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PREFACE

This text is about how to put the atmosphere and the ocean on computers. To this end we
use numerical methods, which is a fascinating contemporarytool. In fact it is the only tool that
allow us to solve the fully nonlinear, partial differentialequations (PDEs) that govern the motion
of the atmosphere and the ocean. It is therefore hardly surprising that atmospheric scientists and
weather forecasters alike embraced this tool early on.

It all started in 1946 when the mathematician John von Neumann, a well known Professor
at the Princeton University, approached the meteorologistCarl-Gustav Rossby1 to organize a
“Conference on Meteorology”. The idea was to acquaint the meteorological community with the
new electronic computers ENIAC2 and IAS3 Machine, and to solicit their advice and support in
designing research strategies. The outcome of the conference was the Princeton Meteorological
Project (1947-53) which was managed by Dr. Jule G. Charney4. Among the participants were
two young Norwegians, namely Ragnar Fjørtoft5 and Arnt Eliassen6. The project successfully
ended with producing daily numerical weather predictions in less than two hours. The very
first attempt of producing a numerical weather forecast was published in 1950 byCharney et al.
(1950).

The Meteorology Project marked the start of the science fieldreferred to as Numerical
Weather Prediction (NWP). An important basis for the rapid development of NWP in the 1950s
and 1960s was the deterministic paradigm stated by Vilhelm Bjerknes7 at the turn of the century
(Bjerknes, 1904). In his famous 1904 paper Bjerknes stated that “If it is true, what most scientific
persons think, that the atmospheric state at any time can be developed from its earlier state using
physical laws, then it follows that the necessary and sufficient condition for a rational solution
to the problem of weather forecasting is a sufficiently accurate knowledge of the present atmo-
spheric state, and a sufficiently accurate knowledge of the equations that govern the development

1Carl-Gustaf Arvid Rossby (December 28, 1898 - August 19, 1957) was a Swedish-born American meteorologist
who was the first to explain the large-scale motions of the atmosphere in terms of fluid mechanics. He identified and
characterized both the jet stream and the long waves in the westerlies that were later named Rossby waves.

2Electronic Numerical Integrator And Computer
3Institute of Advanced Study
4Jule Gregory Charney (January 1, 1917 - June 16, 1981) was an American meteorologist. As part of his PhD

work he (in 1947) developed a set of equations for calculating the large-scale motions of planetary-scale waves (The
Quasi-Geostrophic Vorticity Equation). He gave the first convincing physical explanation for the development of
mid-latitude cyclones known as the Baroclinic Instabilitytheory.

5Ragnar Fjørtoft (August 1, 1913 - May 28, 1998) was an internationally recognized Norwegian meteorologist.
He was part of a Princeton, New Jersey team that in 1950 performed the first successful numerical weather prediction
using the ENIAC electronic computer. He was also a professorof meteorology at the University of Copenhagen and
director of the Norwegian Meteorological Institute.

6Arnt Eliassen (September 9, 1915 - April 22, 2000) was a Norwegian meteorologist who was a pioneer in
the use of numerical analysis and computers for weather forecasting. His early pioneer work was done at the
Institute for Advanced Study in Princeton, New Jersey, together with John von Neuman. He received the Carl-Gustaf
Rossby Research Medal in 1964 and the very prestigious Balzan Prize in 1996 “For his fundamental contributions
to dynamic meteorology that have influenced and stimulated progress in this science during the past fifty years”.

7Vilhelm Friman Koren Bjerknes (March 14, 1862 - April 9, 1951) was a Norwegian physicist and meteorologist
who did much to found the modern practice of weather forecasting.
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of the atmosphere from one state to the next.”. Another important basis was the later attempt by
Lewis Fry Richardson8 to compute a 6 hour weather forecast by hand. He did this by first casting
the governing equations into finite difference form using numerical methods (Richardson, 1922).
Afterwards, while serving with the Quaker ambulance unit innorthern France during World War
I, he solved the finite difference equations using only pen and pencil.

Although Bjerknes did not mention it his statement above is also true regarding forecasting
the oceanic “weather”, that is, the growth and fate of meanders, jets and eddies, the latter be-
ing the ocean’s high and low pressure systems. The oceanic lows and highs are however much
smaller than their atmospheric counterparts. Hence the power and capacity of the early com-
puters where too low to make oceanic forecasts in the 1950s and early 1960s. However, as the
computer power and capacity grew9 it became common to use computers and numerical methods
to solve the eqautions governing the oceanic motion as well.Thereby a science field called Nu-
merical Ocean Weather Prediction (NOWP) opened up in the late 1960s. In fact, the capacity and
power of today’s computers are amenable to forecast the oceanic weather, although not globally,
at least for limited areas. In passing it is interesting to note that NWP and NOWP are among the
major science fields pushing the computer technology to its very limits.

Inherently the atmosphere and the ocean forms a coupled system exchanging momentum,
heat and moisture. This was early on recognized in climate modeling, and hence the very
first climate models were coupled atmosphere-ocean models (Edwards, 2011). With the ever
growing capacity of computers coupled atmosphere-ocean models are today also developed with
NWP/NOWP in mind (e.g.,Warner et al., 2010). In this endevaour also sea ice and wave models
are taken into account. Thus in the not too distant future fully coupled models will probably be
the common prediction tool to make weather forecasts of the two spheres in one sweep. In light
of this anyone aspiring to become a meteorologist, an oceanographer or a climatologist must have
a solid knowledge and insight into the fundamental methods used to develop sound numerical
methods to solve oceanographic and meteorological problems.

As alluded to, most processes in the ocean and atmosphere arehighly nonlinear. Hence more
and more research within NWP ad NOWP relies on sometimes large and monstrous computer
codes. It is a growing concern that as a rule many of these codes are written and amended by
scientists who are not necessarily skilled programmers. This concern is corroborated by the
statistical survey byHannay et al.(2009) who concludes that “the knowledge required to de-
velop and use scientific software is primarily acquired frompeers and through self-study, rather
than from formal education and training”. The codes may therefore, even though the numerical
methods employed are sound, be rather poorly written from a skilled programmer’s point of view.
Only rarely do these codes undergo rigorous testing. Hence the model codes may inadvertently
contain errors that may potentially be damaging to the results.

Another serious concern is that computers always produce results in terms of numbers. These
numbers may even look reasonable, but in reality be totally false due to use of unsound numerical
methods. Such results may even lead to wrong conclusions. Infact there exist examples in the

8Lewis Fry Richardson (October 11, 1881 - September 30, 1953)was an English mathematician, physicist,
meteorologist, psychologist and pacifist who pioneered modern mathematical techniques of weather forecasting.

9The growth in computer power and capacity is almost exponential since the 1940s.
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literature were the numerical solution is interpreted as a new physical phenomenon that later is
shown to be a pure artifact produced by employing an incorrect numerical method. It is therefore
important to understand why some methods are sound and some unsound for a specific problem.
Likewise it is important to acquire knowledge of the qualityof the computations. In light of
these concerns an appendix is added that gives insight into procedures whereby the quality of a
specific model may be assured (cf. Appendix B).

Although many of the numerical methods we apply were historically first developed and ap-
plied to solve atmospheric problems, these methods also works to solve oceanographic problems.
The reason is that thedynamicsof the two spheres are very similar. Within a numerical context it
is therefore no need to treat meteorology and oceanography separately. In particular this is true
regarding the more fundamental methods. A further rationale is the fact, as already mentioned,
that the atmosphere and the ocean is inherently a coupled system.

The objective of these Lecture Notes is to give insight into thefundamentalnumerical meth-
ods to solve oceanographic and atmospheric problems. It should be kept in mind though that
there are numerical methods and techniques unique to each sphere. In particular this concern
numerical methods relevant to solve thethermodynamicpart of the two spheres. The treatment
of these particulars is beyond the scope of these Notes.

