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PREFACE

Presented are computer problems connected to the lecture notes on “Fundamental of Atmo-
spheres and Oceans on Computers”. A certain number of these are compulsary and must be
submitted for evaluation. The students may, however, decide which problems to turn in them-
selves. The mandatory problems replace the mid term exam. The compulsory problems must be
approved before the student is allowed to take the (oral) exam.

Solving atmospheric and oceanographic problems, sometimes referred to as metocean prob-
lems, using numerical methods consist of three stages. The first is to develop a numerical ana-
logue of the continuous mathematical problem formulated based on the physical problem at
hand. The second is to construct a computer code (or program)on a given computer. This stage
includes debugging and verification. Debugging means to check that the code has no formal
errors, and that the code is a true replica of the numerical analogue. Verification is a bit harder.
It implies checking the results against what is known about the true solution, e.e.g, analytic so-
lutions. The final and third stage is to be able to visualize the results, and finally to discuss them
in light of what physics the solution represent. All three stages are equally important. I therefore
strongly recommend all students to solve as many of the problems as possible in order to get the
neccessary hands-on experience and insight into stages twoand three.

The problems will be continuously amended to adjust to the lecture notes. The author would
like to thank the many colleagues who has contributed to develop these exercises over the years,
and to the many students for pointing out misprints and othermistakes.
Good luck!

Blindern, November 21, 2008
Lars Petter Røed (sign.)
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Computer problem 1:
Truncation error in a recursion formula with two terms

a.

Let
π = 4 arctan(1), Z1 = π, andS1 = π. (1)

Compute

Zi+1 = 3.1Zi − 2.1Z1 andSi+1 =

(

9.

5.

)

Si −
(

4.

5.

)

S1 (2)

for i = 1(1)100. Compute also therelative error (e.g.,ǫi = Zi+1 − Zi) for eachi. Write π,
Zi, Si and the relative error in percent. The output should be readable and self explanatory, e.g.,
should have headings for each column. Enclose the program code and the printout when you
turn in your paper. Do the problem on different platforms (from handholds to portables, PCs
and supercomputers) available to you. Experiment by using different constants in the recursion
formulas. Does it make a difference in the answer?

The purpose of the exercise is twofold: 1) It is simple enoughto enable you to refresh your
knowledge of FORTRAN or FORTRAN skills without having to write lengthy codes, and 2) it
demonstrates the dramatic consequences of the presence of insignificant truncation errors always
present in numerical computations.

b.

Show analytically why the recursion formulas forZi andSi do not computeπ correctly.
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Computer problem 2:
Diffusive processes in the ocean and atmosphere

In the ocean and atmosphere the vertical (and horizontal) heat exchange is dominantly a turbulent
process. Commonly the vertical turbulent heat exchange is parametrized as a diffusion process,
that is, governed by the equation

∂tθ + ∂zF = 0, (3)

whereθ = θ(z, t) is the potential temperature,z is the vertical coordinate,t is time andF is the
vertical component of the diffusive flux vector.

In its simplest form the heat exchange is parametrized as a down the gradient diffusion pro-
cess. Thus

F = −κ∂zθ, (4)

whereκ is the diffusion coefficient, and (3) becomes

∂tθ = ∂z (κ∂zθ) . (5)

Note that since the heat exchange is due to turbulent mixing the diffusion or mixing coefficient
κ is normally a function of space and time. We underscore thatθ can be any active tracer like
temperature, humidity and salinity, or a passive tracer like CO2.

In this exercise we assume that the diffusion coefficient is constant. Under these circum-
stances (5) reduces to

∂tθ = κ∂2
zθ. (6)

You are are asked to solve (6) numerically for two applications. The first is associated with mix-
ing in the atmospheric planetary boundary layer, while the second is associated with mixing in
the oceanic mixed layer. The mixing or diffusion coefficientin the two spheres are dramatically
different. While the mixing coefficient for the atmosphericboundary layer isκ = 30 m2s−1, the
similar mixing coefficient for the oceanic mixed layer is a factor 10−4 less, namelyκ = 3 · 10−3

m2s−1 (Gill , 1982).
In this exercise we assume that the fluid is contained betweentwo fixedz-levels, where the

boundary conditions replace (6). Regarding the atmospheric application we assume that the
bottom level is located atz = 0, while the top levelz = D is at the top of the planetary mixed
layer. For the ocean application the bottom level is the mixed layer at depthz = −D while
the top level is the surface atz = 0. Thusz ∈< 0, D > for the atmospheric application and
z ∈< −D, 0 > for the oceanic application. For both cases you are asked to find the numerical
solution fort ∈ [0, N∆t] whereN = 401, that is,t = n∆t, n = 0(1)N , wheren is the time
step counter,∆t is the time step andN is the total number of time levels. We assume that the
mixed layers areD = 100 m deep in both cases. Furthermore we letD = (Jmax − 1)∆z where
∆z is the space increment1 andJmax = 27 is the total number of grid points including the two
boundary points at the bottom and top levels.

