe3iwVhat are the characteristics of
these processes?

g.
Finally we consider the simplified advection-diffusion atjan
010 + up0,0 = K020, (30)

where the advection speed as well as the mixing coefficientis constant. Construct a scheme
that is stable and consistent for (30) and state the stabdidition. Explain your choices.

12



Computer problem 4:
Yoshida’s equatorial jet current

We consider an “infinite” equatorial ocean consisting of twoniscible layers with a density
differenceAp (Figure 2). The density of the lower layer equals the refegettensityp,. The
lower layer is thick with respect to the upper layer. At time- 0 the ocean is at rest, at which
time the thickness of the upper layer equals its equilibrdepth 7. At this particular time the
ocean is forced into motion by turning on a westerly wind (@from the west).

A
Z
T
—

L ] = = _ —_ — 2 7z=0
h(x,y.0)

—

PP u
— |- == — —/=— z=H
Po
».

X

Figure 2: Sketch of a reduced gravity ocean model consistiingo layers with a density differ-
ence given by\p.

The governing equations of such a “reduced gravity” mod¢hefocean, is

TCC

Ou — Pyv = (31)
po

o+ Pyu = —g'0,h (32)

oh+Hopv = 0 (33)

Hereu = u(y, t) andv = v(y, t) are the respectively the east-west and north-south conmp®ne
of the velocity in a Cartesian coordinate systémy, z) with = directed eastward along the
equator,y directed northwards wity = 0 at the equator, and directed along the negative
gravitational direction as displayed in Figure 2. The intgdd¢he Earth’s rotation is given by the
Coriolis parameterf = 22 sin ¢ wheref is the Earth’s rotation rate anglis the latitude. The
westerly wind is given by the wind stress componehtwhich is fixed in time. Furthermore,

13



we define the reduced gravity gy = g(Apo/p) whereg is the gravitational acceleration. The
instantanuous thickness of the upper layer is giveh by h(y, t).

Note that at the equatgf = 0 and that it increases with increasing latitude. A simplified
parameterization of this effect is through the so calleglane approximation,

f=py, hvor 3=209,fl—o (34)

We note thes is just a measure of the first term in a Taylor serie§ @t the equator. Thus it
represents the first order effect effect of the impact of thenge in the Earth’s rotation rate with
latitude.

Part 1:

a.

Show that the inertial oscillatidris eliminated by neglecting,v in (32).

b.
Show that the system of equations (31) - (33) reduces to tieany differential equation
L48§v —y*v =alLy (35)
where
c T
L=,/-, a=———, c= 'H 36
Vo o= i / (39)

under the condition that the inertial oscillation is eliiad.

C.

Explain why we are allowed to specify two boundary condisiolm the following we will assume
that they arev|,_o = 0 andv|,_.- = 0.

d.

We make (35) dimensionless by lettipg= Lg, (u,v) = a(4,9), andt = (8L)"'t. Use the a
direct elliptic solver, e.g., Gauss elimination, to solkie tlimensionless expression of (35). Let
Ay = 0.1 and ploty and at time¢ = 1 as a function ofj from § = 0to § = 8. We note
thatv|,_... = 0 and hence that is different from zero afj = 8. Explain how make use of the
condition that|, .., = 0.

3An oscillation in which the frequency equals the inertigduencyf.

14



e.

Discuss the numerical solution. Let = 0.1Pa, 3 = 2. - 107 (ms)™!, L = 275km, p =
103kgm =3 and H = 200m. What is the maximum current in the equatorial jetfot 1?

f.

Solve (35) analytically. Hint: Make a series using Hermnmtigolynomials (se for instance
Abramowitz and Stegua965).

15



Computer problem 5:
Geostrophic adjustment - Rossby and gravity waves

One of the most important and strongest balances in the atmos and ocean, confirmed over
and over again by observations, is geostrophy. When the riiaiion is in geostrophic balance
we have a balance between the Coriolis acceleration anddssyre forcing, that is,

1 1 1
fk xu, = —%VHp, or v, = po—f@xp, Uy = —po—f@yp, (37)
where f = 2(Q2sin ¢ is the Coriolis parametek is the unit vector along the verticalaxis, u, is

the (horizontal) geostrophic velocity with componeagsv, along ther-axis andy-axis, respec-
tively, po is the densityVy = i0, + jo, is the horizontal component of the three-dimensional
del-operator, ang is pressure. Note that (37) contains three unknowns, namely, andv,,

but only two equations. Hence the system is undeterminely. Irspecifying one of them, say
the pressure, can we find the two other variables.