Finally, we emphasize that the application of numerical methods to solve atmospheric and
oceanographic problems to a large degree is a “hands-on-experience”. It is of no use to learn the
how to turn the governing equations into sound finite difference equatons, sometimes referred to
as numeric algorithms, without learning how to develop a setof computer instructions in accord
with our algorithms, run them on the computer, and visualizethe results. The first part concerns
what is calledprogramming. It involves writing the instructions, or “the model code”,in some
“language” that the computer understands. The common programming language used today in
most atmospheric and ocean modeling is FORTRAN. To give insight into the fundamentals of
the language a brief introduction to FORTRAN programming isattached in Appendix A. In
addition the first lectures are devoted to learn basic FORTRAN programming. To familiarize
oneself with programming in FORTRAN the reader is encouraged to solve as many as possible
of the computer problems contained in the accompanying “Computer problems”. For the same
reason the reader is also encouraged to solve the exercises given at the end of each chapter.

These Lecture Notes are based on the 2015 version of the Lecture Notes for the course
GEF4510 at the Meteorology and Oceanography Section, Department of Geosciences, Univer-
sity of Oslo, Norway. The Notes will be revised, amended and upgraded as we go along, so the
final version will not be ready before the end of fall 2016. A list of revisions appears on page ix.

Blindern August 20, 2016
Lars Petter Røed (sign.)

v



vi



Acknowledgements

I would like to extend my greatest appreciation and sincere thanks to Dr. Martin Mork, former
professor of oceanography at the University of Bergen for introducing me to oceanography in the
early 1970s and to Dr. James J. O’Brien, former director of the Center for Atmosphere-Ocean
Predictions (COAPS), and now distinguished professor emeritus at the Florida State University,
USA for introducing me to numerical methods to solve oceanographic problems. Some of the
material covered is actually based on notes taken when I followed his lectures at Florida State
University more than 35 years ago (1980/81).

I would also like to thank Dr. Thor Erik Nordeng, former senior scientist at the Norwegian
Meteorological Institute and former professor II at the Department of Geosciences, University of
Oslo for helping me compiling material on atmospheres on computers. In this respect I also ex-
tends my gratitude to Dr. Arne Bratseth former professor at the University of Oslo now deceased.
Some of the material covered is to a large degree influenced byhis lecture notes on “Numerical
Atmosphere Models”. I am also indebted to Gunnar Wollan, former scientific programmer at
Department of Geosciences, University of Oslo for letting me include a modified version of his
notes entitled “A Fortran 2003 introduction by examples” asan Appendix.

Last, but not least, my appreciations also goes to the many students who has pointed out
misprints and errors in earlier versions over the years.

vii



viii



Revision history (most recent on top):

All revisions made by the author.

☞ August 8, 2016: Upgraded Preface and Acknowledgement sections

ix



x



Contents

Preface . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . iii
Acknowledgements . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. vii
Revision history . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. . ix

1 INTRODUCTION 1
1.1 The governing equations . . . . . . . . . . . . . . . . . . . . . . . . . . .. . . 2
1.2 Boundary and initial conditions . . . . . . . . . . . . . . . . . . . .. . . . . . . 4
1.3 The hydrostatic approximation . . . . . . . . . . . . . . . . . . . . .. . . . . . 4
1.4 The Boussinesq approximation . . . . . . . . . . . . . . . . . . . . . .. . . . . 6
1.5 The shallow water equations . . . . . . . . . . . . . . . . . . . . . . . .. . . . 7
1.6 The quasi-geostrophic equations . . . . . . . . . . . . . . . . . . .. . . . . . . 9

2 PRELIMINARIES 13
2.1 General PDEs . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13
2.2 Elliptic equations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. . . 14
2.3 Parabolic equations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. . . 14
2.4 Hyperbolic equations . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. . . 15
2.5 Boundary conditions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. . 16
2.6 Taylor series and expansions . . . . . . . . . . . . . . . . . . . . . . .. . . . . 18
2.7 Finite difference approximations . . . . . . . . . . . . . . . . . .. . . . . . . . 20
2.8 Truncation errors . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. . 22
2.9 Notations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22
2.10 Orthogonal functions . . . . . . . . . . . . . . . . . . . . . . . . . . . .. . . . 25
2.11 Fourier series . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. . 27
2.12 Fourier transforms . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. . . 28

3 TIME MARCHING PROBLEMS 31
3.1 Examples of time marching problems . . . . . . . . . . . . . . . . . .. . . . . 31
3.2 Advection-diffusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. . . . 32
3.3 Diffusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33
3.4 Advection . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36
3.5 Shallow water equations . . . . . . . . . . . . . . . . . . . . . . . . . . .. . . 36

xi



4 THE DIFFUSION PROBLEM 39
4.1 The one-dimensional, diffusion equation . . . . . . . . . . . .. . . . . . . . . . 39
4.2 Finite difference form . . . . . . . . . . . . . . . . . . . . . . . . . . . .. . . . 40
4.3 Numerical stability . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. . . 43
4.4 von Neumann’s stability analysis . . . . . . . . . . . . . . . . . . .. . . . . . . 44
4.5 Stability of the discrete diffusion equation . . . . . . . . .. . . . . . . . . . . . 45
4.6 The CTCS scheme . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 48
4.7 Necessary stability . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. . . 48
4.8 Explicit and implicit schemes . . . . . . . . . . . . . . . . . . . . . .. . . . . . 49
4.9 Convergence and consistency: DuFort-Frankel . . . . . . . .. . . . . . . . . . . 51
4.10 Crank-Nicholson . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. . 53
4.11 A direct elliptic solver . . . . . . . . . . . . . . . . . . . . . . . . . .. . . . . 55

5 THE ADVECTION PROBLEM 61
5.1 The one-dimensional advection equation . . . . . . . . . . . . .. . . . . . . . . 61
5.2 Finite difference form . . . . . . . . . . . . . . . . . . . . . . . . . . . .. . . . 63
5.3 The leapfrog scheme . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. 65
5.4 The CFL condition . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .66
5.5 Numerical dispersion . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. . . 67
5.6 The initial problem in CTCS schemes . . . . . . . . . . . . . . . . . .. . . . . 70
5.7 Computational modes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. . 70
5.8 The Asselin filter . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. 73
5.9 The upstream scheme . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. 75
5.10 The diffusive scheme . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. . . 75
5.11 The Lax-Wendroff scheme . . . . . . . . . . . . . . . . . . . . . . . . . .. . . 77
5.12 The semi-Lagrangian scheme . . . . . . . . . . . . . . . . . . . . . . .. . . . . 80
5.13 The implicit scheme . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. . . 83
5.14 Physical interpretation . . . . . . . . . . . . . . . . . . . . . . . . .. . . . . . 84
5.15 Numerical diffusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. . . . 85
5.16 Flux correction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. . 87

6 THE SHALLOW WATER PROBLEM 93
6.1 Linearization . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. 96
6.2 Linear, non-rotating . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. . . . 98
6.3 Staggered grids . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. 106
6.4 Linear and rotating . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. . 109
6.5 Non-linear and rotating . . . . . . . . . . . . . . . . . . . . . . . . . . .. . . . 115
6.6 Semi-implicit and time-splitting methods . . . . . . . . . . .. . . . . . . . . . 120

7 OPEN BOUNDARY CONDITIONS 123
7.1 Open boundaries . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .125
7.2 Nesting techniques . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. . 126
7.3 Some historical notes . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. . . 127

xii



7.4 Radiation conditions . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. . . 128
7.5 Implementation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. 131
7.6 The sponge . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 134
7.7 Flow relaxation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. 136
7.8 Weakly reflective . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. 140

8 GENERAL VERTICAL COORDINATES 143
8.1 Transformation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. 144
8.2 Governing equations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. . 146
8.3 Terrain-following . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. . . 148

9 TWO-DIMENSIONAL PROBLEMS 151
9.1 Diffusion equation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. . 151
9.2 Advection equation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. . 152
9.3 Shallow water equations . . . . . . . . . . . . . . . . . . . . . . . . . . .. . . 154