1Also commonly referred to as the mesh or grid size.
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a.

Develop a numerical scheme (or finite difference approximation) that is forward in time and
centered in space for (6). Show that the derived scheme is stable under the conditionK ≤ 1

2
,

where

K =
κ∆t

∆z2
. (7)

b.

Next develop a finite difference approximation for (6) that is centered in both time and space,
and show that this algorithm is unconditionally unstable ina numerical sense.

c.

Let K = 0.45. Compute the time step you will have to use for the atmospheric and oceanic
applications, respectively. Discuss why there is such a huge difference and its possible conse-
quences.

d.

Consider first an atmospheric application. We assume that initially the temperature distribution
is a sinusoidal function of height as shown in Figure 1. Thus we assume

θ(z, 0) = θ0 sin(
πz

D
), z ∈ [0, D], (8)

whereθ0 = 10oC. Furthermore we let the temperature at the bottom level (orsurface)z = 0 and
the top levelz = D be fixed at the freezing point for all times, that is,

θ(0, t) = θ(D, t) = 0oC ∀t. (9)

Use the stable forward in time, centered in space scheme developed under a. to find the
numerical solution to (6) for two cases; one withK = 0.45 and a second withK = 0.55. Plot
the results forn = 0, n = 50, n = 100 andn = 200 in which the height and temperature are
made dimensionless by dividing through byD andθ0, respectively.

Assess and discuss the solutions. Explain in particular whythe solution forK = 0.55 devel-
ops a “saw tooth” pattern.

e.

Consider next an oceanographic application. In this case weassume that the initial condition is

θ(z, 0) = 0oC, z ∈ [0, D], (10)

throughout the water column. Thus the initial condition is the trivial solution to (6). In contrast
to the atmospheric application the diffusion process is generated by letting the ocean surface be
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tmp=tho*tanh(1.5*t/tc)
tmp=th0*t/tc for t<tc else tmp=th0

Surface boundary condition
tc = 6 days, th0=10 degree Celsius

Figure 1: Left-hand panel displays the initial temperaturedistribution according to (8), while the
right-hand panel shows the time evolution of the surface temperature according to (11) and (12),
respectively.

heated from above. Specifically, we let the boundary condition atz = 0 increase from zero to
a fixed temperatureθ0 = 10oC after som finite time. This can be achieved either by lettingthe
boundary condition be specified according to

θ(0, t) = θ0

{

t
tc

; 0 < t < tc
1 ; t ≥ tc

, (11)

wheretc = 6 days determines how fast the surface temperature reaches its final temperatureθ0

(cf. the left-hand panel of Figure 1), or by using a hyperbolic tangent (a good function), that is,

θ(0, t) = θ0 tanh(γ
t − tc

tc
) (12)

whereγ = 1.5 together withtc determines how fast the temperature approaches its final temper-
ature (cf. the right-hand panel of Figure 1). At the bottom ofthe ocean mixed layerz = −D the
temperature is fixed at the freezing point. Thus

θ(−D, t) = 0oC (13)

Again choose the time step so thatK = 0.45. Plot the results forn = 0, n = 100, n = 200 and
n = 400. Use either (11) or (12) as your surface boundary condition.

Assess and discuss the solution. In particular you are askedto compare the solution with the
steady state solution to (6), that is, the solution ast → ∞ given the above initial and boundary
conditions.
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Computer problem 3:
Advection in atmosphere and oceans

Since tracers such as temperature, salinity and humidity has a decisive impact on the dynamics
of the atmosphere and ocean through its influence on the pressure distribution through density,
advection (transport) of these tracers is of zero order importance. Moreover, transport of con-
taminants in the ocean and atmosphere is one crucial elementwhen discussing environmental
issues. For instance emissions of radionuclide in one location are transported via atmospheric
and oceanic circulation patterns to quite other locations.Other examples are trans-boundary ad-
vection of chemical substances such as sulfur (mostly atmosphere) and nutrients (mostly ocean).
In the ocean advection processes are also of crucial importance regarding search and rescue, oil
drift, and drifting objects (e.g, fish larvae, rafts, human beings, ship wrecks, etc.)