A fundamental question is therefore how the atmosphere aadroactually adjust from an
unbalanced state to one in geostrophic balance under gravits problem, coined geostrophic
adjustment (under gravity), was first raised by Carl GustasRy back in the 1930sRossby
1937, 1938), and is the background for this computer probksrusual we make the problem as
simple as possible, but no simpler. Thus, we consider thedomensional (1-D) shallow water
equations for this purpose. It also conveniently servegtiipose of illustrating solution modes,
the role of initial conditions and the use of an open boundandition (FRS).

We recall that the shallow water equations assumes a hydi®$ialance and hence that
p = pogh, whereh is the geopotential height. Thus the governing equatiartggrently non-
linear, are

oh = —Vg-(hu), (38)
ou = —fkxu—u-Vyu-—gVyh, (39)

where the Coriolis parameter i = 1.26 - 10~*s™! (corresponding to its value at 89). As

is common we may regar as the geopotential height of a pressure surface in the atmos
and as the depth of a water column in the ocean. The equitibhieight of7. in the atmosphere
is associated with a pressure surfacex0f00hPa, while the equilibrium depth in the ocean is
commonly= 1km.

4Carl-Gustaf Arvid Rossby (1898 - 1957) was a Swedish-U.Seorelogist who pioneered explaining the large-
scale motions of the atmosphere in terms of fluid mechaniacssBy came into meteorology and oceanography
while studying under Vilhelm Bjerknes in Bergen in 1919, wéBjerknes’ group was developing the concept of a
polar front (the Bergen School of Meteorology). His namessaziated with various quantities and phenomena in
meteorology and oceanography, e.g., the Rossby humbesbiResadius of deformation, and Rossby waves.
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Part 1:

a.
Show that by introducin@J = hu andh = h as new variables (38) and (39) become
oh = —Vg-U, (40)

1

b.

Show that by lettingr'(x, ¢) andh/(x, t) denote the deviations away from a background state in
geostrophic balance, that is,

u=u,i+u'(x,t), h=H(y)+h'(z,t), where u,= —%@,H (42)
then (38) and (39) reduces to
oh = —ud,h — ho,u, (43)
ou = fv—ud,u— go,h, (44)
v = —f(u—uy) — ud,v, (45)

where primes om, v andh are dropped for clarity.

C.

If you were to solve the system (43) - (45), how many boundawy iaitial conditions do you
have at your disposal? Explain how you derived the numbeonditions.

Part 2:

We will solve the system (43) - (45) using numerical methadsaflimited domain: € (0, D).
To this end we need boundary conditionscat 0, D and initial conditions at timeé = 0. We
assume that the motion is started from one at rest in whiclgéopotential height (or ocean
surface) is perturbed. Thus the initial conditions are

T—xm )2

u=v=0, and h(z,t)=Hy+ Ae= (5% (46)

where Hy, = 1000 m, A = 15 m, u, = 0 ms™!, z,,, = D/2 is the middle point of the domain,
ando is a measure of the width of the Gaussian bell.

17



d.
To solve (43) - (45) we will adopt the leapfrog scheme. Carddtthe scheme so that

- myt
S x— = —DIVH. (47)
Wt
S = CORU + ADVU + PRES, (48)
it gl
% = CORV + ADVV (49)

where At is the time steppD IV H is the divergence term in (43);ORU, CORV are the re-
spective Coriolis terms andDV' U, ADV'V the respective advection terms in (44) and (45), and
PRES is the pressure term in (44).

Describe in some detail how you derive the finite differenppraximation to the various
terms. Explain why you make the choices you make.

e.

Is the scheme stable and consistent? If so, why and undercwhdition(s) is the scheme stable?
Describe in some detail how you analyzed the stability am$istency of the scherhieHow long
time stepAt can be used? Explain your choice.

f.

Solve the above equations using the scheme (47) - (49) yoe ¢@vstructed for the domain
x € (0,D). Assume that the variables v, andh retain their initial values at the boundaries
x = 0andx = D. Further, let the grid length bAx = 100km, D = 62Ax ando = 5Ax.

Plot h after1.5, 3.0, 4.5, 6 and 10 hours into the future. Discuss the solution. Try to make a
movie spanning < [0, 10]hrs. What kind of waves do you observe?

g.

Repeat the above computation using the the FRS method tothelanner solution towards the
externally specified valuegl, o, h) = (0,0, Hy) in a buffer zone seven points wide where the
relaxation parametey; is given in Table 1 on page 19.

Compare the solution to the one you obtained performing tmeputation in itenf, for in-
stance by plotting the difference between them. Explaindascliss any differences you observe.

SHint: Neglect the non-linear terms when performing the #itglanalysis.

18



Aj j
1.0 | Jmax
0.69| juy — 1
0.44 | e — 2
0.25 jimaz — 3
0.11 | jyge — 4

-9

-6

0.03| jimas
O'O jma:c

~No o WN RS

Table 1: Values of the relaxation parameter used in Paret @.

h.
Compute the geostrophic component of the velocity
g
v, = =0.h (50)
T

using the solution fok att = 6 hours. Compare, andv att = 6 hours and describe and discuss
what you observe. What do you think have happened?