10 ADVANCED TOPICS 159
10.1 Higher order schemes . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. . . 159
10.2 Combined advection-diffusion . . . . . . . . . . . . . . . . . . . .. . . . . . . 164
10.3 Non-linear instability . . . . . . . . . . . . . . . . . . . . . . . . . .. . . . . . 167
10.4 Smoothing and filtering . . . . . . . . . . . . . . . . . . . . . . . . . . .. . . . 171
10.5 Two-way nesting . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. 172

10.5.1 A simple example: Advection of a bell function . . . . . .. . . . . . . . 174
10.6 The spectral method . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. . . 177

10.6.1 Application to the one-dimensional linear advection equation . . . . . . . 177

A Introduction to Fortran 2003 via examples 181
A.1 Why use Fortran? . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .181
A.2 Historical background . . . . . . . . . . . . . . . . . . . . . . . . . . . .. . . . 182
A.3 The Fortran syntax . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. 183

A.3.1 Data types in Fortran . . . . . . . . . . . . . . . . . . . . . . . . . . . .184
A.4 The structure of Fortran . . . . . . . . . . . . . . . . . . . . . . . . . . .. . . . 185

A.4.1 Declaration of variables . . . . . . . . . . . . . . . . . . . . . . . .. . 185
A.4.2 Instructions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 187

A.5 Sample programs . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .188
A.5.1 A daynumber converter . . . . . . . . . . . . . . . . . . . . . . . . . . .188
A.5.2 A temperature converter . . . . . . . . . . . . . . . . . . . . . . . . .. 191
A.5.3 A more user friendly version of the converter program .. . . . . . . . . 192
A.5.4 Variable types, arrays, loops and memory allocation .. . . . . . . . . . 195
A.5.5 File input/output or I/O . . . . . . . . . . . . . . . . . . . . . . . . .. . 198
A.5.6 Multidimensional arrays . . . . . . . . . . . . . . . . . . . . . . . .. . 203
A.5.7 Functions and Subroutines . . . . . . . . . . . . . . . . . . . . . . .. . 207

A.6 Modules . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 215

xiii



B Quality assurance procedures 216
B.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. 216
B.2 Sub-grid scale parameterizations and spectral cutoffs. . . . . . . . . . . . . . . 217
B.3 What is a good model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .219

B.3.1 Tuned, transportable, and robust models . . . . . . . . . . .. . . . . . . 219
B.3.2 The concept of a good model . . . . . . . . . . . . . . . . . . . . . . . .220

B.4 Quality assurance procedures . . . . . . . . . . . . . . . . . . . . . .. . . . . . 221
B.4.1 Model verification . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 221
B.4.2 Sensitivity analysis . . . . . . . . . . . . . . . . . . . . . . . . . . .. . 222
B.4.3 Model validation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 224

B.5 Summary and final remarks . . . . . . . . . . . . . . . . . . . . . . . . . . .. . 226

xiv



List of Figures

1.1 The equation of state for the ocean. Dotted curves show isolines of densityρ as
a function of salinity (horizontal axis) and potential temperature (vertical axis)
for a fixed pressure (herep = 0 Pa). Numbers on curves indicate denisty inσt
units whereσt = ρ − 1000 kg/m3. Dashed line delineate the freezing point of
sea water. Note that for temperatures close to the freezing point the density is
almost a function of salinity alone, while the importance oftemperature increases
with increasing temperature. Due to the nonlinear nature ofthe equation of state
of sea water two parcels of equal density may have different temperatures and
salinities, for instance the two parcels markedA andB alongσt = 20.6 kg/m3. . 3

2.1 Displayed is a commonly used grid when employing numerical methods to solve PDEs.
The grid points in thex, y directions are incremented by∆x,∆y, respectively, so that
there are a total ofJ grid points along thex-axis andK grid points along they-axis. The
grid points are counted by using the dummy countersj, k, and the number of grid points
areJ ×K. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23

4.1 Displayed is the employed grid we use to solve (4.1) by numerical means. The
grid points in thex, t directions are incremented by∆x,∆t, respectively. There
is a total ofJ + 1 points along thex-axis andN + 1 points along thet-axis,
counted by using the dummy indicesj, n. The coordinates of the grid points are
xj = (j − 1)∆x andtn = n∆t, respectively. . . . . . . . . . . . . . . . . . . . . 41

4.2 Displayed are solutions of the diffusion equation usingthe scheme (4.5) for re-
spectivelyK = κ∆t/∆x2 = 0.45 (left panel) andK = 0.55 (right panel) for
x ∈ (0, 1). The dependent variableθ is held fixed at the two boundariesx = 0, 1
and the initial condition isθ = sin πx). The solutions are shown for the time
levelsn = 0, n = 50 andn = 90. Note the saw tooth like pattern in the right
panel forn = 90 not present in the left panel. This indicates that the stability
condition (4.36) is violated forK = 0.55, but not forK = 0.45. . . . . . . . . . 47

xv



5.1 Numerical dispersion for the leapfrog scheme. The curves depicts the numerical phase
speedc∗ as a function of the wavenumberα based on (5.32) for various values of the
Courant numberC = |u0|∆t/∆x. The vertical axis indicates the phase speed normal-
ized by the advection speedu0. The horizontal axis indicates the wavenumber normal-
ized by inverse space increment∆x or π/∆x. The analytic dispersion curve is just
a straigt line corresponding to the phase speedc∗ = u0, that isc∗/u0 = 1. As the
wavenumber increases (that is the wavelength decreases) the numerical phase speed de-
viates more and more from the correct analytic phase speed for all values of the Courant
number. For wavenumbers which givesα∆x/π > 0.5, that is for waves of wavelengths
λ < 4∆x the slope of the curves indicates that the group velocity is negative. Thus
for waves of wavelengths shorter than4∆x the energy is propagating in the opposite
direction of the waves. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 69

5.2 Displayed is the grid layout for the Lax-Wendroff scheme. The solid lines de-
note the grid through the circledxj , tn points. The dashed lines denote the grid
through thexj+ 1

2

, tn+
1

2 -points which are marked with a cross. . . . . . . . . . . . 77

5.3 Comparison of the numerical solution to the advection equation (5.2) using the
leapfrog, the upwind and the Lax-Wendroff schemes with a Courant numberC =
0.5. The solution, using a periodic or cyclic boundary condtion, is shown after
10 cycles. The true solution is the initial bell function shown by the black solid
curve. We note that both the leapfrog and the Lax-Wendroff schemes give rise to
numerical dispersion, that the upwind scheme gives rise to numerical diffusion.
Also the Lax-Wendroff scheme has some inherent numerical diffusion, but as
depicted it is smallcompare to the diffusion inherent in theupstream scheme. . . 79

5.4 Sketch of the characteristics in thex, t plane. Foru = u0 = constant> 0
the characteristics are the straight lines sloping to the the right inx, t space as
given by (5.81). Ifx = L marks the end of the computational domain, then all
information about the initial condition is lost for timest > tc. . . . . . . . . . . . 81

5.5 Sketch of the method of characteristics. The distance between the grid points are
∆t in the vertical and∆x in the horizontal direction. The sloping solid line is the
characteristic through the pointj, n+1. It is derived from (5.81) and the slope is
given by1/u (u > 0). The point labeledQ is therefore a distanceu∆t to the left
of xj . As long asu∆t < ∆x thenQ is located betweenxj−1 andxj . If however
u∆t > ∆x then the pointQ is located to the left ofxj−1. . . . . . . . . . . . . . 82