Commonly all transport and spreading of the above are governed by an advection equation,
say

∂tθ + ∇ · (vθ) = ∇ · (κ∇θ) (14)

whereθ is the concentration of the tracer,v is the three-dimensional wind or current vector and
κ is the mixing or diffusion coefficient. We note that commonlythe transport is associated with
the advection part of (14), while the spreading is associated with the mixing part of (14). While
the mixing was exemplified in Computer Problem #2 we focus on the advection part in this
Computer Problem #3. Thus we will neglect the mixing part in the remainder of this problem
except in the very last question.

To make the problem as simple as possible, but no simpler, we reduce the advection problem
to one dimension in space. Furthermore we let the advection speed be constant, sayv = u0i.
Thus we will consider numerical solutions to the equation

∂tθ + u0∂xθ = 0 for x ∈< 0, Lx > (15)

with appropriate boundary and initial conditions. To this end we will make use of three schemes,
namely theleapfrog scheme,

θn+1
j − θn−1

j

2∆t
+ u0

θn
j+1 − θn

j−1

2∆x
= 0, (16)

theupwind scheme(or upstream scheme)

θn+1
j − θn

j

∆t
+

F n
j − F n

j−1

∆x
= 0, (17)

where

F n
j =

1

2
(u0 + |u0|)θn

j +
1

2
(u0 − |u0|)θn

j+1 (18)

and theLax-Wendroff schemeconsisting of the two steps

θn+1
j − 1

2

(

θn
j+1 + θn

j−1

)

∆t
= −u0

θn
j+1 − θn

j−1

2∆x
. (19)
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θn+2
j − θn

j

2∆t
= −u0

θn+1
j+1 − θn+1

j−1

2∆x
. (20)

for j = 1(1)J wherex = 0 is associated withj = 1 andx = L with j = J .
We note that in contrast to the leapfrog scheme, which is centered in time and space, the

upwind scheme is a simple forward in time and one-sided in space scheme. The Lax-Wendroff
scheme is special. It consists of a diffusive step that alternates with a leapfrog step. Note that the
diffusive step looks like a forward in time, centered in space scheme, except thatθn

j is replaced
by 1

2
(θn

j+1 + θn
j−1).

Part 1:

a.

Show that all schemes are numerically stable under the condition

|C| ≤ 1 where C =
u0∆t

∆x
(21)

is the Courant number.

b.

Show that a forward in time, centered in space (FTCS) finite difference approximation applied
to (15) results in an unconditionally unstable scheme.

c.

Show that the upwind scheme (17) inherently includes a numerical diffusion with a diffusion
coefficients given by

1

2
|u0|∆x(1 − C) (22)

whereC is the Courant number given in (21).

d.

Show that theO(∆x2) andO(∆t2) terms neglected in the Lax-Wendroff scheme are2

−2

3
u0∆x2(1 − C2)

(

∂3
xθ

)n

j
, (23)

and hence that the Lax-Wendroff scheme avoids the low order diffusion inherent in the upstream
scheme diffusion.

2Hint: Combine (19) and (20) by substituting (19) into (20) and then plug in the respective Taylor series to the
order needed.
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Part 2:

To solve (15) we need conditions at the two boundariesx = 0 andx = Lx, as well an initial
condition at timet = 0. At x = 0 andx = Lx we will make use of periodic boundary conditions.
Hence we require thatθ(x, t) = θ(x + Lx, t). The numerical analogue isθn

1 = θn
J , θn

2 = θn
J+1,

and so forth, wherej = 1 is associated withx = 0 andj = J is associated withx = Lx. We let
the initial condition be a Gaussian bell, that is, initially(at timet = 0) the tracer concentration
has the distribution

θ(x, 0) = θ0e
−(x−x0

σ
)
2

; ∀x ∈< 0, Lx >, (24)

whereθ0 is the maximum tracer concentration,x0 is the position of the initial maximum tracer
concentration,σ is a measure of the width of the bell (the largerσ is, the wider the bell is) and
Lx is the width of the computational domain.