I

Finally, replace the initial condition far in (46) by

v:%@h (51)

and repeat iteng.. Discuss the solution by comparing it to the solution oledithrough iteny.
above.
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Computer Problem 6:
Solving the advection equation using flux correction

We continue to consider numerical solutions to the advacatguation (15) in which the advec-
tion speed is not necessarily a constant. Writing the adweeguation in flux form we get

00 + 0, (uf) =0 (52)
wheref is the tracer concentration.
Part 1:
a.
Show that
0 =0 = (K = FL). 53)
is a first order finite difference approximation (in a nonggtared grid) to (52) where
By =3 [ + [uf]) 07 + (ufey = ufial) 0714 AL (54)

b.

Show that the scheme in (53) has a truncation error of ofderg Ax.

C.

Show that the scheme in (53) is a second approximation tod¥ecion-diffusion equation
1
010 + 0,(uh) = kD20 hvor K = i‘u‘(A.CL' — |ulAt), (55)

assuming that the velocity is a slowly varying function imé& and space.

d.

Equation (55) tells us that (53) has an inherent diffusiothvai diffusion coefficient given by

. Visualize this by solving (53) numerically far € (0, L) where, =2000km. Let the space
increment beAz =20km, and the velocity be constant, say= .., =1m/s, and, = nAt
where n is the time counter anl is the time step. As in Computer Problem #3 on page 9 we
make use of cyclic boundary conditionsiat= 0 andx = L. The initial condition is

B,y = Boe— (55" (56)
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where the tracer amplitude ég = 1.

Plot the results after,3, 5 and10 days together with the initial tracer concentration. Tethi
end you need to specify the time step. Explain and discussgjuice.

Describe and discuss what you observe by comparing thetewolf the tracer concentration
with the initial tracer distribution. Explain what have lpggmed.

Part 2:

According toSmolarkiewic1983) it is possible to counteract the inherent numeriddision
in the upwind scheme by adding a correction term, or an aohesittix «.*C, to (52). The velocity
u* is the so calledntidiffusive velocityand is defined by

. 9.0/th , 6>0
R e 57)
that is solving the equation
00 + Oy[(u + u*)f] = 0. (58)

rather than (52).

e.

Solve (58) using the MPDATA method, that is, the predictorrector method. Use first the
iterative method with at least two steps, then the simplehotetof scaling the antidiffusive
velocity. Let the parameters and initial condition be as antR, itemd.. When scaling use a
scaling factor ofS. = 1.3. When computing the antidiffusive velocity use a centeredpace
finite difference approximation, and ensure that you adduggested bmolarkiewic£1983),
a small numbee = 1015 in the denominator.

f.

Why do we have to add the small numlago the denominator?

g.

Make experiments varying the scaling factr Try out other finite difference approximations
to the antidiffusive velocity. Discuss the results.
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Computer Problem 7:
The storm surge problem

We consider below the so called storm surge problem. Thegsers to give you experience in
constructing numerical solutions to geophysical problé&mas include more than one dependent
variable.

In contrast to the atmosphere the astronomical forcingsgnge to an important periodic
water level response called tides. In addition to this phegi@on the water level in the ocean
also changes due to atmospheric wind and sea level pre3hedatter is called the storm surge
response and the water level change caused by it the stoga.skrom time to time the joint
occurence of high tides and high storm surges can lead tostiirag high water levels even
along the Norwegian coast. One such example is from mid @ctb®87 where the water level
in Oslo Harbour reached 1.96 meters above normal sea lavéact since the early 1980s the
Norwegian Meteorological Institute has forecasted seal lelwanges due to storm surges using
numerical models.

h(x,y.t)

Figure 3: Sketch of a storm surge model along a straight amasteniently showing some of the
notation used.

Many of the earlier studies of storm surges, (eRped 1979;Gjevik and Rgedl976;Mar-
tinsen et al. 1979, to mention a few of the Norwegian ones), have showttliesstorm surge is
mainly a barotropic response. Storm surge models therefmr@monly assume that the density
is constant in time and space. The equations therefore ectuthe well known shallow water
egautions. Let

¢
U= / udz, (59)
—-H
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with componentsU, V') along thex, y-axes, respectively, be the transport of water in a water
column of depthh = H + ( where( is the sea level deviation away from the equilibrium depth
H (see Figure 3). Then the shallow water equations may beanritt
QU+ V- (h'UU)+ fk x U= —gHVy(h—H) + py (15 — T4),
Oh+Vy-U=0.
wherer, and T, are respectively the wind and bottom stresses with comgsrief, 7¥) og
(7, 7)), g is the gravitational acceleration anpg is the (uniform in time and space) density.
Linearizing (60) and neglecting variations in thelirection then gives
U — fV = —gHO,h+ py (18 — 1),
oV + fU = py ' (t¥ — 7)), (61)

(60)

Part 1:

In the following we will assume that changes in the equilibridepth are so small that to a
good approximation can be considered as being constant.

a.