5.6 Displayed is an example of the diffusion inherent in the upwind scheme. The
solid curve shows the initial distribution at time leveln = 0, while the dashed
curve (red) shows the distribution at time leveln = 200. The Courant num-
ber isC = 0.5. Cyclic boundary conditions are used at the boundaries of the
computational domain. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .85

xvi



5.7 Solutions to the advection equation using the MPDATA schemesuggested bySmo-
larkiewicz(1983). Left panel corresponds to a scaling factor of 1.0 (noscaling), while
the right-hand panel employs a scaling factor of 1.3. The Courant number is 0.5 in both
cases. Solid, black lines show the initial value (time stepn = 0), while the red dotted
lines show the solution after 200 time steps (one cycle). Thegreen dashed lines are after
400 time steps (two cycles) while the blue, dash-dot lines are after 800 time steps (four
cycles). Periodic boundary conditions are employed. (cf. Computer problem No. 6 in
the Computer Problem notes).. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 90

6.1 Sketched is a one layer-model of the atmosphere or ocean.Hereh = H + η is
the total depth of a fluid column, whereH = H(x, y) is the equilibrium depth
while η = η(x, y, t) is the deviation of the top reference surface away from its
(level) equilibrium position. The mean velocity of the fluidcolumn isu, while
the uniform density of the layer is denotedρ0. . . . . . . . . . . . . . . . . . . . 95

6.2 Sketch of the Semi-Lagrangian technique for the shallowwater equations. The
distance between the grid points are∆t in the vertical and∆x in the horizontal
direction. The sloping solid, blue line (marked+) is the positive characteristic
through the grid pointj, n+1, while the solid, red line (marked−) is the negative
characteristic through the same grid point. They are derived from (6.71) and
(6.72) and the slopes are respectively given by±1/c0. The point labeledP is
therefore a distancec0∆t to the left ofxj , while the pointQ is a distancec0∆t
to the right ofxj . As long asc0∆t ≤ ∆x thenP is located betweenxj−1 and
xj andQ betweenxj+1 andxj . If howeverc0∆t > ∆x then the pointsQ,P are
located to the left and right of respectivelyxj−1 andxj+1. . . . . . . . . . . . . . 104

6.3 Comparison of the structure of (a) an unstaggered and (b)a staggered grid in one
spatial dimension. The circels are associated withφ-points, while the ellipses are
associated withu-points. The illustrated staggering in panel (b) is such that the
φ-points andu-points are one half grid distance apart, but at the same timelevel. . 108

6.4 Sketch of the semi-Lagrangian technique for a non-linear and rotating case. The
distance between the grid points are∆t in the vertical and∆x in the horizontal
direction. There are three characteristics through the point j, n + 1. The blue
solid line is the positive characteristic with slopeu+ c, while the dashed red line
is the negative characteristic with slopeu − c. These are derived from (6.173).
The last characteristic with slopeu is the dotted black line derived from (6.176).
Providedu ≥ 0 the point labeledP is a distance(u + c)∆t to the left ofxj ,
while the pointQ is a distance(u− c)∆t to the right ofxj . Hence the assymetry.
Finally the point labeledR is located a distanceu∆t to the left ofxj . As long
as(u + c)∆t ≤ ∆x andu > 0 thenP,R is located betweenxj−1 andxj and
Q betweenxj+1 andxj . If however(u + c)∆t > ∆x then the pointsQ,P are
located to the left and right of respectivelyxj−1 andxj+1. . . . . . . . . . . . . . 118

xvii



7.1 Upper panel shows the Earth’s surface covered by a 2 degree mesh. Lower panel
shows a similar mesh of 30 degrees mesh size. The figure conveniently illustrates
how a 2 degree mesh in the ocean would look like in the atmosphere scaled by
the Rossby radius of deformation. . . . . . . . . . . . . . . . . . . . . . .. . . 124

7.2 Sketch showing the confiduration of a Child model covering a domainω embed-
ded in a Parent model covering the domainΩ. Commonly the Child has a higher
resolution than the Parent with a refinement factor of 3 to 5. The interface, de-
notedΓ, is then an open boundary at which an open boundary conditionmust be
imposed. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 127

7.3 Sketch of the mesh in thet, x plane close to the right-hand open boundary. The
computational domain is then to the left ofx = L. The lettersJ , J−1, andJ−2
denote grid points respectively at the open boundary, the first and second points
inside the computational domain, whilen, n− 1, andn+ 1 denote the time levels.132

7.4 Sketch of the FRS zone, the interior domain and the computational domain. Also
shown are the appropriate indices. . . . . . . . . . . . . . . . . . . . . .. . . . 137

10.1 The diagram illustrates the region of stability for thecombined advection-diffusion
equation approximated in (10.37). This corresponds to the area inside of the
parabola (hatched area). The area inside the rectangular iswhere both the ad-
vection and the diffusion are stable individually. We notice that we a obtain a
more stringent stability condition to the advection equation when we are adding
diffusion. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 166

10.2 Displayed are the two waves of wavelength4∆x (solid curve) and4
3
∆x (dashed

curve), in a grid of grid size∆x. Note that our grid cannot distinguish between
the unresolved wave of wavelength4

3
∆x and the resolved wave of wavelength

4∆x. Thus the energy contained in the unresolved wave will be folded into the
low wavenumber space represented by the4∆x wave. . . . . . . . . . . . . . . . 169

10.3 Close up of the parent (solid lines) and child (dashed) grid points locations in
time and space in the vicinity of the right-hand interface. The refinement factor
is ir = 3. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 174

10.4 a) Initial distribution. b), c) and d) are distributions after 6 cycles with respec-
tively no, one-way, and two-way nesting applied. In b) the child grid covers the
entire domain of the parent grid (a = b = 1 in eq. 10.84), and applies a cyclic
boundary condition on the boundaries. The vertical, dashedlines in c) and d)
indicate the interface between the parent and child domains. In b), c) and d) the
solid thick, blue line is the child solution while the black,thin line is the parent
solution. Dashed line is the analytic solution after 6 cycles and corresponds to
the intital distribution shown in a). . . . . . . . . . . . . . . . . . . .. . . . . . 176

A.1 The punched card . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .183

xviii



B.1 Sketch showing the effect on the accuracy by including more and more complex
and sophisticated parameterizations of processes. Decreasing accuracy is shown
along the vertical axis, while increasing number and/or complexity of processes
are shown along the horizontal axis. Note that the accuracy first increases but
then decreases (dashed curve) when more and more poorly known processes are
included. This is contrast to the case when the processes included are well known
and understood (solid curve). . . . . . . . . . . . . . . . . . . . . . . . . .. . . 220

xix



xx



Chapter 1

INTRODUCTION

Numerical methods is one of the most fascinating contemporary tools to solve meteorological
and oceanographic problems. The reason is that most, if not all, of the processes in the atmo-
sphere and ocean are governed by a set of highly non-linear partial differential equations (PDEs).
Equally important is that computers allow us to solve this set of PDEs, once they are cast into
a suitable algorithm using numerical methods, within a reasonable time frame. We emphasize
that solving the PDEs numerically on computers is the only method whereby the full non-linear
equations governing the motion of the atmosphere and ocean can be solved. Only in special
cases, mostly cases in which the governing equations are reduced to being linear, is it possible
to solve the them by analytic means. Hence to enable us to get an insight into the non-linear
processes in the atmosphere and ocean, and to forecast theirstates, the only viable method is to
solve the governing equations using numerical methods, that is, to put the atmosphere and ocean
on computers.

We concern ourselves with the fundamental tools needed to understand how we put oceans
and atmospheres on computers. Specifically we limit ourselves to study methods whereby some
important balance equations in oceanography and meteorology, namely the advection-diffusion
equation and a simplified form of the shallow water equationson a rotating earth, can be solved
by numerical means. To this end we make use offinite difference methods. Assuming that
the reader has little or no prior knowledge of or experience in solving differential equations
numerically, we therefore explain the finite difference methods in detail.

The advection-diffusion equation and the shallow water equations belongs to a class of equa-
tions known as PDEs. Consequently we include in the preliminary chapter (Chapter 2) a rather
detailed account on how various types of partial differential equations relates to the advection-
diffusion equations and the shallow water equations.