Below we will make use of dimensionless variables. Thus we introduceθ′, x′ andt′ as our
dimensionless variables. Furthermore, since the advection speed is constant the dimensionless
speed becomesu′

0 = 1. Scaling the tracer concentration by its maximum initial concentrationθ0

andx by the width of the computational domainLx we get

θ′ =
θ

θ0
, x′ =

x

Lx
, t′ =

t

T
(25)

whereT is some as yet unknown time scale. If we substitute these dimensionless variables into
(15) we get

R∂t′θ
′ + ∂x′θ′ = 0 for x ∈< 0, 1 > (26)

where the dimensionless numberR is

R =
Lx

u0T
= 1 (27)

and hence thatT = Lx/u0.
In summary, dropping primes, the system you are required to solve is the dimensionless

advection equation
∂tθ + ∂xθ = 0 for x ∈< 0, 1 > (28)

subject to the initial condition

θ(x, 0) = e−(x−x0

σ
)
2

; ∀x ∈< 0, 1 >, (29)

at timet = 0, and the the periodic boundary condition atx = 0, 1.
You are asked to perform two experiments one in which the width of the Gaussian bell spec-

ified in (29) is wide (σ = Lx/10 = 0.1), and one in which it is narrow (σ = 0.001). The latter
experiment is constructed to display the peculiarities of the various schemes in the presence of
fronts (large gradients).
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e.

Solve (28) using each of the three numerical schemes above subject to the specified initial condi-
tion (29) and the periodic boundary condition. Letxj = (j−1)∆x andJ = 101, and lett(n)=n∆t.
Stop the computations after 10 cycles. Do one experiment with the Courant numberC = 0.5 and
another withC = 1. Please also feel free to experiment with other Courant numbers 1

2
< C < 1.

Plot the solution after 1/2, 1, 2, 5 and 10 cycles together with the initial tracer distribution for
each of the two Courant number values. Plot the graphs for each scheme together in one graph
(six graphs for each scheme) for the two Courant numbers, that is, a total of six plots (3 schemes
x 2 Courant numbers).

f.

Discuss the solutions based on the plots. What characterizes the solution as it evolves in time?
Which of the solutions are diffusive and which are dispersive? What are the characteristics of
these processes?

g.

Finally we consider the simplified advection-diffusion equation

∂tθ + u0∂xθ = κ∂2
xθ. (30)

where the advection speedu0 as well as the mixing coefficientκ is constant. Construct a scheme
that is stable and consistent for (30) and state the stability condition. Explain your choices.

12



Computer problem 4:
Yoshida’s equatorial jet current

We consider an “infinite” equatorial ocean consisting of twoimmiscible layers with a density
difference∆ρ (Figure 2). The density of the lower layer equals the reference densityρ0. The
lower layer is thick with respect to the upper layer. At timet = 0 the ocean is at rest, at which
time the thickness of the upper layer equals its equilibriumdepthH. At this particular time the
ocean is forced into motion by turning on a westerly wind (wind from the west).

x

z

z = 0

z = -H

h(x,y,t)

τ

u

ρ0

ρ −∆ρ
0

Figure 2: Sketch of a reduced gravity ocean model consistingof two layers with a density differ-
ence given by∆ρ.

The governing equations of such a “reduced gravity” model ofthe ocean, is

∂tu − βyv =
τx

ρ0H
(31)

∂tv + βyu = −g′∂yh (32)

∂th + H∂yv = 0 (33)

Hereu = u(y, t) andv = v(y, t) are the respectively the east-west and north-south components
of the velocity in a Cartesian coordinate system(x, y, z) with x directed eastward along the
equator,y directed northwards withy = 0 at the equator, andz directed along the negative
gravitational direction as displayed in Figure 2. The impact of the Earth’s rotation is given by the
Coriolis parameterf = 2Ω sin φ whereΩ is the Earth’s rotation rate andφ is the latitude. The
westerly wind is given by the wind stress componentτx which is fixed in time. Furthermore,
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we define the reduced gravity byg′ ≡ g(∆ρ0/ρ) whereg is the gravitational acceleration. The
instantanuous thickness of the upper layer is given byh = h(y, t).

Note that at the equatorf = 0 and that it increases with increasing latitude. A simplified
parameterization of this effect is through the so calledβ-plane approximation,

f = βy, hvor β = ∂yf |y=0. (34)

We note theβ is just a measure of the first term in a Taylor series off at the equator. Thus it
represents the first order effect effect of the impact of the change in the Earth’s rotation rate with
latitude.

Part 1:

a.

Show that the inertial oscillation3 is eliminated by neglecting∂tv in (32).

b.

Show that the system of equations (31) - (33) reduces to the ordinary differential equation

L4∂2
yv − y2v = aLy (35)

where

L =

√

c

β
, a =

τx

ρ0βLH
, c =

√

g′H (36)

under the condition that the inertial oscillation is eliminated.

c.

Explain why we are allowed to specify two boundary conditions. In the following we will assume
that they arev|y=0 = 0 andv|y→∞ = 0.

d.