Show that (61) follows by linearizing (60) under the assuompthat changes in the equilibrium
depthH are insignificant and thatJ|? < |U].

b.
What changes are introduced to (61) if the changes in thdilequim depthH are significant?

C.

We will solve (61) using numerical methods. To this end wd wéle a centered in space and
forward-backward in time scherfieHence, one such scheme, called the Sielecki sch&ire (
elecki 1968), is

grtt — gn ho o — h" () — (TE)"

J J_ Y & Sl j-1 s/j b/j
At Vi =9 2Ax Po ’

vy ()3 — ()3

j i _pyntt s/j  \bJj 62
N JU S (62)

ok U - U
At 2Ax '

SForward-backward in time means that as soon as one depevalgaitle is updated (in time) we use these
values when updating the other dependent variables.
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Here we have assumed that all variables are evaluated atthe point in time and space,
that is, are evaluated in a non-staggered grid (Arakawaié)-gShow that the scheme (62) is
numerically stable under the condition

2
Atgj%% 1-(%?) (63)

using von Neumanns method

Part 2:

In the following we will first solve the storm surge problemadytically. Although the analytic
solution constitutes an approximation to the problem, it navertheless be used to verify that
the numerical solution is well behaved. To make things apkEms possible, but no simpler, we
investigate storm surges along a straight coast{ 0). Furthermore we will consider the linear
problem only. Thus we will investigate analytic and numak&olution to the linearized version
of (61) along a straight coast.

When you solve the problem the parameters appearing in trergoing equations are set to:

T,=01Pg , po= 10°kg/n?,
Ty = poR% , R=24-10"3mls (64)

if not explicitly deviated.
The initial condition is an ocean at rest and in equilibridhat is,

U(z,0)=0 and ¢=0. (65)

Since the ocean is limited by the straight coast at 0 the natural boundary condition here is no
flow through the coast. Thuds U = 0 atz = 0. In principle the ohter boundary is at— —oo
which is open. Since this boundary is far from the coast ins#wese that it is several Rossby
radii away, the natural open boundary condition is that tiiateon should approach the Ekman
solution at a distance sufficiently far away from the coasiug,

lim h=H or lim 0,h=0. (66)

Tr— —00 T— —00

d.

Show that the inertial oscillations are avoided if we negthe termo,U in (61). Explain why it
is natural to use the Ekman solution (66) as the open bouradengtion whenr — —oo.

"Hint: When analysing the instability neglect all forcindréss) terms. Also let the discrete Fourier representa-
tion of the dependent variables be= U,e'*(i-1Az 'y =V, ¢icG-DA2 gandh = H,e'*U-DA% respectively.
To arrive at (63) eliminate firdt/,,, U,, -1 andV,,, V;,.1 to arrive at one equation involving onk,, andH,, ;.
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e.

In the following we assume that the motion along the coasih@my-direction) is in geostrophic
balance. Thus we assume that the first equation appearigd)mgduces to

FV = gHO,h. (67)

Show that the analytic solution to (61), under the assumgptiat R = 0 (no bottom stress),
becomes

U = Up(l—e"?) (68)

V o= ftUge”? (69)

h = H(1+ s oy (70)

ANH
where\ = /gH/ f is Rossby'’s radius of deformation and
7Y
== 71
UE p0h7 ( )

is the Ekman transport, that is, the transport you get whenrgpthe steady state versiod; (=
0) of (61) witho, = 0og R = 0.

f.

Solve (61) analytically under the assumption that= 0, 7/ = poRv, and that the term,U in
(61) can be neglectéd

g.

Plot the analytical solutions @&f, U andV derived undee. andf. in ax — ¢t diagram, sometimes
referred to as a Hovmoller diagram.

h.

Solve the storm surge problem using numerical methods uban@ull equations and the param-
eters listed in (64) including the bottom stress. Use a staghgrid so that thé points are
located half way between the V' points. Let the distance between adjackrmgoints beAx.
ChooseAxr so that the (Rossby’s) deformation radius,s well resolved, that isAz < A/10.
We furthermore assume that the Ekman solution is valid seffity far away from the coast,
that is, forr > 10\ and use this as your open boundary conditionsfar > \. The boundary
condition atr = 0 is, as alluded to above, the slip condition, thatiss= 0,V # 0.

8Advice: Use Laplace transforms
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Plot the numerical solution of the dependent variablds og V' in a Hovmoller diagram. Com-
pare the numerical solution with thos derived analyticaihderf.. Discuss the differences and
the similarities.
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