Moreover, to motivate the reader, and for later reference purposes, we first show how the
advection-diffusion equation and the shallow water equations relates to the full equations gov-
erning the motion of the atmosphere and ocean. This necessitates a recapitulation of the gov-
erning equations, the boundary conditions and the basic approximations commonly made in
meteorology and oceanography. We therefore continue this introductory chapter by deriving the
shallow water equations from the full governing equations,highlighting the necessary assump-
tions and approximations needed to derive them. This also conveniently introduces the notation

1



1.1 The governing equations INTRODUCTION

used throughout the text.

1.1 The governing equations

In the atmosphere and ocean the most prominent dependent variables are the three components
u, v, andw of the three-dimensional velocityv, pressurep, densityρ, and (potential) temperature
θ1,2. For the atmosphere also humidityq and cloud liquid water contentqL must be included,
while the salinitys must be included among the prominent variables in the ocean.To determine
these unknowns we need an equal number of equations. These equations are normally referred
to as the governing equations since they govern the motion ofthe two spheres atmosphere and
ocean.

Of the variables above only the velocity is a vector. The remaining variables, commonly
referred to as the state variables, are all scalars. The state variables, except density and pressure,
are all examples of what is referred to as tracers. Other examples of tracers are any dissolved
chemical component or substance. Since the salinity, temperature and humidity influence the
motion via the pressure forcing they are commonly referred to asactive tracers. Tracers that
do not influence the motion, like for instance dissolved chemical components, are referred to as
passivetracers.

As is common when making a mathematical formulation of a physical problem, the governing
equations are developed based on conservation principles,in our case the conservation of mass,
momentum, internal energy and tracer content. For the atmosphere and ocean the governing
equations in their non-Boussinesq form are3

∂tρ+∇ · (ρv) = 0, (1.1)

∂t(ρv) +∇ · (ρvv) = −2ρΩ× v −∇p+ ρg −∇ · (ρFM), (1.2)

∂t(ρCi) +∇ · (ρCiv) = −∇ · (ρFi) + ρSi i = 1, 2, · · · , (1.3)

ρ = ρ(p, C1, C2, · · · ). (1.4)

Here we use∂t, ∂x, ∂y, and∂z to denote partial differential with respect to the respective sub-
script. Thus∂tρ is the time derivative (or time rate of change) of the density. Ci represents the
concentration of any tracer including potential temperature and humidity (atmosphere only) and
salinity (ocean only), the tensorFM and vectorFi represents fluxes due to turbulent mixing of
momentum and tracers, respectively,Ω is the Earth’s rotation rate,g is the gravitational accel-
eration andSi is the tracer source, if any. Finally, we use∇ to denote the three-dimensional
del-operator defined by

∇ = i∂x + j∂y + k∂z, (1.5)

Of the above equations (1.1) is the conservation of mass, while (1.2) constitutes the conservation
of momentum. Furthermore (1.3) is the tracer conservation equation, while (1.4) is the equation

1Velocity is normally referred to as wind in the atmosphere and current in the ocean.
2In the following bold upright fonts, e.g.,u,v, are used to denote a vector, while bold special italic fonts, e.g.,

U ,V, are used to denote tensors
3See for exampleGill (1982) orGriffies(2004)
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Figure 1.1: The equation of state for the ocean. Dotted curves show isolines of densityρ as a
function of salinity (horizontal axis) and potential temperature (vertical axis) for a fixed pressure
(herep = 0 Pa). Numbers on curves indicate denisty inσt units whereσt = ρ − 1000 kg/m3.
Dashed line delineate the freezing point of sea water. Note that for temperatures close to the
freezing point the density is almost a function of salinity alone, while the importance of tem-
perature increases with increasing temperature. Due to thenonlinear nature of the equation of
state of sea water two parcels of equal density may have different temperatures and salinities, for
instance the two parcels markedA andB alongσt = 20.6 kg/m3.

of state. Thus the tracers figuring on the right-hand side of (1.4) are limited to active tracers only.
Hence (1.4) relates density and pressure to the active tracers.

It should be noted that in the atmosphere the equation of state is linear and follows the ideal
gas law, that is,

p = ρRθ (1.6)

whereR is the gas constant4. In contrast the equation of state for the ocean is highly non-linear.
and cannot be expressed in a formal, closed form. We may visualize the equation of state for
the ocean in a so called T-S (temperature-salinity) diagramwhere the salinitys is drawn along
the horizontal axis and the (potential) temperatureθ is drawn along the vertical axis. Since also
pressure enter the equation of state a T-S diagram can only beconstructed using a reference
density. A typical example forp = 0 is displayed in Figure 1.1.

4R = 287.04 Jkg−1K−1
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1.2 Boundary and initial conditions

We observe that to solve (1.1) - (1.4) we need to specify conditions at the spatial boundaries of
the domain. Such conditions are referred to asboundary conditions. Furthermore we also need
to specify the state of the ocean and/or atmosphere at some given time (cf. the statement quoted
on page iii of Bjerknes, 1904). The latter is commonly referred to as theinitial conditions.

The boundary conditions are of two major types, namely thedynamic boundary conditions
and thekinematic boundary conditions. Normally the bounding surface of the volume containing
the ocean or the atmosphere is a material surface. We recall that a material surface is a surface that
consists of the same particles at all times. Thus the dynamicboundary conditions associated with
a material surface requires that there is no acceleration atthe surface, that is, that the the pressure
and the fluxes must be continuous there. The kinematic boundary conditions at a material surface
simply says that a particle once at the surface stays there forever.

As an example let us consider a system consisting of the atmosphere on top of the ocean. Let
η = η(x, y, t) denote the deviation of the atmosphere/ocean interface away from its equilibrium
level atz = 0, and letH = H(x, y) be the equilibrium depth of the ocean. Then thekinematic
boundary condition at the interface is

w = ∂tη + u · ∇Hη at z = η (1.7)

whereu, w are, respectively, the horizontal and vertical component of the three-dimensional
velocity v, and where∇H = i∂x + j∂y is the horizontal component of the three-dimensional
del-operator (1.5). Thedynamiccondition at the interface is

pA = pO, at z = η (1.8)

wherepA denotes the atmospheric pressure, andpO the oceanic pressure. The kinematic bound-
ary condition at the bottom of the ocean is similar to (1.7), that is,

w = −u · ∇HH at z = −H, (1.9)

where we assume that the bottom is stationary, that is, does not change in time. We have also
assumed that the “bottom”z = −H is a material surface. This surface is described bySH =
z + H(x, y) = 0, and hence (1.9) dictates that the bottom is impermeable or that there is no
trough-flow across the bottom, that is,n · v = 0 atz = −H, wheren = ∇SH/|∇SH | is the unit
vector perpendicular to the bottom.

1.3 The hydrostatic approximation

In the atmosphere and ocean the horizontal scales of the dominant motions are large compared to
the vertical scale. As a consequence the vertical acceleration,Dw/dt, is small in comparison to,
e.g., the gravitational accelerationρg. Consequently we replace the vertical momentum equation
by the hydrostatic equation in which the gravitational acceleration is balanced by the vertical
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pressure gradient. When one solves this reduced system the model is said to behydrostatic, and
the motion satisfiesthe hydrostatic approximation.

To illustrate the hydrostatic approximation we first write the vertical component of the mo-
mentum equation using (1.2) in full, that is,

∂t(ρw) +∇ · (ρvw) = −∂zp− ρg −∇ · (ρFV
M ), (1.10)

whereFV
M is the vertical vector component of the mixing tensorFM

5. The hydrostatic assump-
tion implies that the terms on the left-hand side of (1.10) are small compared to the gravitational
acceleration and hence can safely be neglected6. Furthermore, since the vertical motion is small
compared to the horizontal motion also the friction term maybe neglected. Under these circum-
stances the vertical momentum equation reduces to

∂zp = −ρg, (1.11)

which is thehydrostatic equation7. When the hydrostatic approximation is valid we normally
split the momentum equations into its vertical and horizontal components. The vertical com-
ponent is then the hydrostatic equation (1.11). The two horizontal components are (in vector
form)

∂t(ρu) +∇H · (ρuu) + ∂z(ρwu) + ρfk× u = −∇Hp+ ∂zτ −∇H · (ρFH
M), (1.12)

wheref = 2Ω sinφ is the Coriolis parameter whereφ is the latitude andΩ is the Earth’s rotation
rate.FH

M andτ are, respectively, the horizontal and vertical component of the three-dimensional
flux tensorFM due to turbulent mixing.τ is also commonly referred to as the vertical shear
stress. Note that we in (1.12) have singled out the horizontal convective acceleration due to the
vertical velocity and the vertical flux term due to turbulentmixing.