We make (35) dimensionless by lettingy = Lŷ, (u, v) = a(û, v̂), andt = (βL)−1t̂. Use the a
direct elliptic solver, e.g., Gauss elimination, to solve the dimensionless expression of (35). Let
∆y = 0.1 and plotv̂ and û at time t̂ = 1 as a function of̂y from ŷ = 0 to ŷ = 8. We note
thatv|y→∞ = 0 and hence that̂v is different from zero at̂y = 8. Explain how make use of the
condition thatv|y→∞ = 0.

3An oscillation in which the frequency equals the inertial frequencyf .
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e.

Discuss the numerical solution. Letτx = 0.1Pa, β = 2. · 10−11(ms)−1, L = 275km, ρ =
103kgm−3 andH = 200m. What is the maximum current in the equatorial jet fort̂ = 1?

f.

Solve (35) analytically. Hint: Make a series using Hermitian polynomials (se for instance
Abramowitz and Stegun, 1965).
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Computer problem 5:
Geostrophic adjustment - Rossby and gravity waves

One of the most important and strongest balances in the atmosphere and ocean, confirmed over
and over again by observations, is geostrophy. When the fluidmotion is in geostrophic balance
we have a balance between the Coriolis acceleration and the pressure forcing, that is,

fk × ug = − 1

ρ0
∇Hp, or vg =

1

ρ0f
∂xp, ug = − 1

ρ0f
∂yp, (37)

wheref = 2Ω sin φ is the Coriolis parameter,k is the unit vector along the verticalz-axis,ug is
the (horizontal) geostrophic velocity with componentsug, vg along thex-axis andy-axis, respec-
tively, ρ0 is the density,∇H = i∂x + j∂y is the horizontal component of the three-dimensional
del-operator, andp is pressure. Note that (37) contains three unknowns, namelyp, ug, andvg,
but only two equations. Hence the system is undetermined. Only by specifying one of them, say
the pressurep, can we find the two other variables.

A fundamental question is therefore how the atmosphere and ocean actually adjust from an
unbalanced state to one in geostrophic balance under gravity. This problem, coined geostrophic
adjustment (under gravity), was first raised by Carl Gustav Rossby4 back in the 1930s (Rossby,
1937, 1938), and is the background for this computer problem. As usual we make the problem as
simple as possible, but no simpler. Thus, we consider the one-dimensional (1-D) shallow water
equations for this purpose. It also conveniently serves thepurpose of illustrating solution modes,
the role of initial conditions and the use of an open boundarycondition (FRS).

We recall that the shallow water equations assumes a hydrostatic balance and hence that
p = ρ0gh, whereh is the geopotential height. Thus the governing equations, inherently non-
linear, are

∂th = −∇H · (hu), (38)

∂tu = −fk × u− u · ∇Hu− g∇Hh, (39)

where the Coriolis parameter isf = 1.26 · 10−4s−1 (corresponding to its value at 60oN). As
is common we may regardh as the geopotential height of a pressure surface in the atmosphere
and as the depth of a water column in the ocean. The equilibrium height ofh in the atmosphere
is associated with a pressure surface of≈ 900hPa, while the equilibrium depth in the ocean is
commonly≈ 1km.

4Carl-Gustaf Arvid Rossby (1898 - 1957) was a Swedish-U.S. meteorologist who pioneered explaining the large-
scale motions of the atmosphere in terms of fluid mechanics. Rossby came into meteorology and oceanography
while studying under Vilhelm Bjerknes in Bergen in 1919, where Bjerknes’ group was developing the concept of a
polar front (the Bergen School of Meteorology). His name is associated with various quantities and phenomena in
meteorology and oceanography, e.g., the Rossby number, Rossby’s radius of deformation, and Rossby waves.

16



Part 1:

a.

Show that by introducingU = hu andh = h as new variables (38) and (39) become

∂th = −∇H · U, (40)

∂tU = −fk ×U −∇H ·
(

UU

h

)

− 1

2
g∇Hh2. (41)

b.

Show that by lettingu′(x, t) andh′(x, t) denote the deviations away from a background state in
geostrophic balance, that is,

u = ugi + u′(x, t), h = H(y) + h′(x, t), where ug = −g

f
∂yH (42)

then (38) and (39) reduces to

∂th = −u∂xh − h∂xu, (43)

∂tu = fv − u∂xu − g∂xh, (44)

∂tv = −f(u − ug) − u∂xv, (45)

where primes onu, v andh are dropped for clarity.

c.

If you were to solve the system (43) - (45), how many boundary and initial conditions do you
have at your disposal? Explain how you derived the number of conditions.

Part 2:

We will solve the system (43) - (45) using numerical methods for a limited domainx ∈ 〈0, D〉.
To this end we need boundary conditions atx = 0, D and initial conditions at timet = 0. We
assume that the motion is started from one at rest in which thegeopotential height (or ocean
surface) is perturbed. Thus the initial conditions are

u = v = 0, and h(x, t) = H0 + Ae−(x−xm

σ
)
2

(46)

whereH0 = 1000 m, A = 15 m, ug = 0 ms−1, xm = D/2 is the middle point of the domain,
andσ is a measure of the width of the Gaussian bell.
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d.

To solve (43) - (45) we will adopt the leapfrog scheme. Construct the scheme so that

hn+1
j − hn−1

j

2∆t
= −DIV H, (47)

un+1
j − un−1

j

2∆t
= CORU + ADV U + PRES, (48)

vn+1
j − vn−1

j

2∆t
= CORV + ADV V (49)

where∆t is the time step,DIV H is the divergence term in (43),CORU , CORV are the re-
spective Coriolis terms andADV U , ADV V the respective advection terms in (44) and (45), and
PRES is the pressure term in (44).

Describe in some detail how you derive the finite difference approximation to the various
terms. Explain why you make the choices you make.

e.

Is the scheme stable and consistent? If so, why and under whatcondition(s) is the scheme stable?
Describe in some detail how you analyzed the stability and consistency of the scheme5. How long
time step∆t can be used? Explain your choice.

f.

Solve the above equations using the scheme (47) - (49) you have constructed for the domain
x ∈ 〈0, D〉. Assume that the variablesu, v, andh retain their initial values at the boundaries
x = 0 andx = D. Further, let the grid length be∆x = 100km,D = 62∆x andσ = 5∆x.

Plot h after1.5, 3.0, 4.5, 6 and10 hours into the future. Discuss the solution. Try to make a
movie spanningt ∈ [0, 10]hrs. What kind of waves do you observe?

g.

Repeat the above computation using the the FRS method to relax the inner solution towards the
externally specified values(û, v̂, ĥ) = (0, 0, H0) in a buffer zone seven points wide where the
relaxation parameterλj is given in Table 1 on page 19.

Compare the solution to the one you obtained performing the computation in itemf, for in-
stance by plotting the difference between them. Explain anddiscuss any differences you observe.

5Hint: Neglect the non-linear terms when performing the stability analysis.
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j λj j
1 1.0 jmax

2 0.69 jmax − 1
3 0.44 jmax − 2
4 0.25 jmax − 3
5 0.11 jmax − 4
6 0.03 jmax − 5
7 0.0 jmax − 6

Table 1: Values of the relaxation parameter used in Part 2, item g.

h.

Compute the geostrophic component of the velocity

vg =
g

f
∂xh (50)

using the solution forh at t = 6 hours. Comparevg andv at t = 6 hours and describe and discuss
what you observe. What do you think have happened?

i.

Finally, replace the initial condition forv in (46) by

v =
g

f
∂xh. (51)

and repeat itemg.. Discuss the solution by comparing it to the solution obtained through itemg.
above.
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Computer Problem 6:
Solving the advection equation using flux correction

We continue to consider numerical solutions to the advection equation (15) in which the advec-
tion speed is not necessarily a constant. Writing the advection equation in flux form we get

∂tθ + ∂x(uθ) = 0 (52)

whereθ is the tracer concentration.

Part 1:

a.

Show that
θn+1

j = θn
j −

(

F n
j − F n

j−1

)

, (53)

is a first order finite difference approximation (in a non-staggered grid) to (52) where

F n
j =

1

2

[(

un
j + |un

j |
)

θn
j +

(

un
j+1 − |un

j+1|
)

θn
j+1

] ∆t

∆x
. (54)

b.

Show that the scheme in (53) has a truncation error of order∆t og∆x.

c.

Show that the scheme in (53) is a second approximation to the advection-diffusion equation

∂tθ + ∂x(uθ) = κ∂2
xθ hvor κ =

1

2
|u|(∆x− |u|∆t), (55)

assuming that the velocity is a slowly varying function in time and space.

d.