The tracer equation is left unchanged, but as in the momentumequation we may separate the
turbulent mixing into one term associated with vertical mixing and one term associated horizontal
mixing. Hence it may be written

∂t(ρCi) +∇H · (ρCiu) + ∂z(ρCiw) = −∂z(ρF V )−∇H · (ρFH
i ) + ρSi i = 1, 2, · · · , (1.13)

whereF V andFH
i are respectively the vertical and horizontal components ofthe turbulent mix-

ing.

5We note that in a Cartesian coordinate system fixed to the Earth’s surface the vertical component of the Coriolis
force is small compared to the gravitational pull. The former is therefore dropped in 1.10.

6As noted this approximation relies on the fact that in most cases the dominant part of the motion, that is, the
energetic part, lies in the long wavenumber band, and hence the horizontal scale is significantly longer than the
vertical scale (consists of long waves in shallow water). Consequently, both the vertical velocity and its acceleration
is small compared to the gravitational acceleration. The exceptions are cases that include steep topography and/or
strong convection, in which cases one has to revert to non-hydrostatic equations.

7The name is used since a fluid at rest in the gravitational fieldsatisfies exactly this equation. This is often
referred to as a static fluid, hence the name hydrostatic.
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1.4 The Boussinesq approximation

Another common approximation employed, particularly inocean models, is theBoussinesq ap-
proximation. The fundamental basis for this approximation is that in many cases the dynamics
of the atmosphere and in particular the oceans is independent of the fact that the atmospheres
and oceans are compressible. Under these circumstance we can treat the motion as if the sphere
is incompressible. This implies that any parcel of fluid conserves its volume, and that this is
true even if the parcel is heated. Thus the Boussinesq approximation is only true as long as the
change in density for any parcel of fluid is small with respectto the density itself, that is,

1

ρ

Dρ

dt
=
D ln ρ

dt
≈ 0, (1.14)

where the operatorD
dt

is the material derivative8, defined by

D

dt
= ∂t + v · ∇. (1.15)

Under the Boussinesq approximation the approximation (1.14) is taken as an equality. The mass
conservation (1.1) then reduces to

∇ · v = 0. (1.16)

Use of an ocean model employing the Boussinesq approximation, aBoussinesq ocean, has
one major disadvantage. One particularly pertinent example is the expected change in sea level,
or ocean volume, under global warming. When uniformly heating the ocean the equation of state
implies that the density decreases. For a non-Boussinesq ocean, which is mass conserving, the
response to the decrease in density is to expand its volume. Hence the sea level rises. In contrast
a Boussinesq ocean, which conserves volume, responds to heating by decreasing the density, that
is, by loosing mass. Obviously the latter is highly unrealistic.

The reason why the Boussinesq approximation is still widelyused in the ocean modeling
community, despite the Boussinesq fluid’s inability to expand due to heating, is the fact that it
effectively filters out the acoustic waves while allowing usto retain pressure changes in response
to density changes. To filter out the acoustic waves is advantageous in numerical perspective
since. A will be shown below (Chapter 5) the time step is then not restricted by these very fast
waves (see Section 4.3), dramatically decreasing the wall clock time (or CPU time) spent to
perform even relatively short time integrations.

In summary the density under the Boussinesq approximation is treated as a constant except
when it appears together with the gravitational acceleration. Under these circumstances the hor-
izontal component of the momentum equation (1.12) becomes

∂tu+∇ · (vu) + fk× u = −ρ−1
0 ∇Hp + ρ−1

0 ∂zτ −∇H · (FH
M), (1.17)

whereρ0 is a reference density. Similarly the tracer conservation equation (1.3) reduces to

∂tCi +∇ · (Civ) = −∇ · Fi + Si (1.18)

8Also referred to as the individual derivative
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for i = 1, 2, · · · .
We notice that it is quite common to combine the Boussinesq and the hydrostatic equations

in meteorology and oceanography. Under these circumstances the governing equations reduce to

∇H · u+ ∂zw = 0, (1.19)

∂tu+∇H · (uu) + ∂z(wu) + fk× u = −ρ−1
0 ∇Hp+ ρ−1

0 ∂zτ −∇H · (FH
M), (1.20)

∂zp = −ρg, (1.21)

∂tCi +∇H · (Ciu) + ∂z(Ciw) = −∂zF V −∇H · FH
i + Si ; i = 1, 2, · · · , (1.22)

together with the equation of state (1.4). We note that when applying the hydrostatic and Boussi-
nesq approximation the vertical velocity component and thedensity are reduced todiagnostic
variablesjust as pressure. This is in contrast to the horizontal velocity componentsu and the
tracersCi, e.g, potential temperature, which areprognostic variablesin the sense that they are
governed byprognostic equations, that is, equations containing a time rate of change term of the
variable in question.

Finally we note that the introduction of more and more simplifications sometimes compli-
cates the numerical problem. For instance the fairly popular rigid lid approximation implies that
the equations must be solved globally rather than locally since the solution at one point not only
depends on its nearest neighboring points, but in fact depends on all the points within the com-
putational domain. This requires us to solve anelliptic problemfor each time step, although the
problem in itself, as a time marching problem ishyperbolic9. We will return to elliptic solvers in
Section 4.11 on page 55 when solving an elliptic problem by a direct method.

1.5 The shallow water equations

A very common reduced set of equations in meteorology and oceanography is the so called
shallow water equations. We may derive these equations fromthe full governing equation (1.1)
- (1.4). We first assume that the hydrostatic and Boussinesq approximations are valid. Hence
the starting point is mass conservation in the form (1.19), the momentum equations in the form
(1.21) and (1.20), the tracer equation in the form (1.22) together with the equation of state (1.4).
The additional assumption made is that the density is assumed to be uniform in time and space,
i.e., ρ = ρ0 whereρ0 is a constant. We note that this makes the tracer equations (1.22) for the
active tracers as well as the equation of state (1.4) obsolete. The resulting governing equations
then reduces to

∇H · u+ ∂zw = 0 (1.23)

∂zp = −ρ0g, (1.24)

∂tu+∇H · (uu) + ∂z(wu) = −fk× u− ρ−1
0 ∇Hp+ ρ−1

0 ∂zτ −∇H ·FH
M , (1.25)

9For definitions of elliptic and hyperbolic problems see Sections 2.2 and 2.4 of Chapter 2
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We note the assumption of a uniform density allows us to integrate (1.24) from any arbitrary
height/depthz to a reference surfacez = η(x, y, t), viz.,

p = ps + gρ0(η − z) (1.26)

whereps is the pressure at the reference surface. In the ocean the reference surface is commonly
the surface of the ocean in which caseη is the deviation of the sea surface from its equilibrium
level z = 0. In the atmosphere it is common to let the reference surface be the surface of the
Earth, e.g.,η = −H, whereH is measured as the distance from some fixed level (commonly set
to z = 0).