Equation (55) tells us that (53) has an inherent diffusion with a diffusion coefficient given by
κ. Visualize this by solving (53) numerically forx ∈ 〈0, L〉 whereL =2000km. Let the space
increment be∆x =20km, and the velocity be constant, sayu = umax =1m/s, andtn = n∆t
where n is the time counter and∆t is the time step. As in Computer Problem #3 on page 9 we
make use of cyclic boundary conditions atx = 0 andx = L. The initial condition is

θ|t=0 = θ0e
−( 2x−L

4∆x
)
2

(56)
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where the tracer amplitude isθ0 = 1.
Plot the results after1,3, 5 and10 days together with the initial tracer concentration. To this

end you need to specify the time step. Explain and discuss your choice.
Describe and discuss what you observe by comparing the evolution of the tracer concentration

with the initial tracer distribution. Explain what have happened.

Part 2:

According toSmolarkiewicz(1983) it is possible to counteract the inherent numerical diffusion
in the upwind scheme by adding a correction term, or an advective flux u∗C, to (52). The velocity
u∗ is the so calledantidiffusive velocity, and is defined by

u∗ = κ

{

∂xθ/th , θ > 0
0 , θ ≤ 0

. (57)

that is solving the equation
∂tθ + ∂x[(u + u∗)θ] = 0. (58)

rather than (52).

e.

Solve (58) using the MPDATA method, that is, the predictor-corrector method. Use first the
iterative method with at least two steps, then the simple method of scaling the antidiffusive
velocity. Let the parameters and initial condition be as in Part 1, itemd.. When scaling use a
scaling factor ofSc = 1.3. When computing the antidiffusive velocity use a centered in space
finite difference approximation, and ensure that you add, assuggested bySmolarkiewicz(1983),
a small numberǫ = 10−15 in the denominator.

f.

Why do we have to add the small numberǫ to the denominator?

g.

Make experiments varying the scaling factorSc. Try out other finite difference approximations
to the antidiffusive velocity. Discuss the results.
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Computer Problem 7:
The storm surge problem

We consider below the so called storm surge problem. The purpose is to give you experience in
constructing numerical solutions to geophysical problemsthat include more than one dependent
variable.

In contrast to the atmosphere the astronomical forcing gives rise to an important periodic
water level response called tides. In addition to this phenomenon the water level in the ocean
also changes due to atmospheric wind and sea level pressure.The latter is called the storm surge
response and the water level change caused by it the storm surge. From time to time the joint
occurence of high tides and high storm surges can lead to devastating high water levels even
along the Norwegian coast. One such example is from mid October 1987 where the water level
in Oslo Harbour reached 1.96 meters above normal sea level. In fact since the early 1980s the
Norwegian Meteorological Institute has forecasted sea level changes due to storm surges using
numerical models.

x

z

z = 0

h(x,y,t)

H(x,y) ρ0

z = -H

ζ 

Figure 3: Sketch of a storm surge model along a straight coastconveniently showing some of the
notation used.

Many of the earlier studies of storm surges, (e.g.,Røed, 1979;Gjevik and Røed, 1976;Mar-
tinsen et al., 1979, to mention a few of the Norwegian ones), have shown that the storm surge is
mainly a barotropic response. Storm surge models thereforecommonly assume that the density
is constant in time and space. The equations therefore reduce to the well known shallow water
eqautions. Let

U =

∫ ζ

−H

udz, (59)
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with components(U, V ) along thex, y-axes, respectively, be the transport of water in a water
column of depthh = H + ζ whereζ is the sea level deviation away from the equilibrium depth
H (see Figure 3). Then the shallow water equations may be written

∂tU + ∇H · (h−1UU) + fk × U = −gH∇H(h − H) + ρ−1
0 (τ s − τ b),

∂th + ∇H · U = 0.
(60)

whereτ s andτ b are respectively the wind and bottom stresses with components (τx
s , τ y

s ) og
(τx

b , τ y
b ), g is the gravitational acceleration andρ0 is the (uniform in time and space) density.

Linearizing (60) and neglecting variations in they direction then gives

∂tU − fV = −gH∂xh + ρ−1
0 (τx

s − τx
b ),

∂tV + fU = ρ−1
0 (τ y

s − τ y
b ),

∂th + ∂xU = 0.

(61)

Part 1:

In the following we will assume that changes in the equilibrium depth are so small thatH to a
good approximation can be considered as being constant.

a.

Show that (61) follows by linearizing (60) under the assumption that changes in the equilibrium
depthH are insignificant and that|U|2 ≪ |U|.

b.

What changes are introduced to (61) if the changes in the equilibrium depthH are significant?

c.