Integrating (1.23) and (1.25) from the bottomz = −H(x, y) to the topz = η(x, y, t), and
using the kinematic boundary conditions (1.7) and (1.9) andthe dynamic boundary condition
p = 0 at z = η we get,

∂tU +∇H · (UU

h
) + fk×U = −gh∇H(h−H) + ρ−1

0 (τ s − τ b) +X, (1.27)

∂th+∇H ·U = 0, (1.28)

whereU =
∫ η

−H
udz is the volume flux of fluid through the fluid column of height/depth

h = η + H, τ s and τ b are, respectively, the turbulent vertical momentum fluxes at the top
and bottom of the fluid column, andX is what is left of the horizontal momentum fluxes when
integrated vertically from bottom to top. To arrive at (1.27) we have also integrated (1.24) from
some arbitrary height/depthz to the topz = η. Furthermore we have used the fact thatH is
independent of time to replace, e.g.,∂tη by ∂th. Finally we have absorbed the term arising from
the approximation ∫ η

−H

∇H · (uu)dz ≈ ∇H · (UU

h
) (1.29)

into the last termX on the right-hand side of (1.27). We commonly refer to (1.27)and (1.28)
as theshallow water equations. Written in this form the shallow water equations are said tobe
written in flux form. We note thatU is the total volume flux of fluid through the fluid column
of height/depthh. Thus the mean depth average velocity isû = U/h. ReplacingU by û the
shallow water equations become

∂t(hû) +∇H · (hûû) + fk× hû = −gh∇H(h−H) + ρ−1
0 (τ s − τ b) +X, (1.30)

∂th +∇H · (hû) = 0, (1.31)

For later reference purposes we note that the acceleration terms∂t(hû) +∇H · (hûû) in (1.30)
can be written

∂t(hû) +∇H · (hûû) = h (∂tû+ û · ∇Hû) + û [∂th +∇H · (hû)]
= h (∂tû+ û · ∇Hû) , (1.32)

where we have used (1.31) to arrive at the last equal sign. Thus (1.30) and (1.31) is written

∂tû+ û · ∇Hû+ fk× û = −g∇Hη +
τ s − τ b

ρ0(H + η)
+

X

(H + η)
, (1.33)

∂tη +∇H · [(H + η)û] = 0, (1.34)
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INTRODUCTION 1.6 The quasi-geostrophic equations

We note that when the shallow water equations are written in their non-flux form, as displayed
in (1.33) and (1.34), the mass conservation equation (1.34)becomes non-linear as well. This is
in contrast to the mass conservation equation in flux form, that is, (1.28), which is linear.

1.6 The quasi-geostrophic equations

Another common set of reduced equations are based on quasi-geostrophic theory as for instance
detailed inPedlosky(1979) orStern(1975). Here we essentially followStern(1975).

We first note that the starting point for the quasi-geostrophic equations are the governing
equations employing the hydrostatic and Boussinesq approximations. Without loss of generality
we may therefore start with the shallow water equations (1.33) and (1.34). If we neglect the
forcing terms on the right-hand side of (1.33) we get

DHu

dt
+ fk× u = −g∇Hh, (1.35)

1

h

DHh

dt
+∇H · u = 0, (1.36)

where we have dropped the circumflex for clarity. The notation DH/dt is used to denote the
two-dimensional version of the operator (1.15), that is,

DH

dt
= ∂t + u · ∇H , (1.37)

If we furthermore assume that the accelerationDHu/dt is small compared to the Coriolis accel-
eration, that is, assume that theRossby number

R ≡ |DHu/dt|
|fk× u| ≪ 1, (1.38)

the momentum equation (1.35) reduces to

fk× u = −g∇Hh. (1.39)

We note that (1.39) is linear and describes a balance betweenthe Coriolis term and the pressure
term. Hence (1.39) is referred to as the geostrophic orthermal wind equationand the balance is
called thegeostrophic balance. Solving for the relative velocity we get

u =
g

f
k×∇Hh. (1.40)

The introduction of the Rossby number tells us that we may view the thermal wind equation as
a first approximation to an expansion in terms of the Rossby number in which terms ofO(R) or
higher are neglected, that is,

u =
g

f
k×∇Hh+O(R). (1.41)

9
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We note that (1.39) obviously provides no information aboutthe space-time variations in
either the velocity field or the pressure field. To obtain information on those dynamics to order
O(R) we have to look elsewhere. For instance we may obtain it from the relevant asymptotic
form of the vorticity equation.

To derive the vorticity equation we start by defining therelative vorticity

ζ = k · ∇H × u. (1.42)

Then operatingk · ∇H× on (1.35) and then substituting for∇H · u from (1.36) we get

DH

dt

(
ζ + f

h

)
= 0. (1.43)

Hereζ + f is the absolute vorticity, while(ζ + f)/h is thepotential vorticityfor a barotropic
fluid10. If we letL be a typical lateral (horizontal) scale ofu, so that|u·∇Hu| ∼ |u2|/L, then the
necessary condition forR ≪ 1, which is commonly referred to as the quasi geostrophy condition
(cf. eq. 1.38), to be satisfied is

|u|
fL

≪ 1. (1.44)

The condition is however not sufficient since the remaining acceleration term inDH/dt is the
local time rate of change∂tu which might be comparable to the Coriolis termfk × u. Conse-
quently we must additionally require that the initial condition is in geostrophic balance, that is,
satisfies (1.39). The smallness of∂tu compared to the Coriolis acceleration then depends on the
smallness ofu ·∇Hu. Under these circumstances we may safely regard (1.44) as being the same
as requiringR = |u|/fL ≪ 1. We may then compute the temporal evolution of the geostrophic
field from the asymptotic vorticity equation.

To derive the asymptotic vorticity equation we first observe, by use of (1.42), that

|ζ |
f

=
|u|
fL

. (1.45)

Hence (1.44) requires that the relative vorticity is small compared tof by a factor ofR. We also
note that the variation in layer thicknessh, obtained from (1.39) is

h−Hm ∼ fL

g
|u| or

h−Hm

Hm

∼ RF 2, (1.46)

whereHm is the mean layer thickness and

F ≡
(
L2

LR

) 1

2

, (1.47)

whereLR = gHm/f
2 is the Rossby radius of deformation. If we now assumeF ∼ O(1) or less,

which is tantamount to assuming thatL is not large compared to Rossby’s deformation radius,

10Recall that we have assumed that the density is constant. Thefluid is therefore barotropic. The potential vorticity
may also be derived for a baroclinic fluid in a similar fashion, but has then a different mathematical expression.
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INTRODUCTION 1.6 The quasi-geostrophic equations

then the layer thickness variation in (1.46) is small to the same order as the ratio of the relative
vorticity ζ to the planetary vorticityf , that is,ζ/f .

Under these circumstances we first rewrite the potential vorticity equation (1.43) to get

D

dt

(
ζ + f

h

)
=

f

Hm
(∂t + u · ∇H)

(
1 + ζ

f

1 + h−Hm

Hm

)
= 0. (1.48)

We are now in a position to expand this expression in terms ofR, and thus we get

(∂t + u · ∇H)

[
1 +

ζ

f
− h−Hm

Hm

+O(R2)

]
= (∂t + u · ∇H)

(
ζ

f
− h

Hm

)
+O(R3) = 0.

(1.49)
The leading terms in (1.49) areO(R2) since the (non-dimensional) magnitude of the acceleration
terms∂tu andu · ∇Hu areO(R). Thus the fractional error in the asymptotic vorticity equation

(∂t + u · ∇H)

(
ζ

f
− h

Hm

)
= 0 (1.50)

and in the asymptotic momentum equation (1.39) are both ofO(R). Hence substitution ofu
from (1.40) wherever the latter appears in (1.50) the resulting differential equation for the layer
thickness (or pressure)h is also asymptotic whenR ≪ 1. It is thus permissible to evaluate the
velocity and the relative vorticity in (1.50) using the geostrophic equation (1.39) or (1.40). In
fact if we substitute the expression (1.40) foru into (1.42) and then into (1.50) we first get

ζ =
g

f
∇2

Hh, (1.51)

and then [
∂t +

g

f
(k×∇Hh) · ∇H

] (
∇2

Hh− L−1
R h
)
= 0. (1.52)

Equation (1.51) and (1.52) together with the geostrophic equation (1.39) are commonly referred
to as thequasi-geostrophic equations(QG equations). Thus we may use the quasi-geostrophic
vorticity equation (1.52) to compute the pressure or layer thicknessh at an arbitrary timet > 0
from any initial distribution at timet = 0. The resulting solution is then almost geostrophic, but
not quite. Hence we use the name quasi-geostrophic. We emphasize that it is only under very
stringent conditions, as explained, that these equations are valid.