We will solve (61) using numerical methods. To this end we will use a centered in space and
forward-backward in time scheme6. Hence, one such scheme, called the Sielecki scheme (Si-
elecki, 1968), is

Un+1
j − Un

j

∆t
= fV n

j − gH
hn

j+1 − hn
j−1

2∆x
+

(τx
s )n

j − (τx
b )n

j

ρ0
,

V n+1
j − V n

j

∆t
= −fUn+1

j +
(τ y

s )n
j − (τ y

b )n
j

ρ0

, (62)

hn+1
j − hn

j

∆t
= −

Un+1
j+1 − Un+1

j−1

2∆x
.

6Forward-backward in time means that as soon as one dependentvariable is updated (in time) we use these
values when updating the other dependent variables.
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Here we have assumed that all variables are evaluated at the same point in time and space,
that is, are evaluated in a non-staggered grid (Arakawa A-grid). Show that the scheme (62) is
numerically stable under the condition

∆t ≤ 2∆x√
gH

√

1 −
(

f∆t

2

)2

(63)

using von Neumanns method7.

Part 2:

In the following we will first solve the storm surge problem analytically. Although the analytic
solution constitutes an approximation to the problem, it can nevertheless be used to verify that
the numerical solution is well behaved. To make things as simple as possible, but no simpler, we
investigate storm surges along a straight coast (∂y = 0). Furthermore we will consider the linear
problem only. Thus we will investigate analytic and numerical solution to the linearized version
of (61) along a straight coast.

When you solve the problem the parameters appearing in the goverening equations are set to:

τ s = 0.1Paj , ρ0 = 103kg/m3,

τ b = ρ0R
U

H
, R = 2.4 · 10−3m/s. (64)

if not explicitly deviated.
The initial condition is an ocean at rest and in equilibrium,that is,

U(x, 0) = 0 and ζ = 0. (65)

Since the ocean is limited by the straight coast atx = 0 the natural boundary condition here is no
flow through the coast. Thusi · U = 0 atx = 0. In principle the ohter boundary is atx → −∞
which is open. Since this boundary is far from the coast in thesense that it is several Rossby
radii away, the natural open boundary condition is that the solution should approach the Ekman
solution at a distance sufficiently far away from the coast. Thus,

lim
x→−∞

h = H or lim
x→−∞

∂xh = 0. (66)

d.

Show that the inertial oscillations are avoided if we neglect the term∂tU in (61). Explain why it
is natural to use the Ekman solution (66) as the open boundarycondtion whenx → −∞.

7Hint: When analysing the instability neglect all forcing (stress) terms. Also let the discrete Fourier representa-
tion of the dependent variables beU = Uneiα(j−1)∆x, V = Vneiα(j−1)∆x, andh = Hneiα(j−1)∆x, respectively.
To arrive at (63) eliminate firstUn, Un+1 andVn, Vn+1 to arrive at one equation involving onlyHn andHn+1.
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e.

In the following we assume that the motion along the coast (inthey-direction) is in geostrophic
balance. Thus we assume that the first equation appearing in (61) reduces to

fV = gH∂xh. (67)

Show that the analytic solution to (61), under the assumption thatR = 0 (no bottom stress),
becomes

U = UE

(

1 − ex/λ
)

(68)

V = ftUEex/λ (69)

h = H

(

1 +
tUE

λH
ex/λ

)

(70)

whereλ =
√

gH/f is Rossby’s radius of deformation and

UE =
τ y
s

ρ0h
, (71)

is the Ekman transport, that is, the transport you get when solving the steady state version (∂t =
0) of (61) with∂x = 0 ogR = 0.

f.

Solve (61) analytically under the assumption thatτx
b = 0, τ y

b = ρ0Rv, and that the term∂tU in
(61) can be neglected8.

g.

Plot the analytical solutions ofh, U andV derived undere. andf. in ax− t diagram, sometimes
referred to as a Hovmöller diagram.

h.

Solve the storm surge problem using numerical methods usingthe full equations and the param-
eters listed in (64) including the bottom stress. Use a staggered grid so that theh points are
located half way between theU, V points. Let the distance between adjacenth points be∆x.
Choose∆x so that the (Rossby’s) deformation radius,λ, is well resolved, that is,∆x ≤ λ/10.
We furthermore assume that the Ekman solution is valid sufficiently far away from the coast,
that is, forx ≥ 10λ and use this as your open boundary condition forx >> λ. The boundary
condition atx = 0 is, as alluded to above, the slip condition, that is,U = 0, V 6= 0.

8Advice: Use Laplace transforms

25



i.

Plot the numerical solution of the dependent variablesh, U ogV in a Hovmöller diagram. Com-
pare the numerical solution with thos derived analyticallyunderf.. Discuss the differences and
the similarities.
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