We finally remark that, although each step in the hierarchy ofthe approximations, that is
the Boussinesq approximation, the hydrostatic approximation, the shallow water equations, and
finally the quasi-geostrophic approximation, removes or filters out a certain class of phenomena,
the advantage of such procedures is that they allow us to isolate effects having different space-
time scales. In a numerical contexts they are also very useful in establishing solutions against
which our numerical solutions may be tested or verified.
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Chapter 2

PRELIMINARIES

The equations that governs the motion of the atmosphere and the ocean, as well as the hierarchy
of equations that follows employing the various approximations as outlined in the introductory
chapter (Chapter 1), belongs to a class of equations calledpartial differential equations(hence-
forth PDEs). They differ from ordinary differential equations in that there is more than one
independent variable, and sometimes several dependent variables.

In this chapter we learn more about PDEs and reveal that they have different characters de-
pending on the physics they describe. We also introduce somebasic mathematics underlying
two of the most important numerical methods used to solve atmospheric and oceanic problems,
namelyfinite difference methodsandspectral methods. These mathematics include knowledge
about Taylor series expansions, orthogonal functions, Fourier series and Fourier transforms. Fi-
nally, we include some notations that conveniently helps usto solve PDEs using numerical meth-
ods.

2.1 General PDEs

In general a PDE is written

â∂2x′θ + 2b̂∂x′∂y′θ + ĉ∂2y′θ + 2d̂∂x′θ + 2ê∂y′θ + f̂θ = ĝ. (2.1)

Here∂x′, ∂y′ denotes differentiation with respect to the independent variablesx′, y′, while θ =

θ(x′, y′) denotes the dependent variable. The coefficientsâ, b̂, .., ĝ are in general functions of the
independent variables, that is,â = â(x′, y′), etc. Note thatx′ andy′ represents any independent
variable, for instance time or one of the spatial variables,while θ represents any dependent
variable, e.g., velocity, pressure, density, salinity, orhumidity. We illustrate this by using the
shallow water equations (1.33) and (1.34) as an example. To simplify the illustration we first
neglect all forcing terms. We then linearize them by assuming that the deviation of the heighth
of a fluid column is small compared to its equilibrium depthHm, that is,(h − Hm)/Hm ≪ 1.

13



2.2 Elliptic equations PRELIMINARIES

We then get

∂tu− fv = −g∂xh (2.2)

∂tv + fu = −g∂yh (2.3)

∂th+Hm∂xu = −Hm∂yv. (2.4)

Hereu, v are the components of the horizontal velocityu along the axesx, y respectively. We
may further simplify these equations by assuming that the motion is one-dimensional in space
by letting∂y = 0. Mathematical speaking this is just three equation containing the three depen-
dent variablesu, v andh, and the two independent variablest, andx. We note that by some
manipulation similar to that detailed in Section 2.4 on page16 below these three equations may
be condensed into one equation, that is,

∂2t h− gHm∂
2
xh+ f 2h = 0, (2.5)

containing one dependent variableh only. Furthermore, (2.5) conforms to (2.1) by lettingθ = h,
x′ = t, y′ = x, â = 1, ĉ = −gHm, f̂ = f 2 andb̂ = d̂ = ê = ĝ = 0.

2.2 Elliptic equations

If b̂2 − âĉ < 0 then the roots of (2.1) are imaginary, distinct, and complexconjugated. The
corresponding PDE is thenelliptic. The classic example isPoisson’s equation,

∇2
Hφ = ∂2xφ+ ∂2yφ = g(x, y), (2.6)

where again∇H is the two-dimensional part of the three-dimensional del operator. We arrive at
this equation by lettingθ = φ, x′ = x, y′ = y, â = ĉ = 1, ĝ = g andb̂ = d̂ = ê = f̂ = 0 in (2.1).
Other examples are theHelmholtz equation

∇2
Hφ+ f(x, y)φ = g(x, y), (2.7)

and theLaplace equation
∇2

Hφ = 0. (2.8)

2.3 Parabolic equations

If b̂2 − âĉ = 0 then the corresponding PDE isparabolic. The classic example is thediffusion
equationor the heat conduction equation,

∂tθ = κ∂2xθ, (2.9)

whereκ is the diffusion coefficient (heat capacity). To arrive at (2.9) from (2.1) we letθ = θ,
x′ = x, y′ = t, â = 1, b̂ = ĉ = d̂ = f̂ = ĝ = 0, and ê = 1/2. We observe that (2.9) is
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a simplified, one-dimensional version of the full three-dimensional tracer equation (1.3), where
the advection term as well as the source and sink terms are neglected. In fact under the latter
circumstances the three-dimensional tracer equation (1.18) for a Boussinesq fluid may be written

∂tCi = ∇ · (K · ∇Ci) , (2.10)

where the diffusive tracer fluxFi is parameterized asFi = −K · ∇Ci where in turnK is a
matrix (dyade) describing the conductive efficiency of the medium with regard to the tracerCi

(cf. Section 3.2). ThusK = κmnimjn, m,n = 1, 2, 3. To retrieve (2.9) we simply letκ11 = κ
andκmn = 0 for m 6= 1 andn 6= 1 and assume thatκ is constant.

Let us for a moment assume that the atmosphere/ocean is at rest (v = 0) and that there are
no sources or sinks for the tracerCi (Si = 0). Then (1.3) reduces to (2.10) implying that the
diffusion balance is of fundamental importance when solving atmospheric and oceanographic
problems .

2.4 Hyperbolic equations

If b̂2 − âĉ > 0 then the roots of (2.1) are real and distinct. The corresponding PDE is then
hyperbolic. The classic example is the wave equation,

∂2t φ− c20∂
2
xφ = 0. (2.11)

To derive (2.11) from (2.1) we letθ = φ, x′ = t, y′ = x, â = 1, b̂ = 0, ĉ = −c20, and
d̂ = ê = f̂ = ĝ = 0. Thenb̂2 − âĉ = −(−c20) = c20 which is indeed positive.

We note that by defining
Φ = ∂tφ− c0∂xφ (2.12)

we may rewrite the wave equation (2.11) to get

∂tΦ+ c0∂xΦ = 0. (2.13)

Sincec0 is a constant (2.13) may be written

∂tΦ+ ∂x(c0Φ) = 0. (2.14)

We observe that (2.14), commonly referred to as theadvection equation, is a one-dimensional
version of (1.1) withρ replaced byΦ andv replaced byc0i. It is also a one-dimensional version
of (1.3) with suitable replacements. Thus the advection equation is of fundamental importance
in the modeling of atmospheric and oceanographic motions. It also indicates that the equations
governing atmospheric and oceanographic motions viewed astime marching problems are inher-
ently hyperbolic.

We also notice that the two-dimensional version of the shallow water equations (1.27) and
(1.28) is inherently a hyperbolic problem. To illustrate this we start with the two-dimensional,
linearized version of the shallow water equation, that is, (2.2), (2.3) and (2.4). We start by
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manipulating (2.2) and (2.3) to findu, v as functions ofh. To this end we first differentiate (2.2)
with respect to time, and then add (2.3) multiplied byf . This results in an equation containingh
andu only, that is,

(∂2t + f 2)u = −gf∂yh− g∂t∂xh. (2.15)

Similarly by first differentiate (2.3) with respect to time and then adding (2.2) multiplied by−f
gives an expression relatingh andv, that is,

(∂2t + f 2)v = gf∂xh− g∂t∂yh. (2.16)

Next we substitute the results into (2.4) to get

(∂2t + f 2 − gHm∇2
H)∂th = 0. (2.17)

Let h = Hm + h′ and leth′ = 0 at timet = 0. Integration in timet then yields

(∂2t + f 2 − gHm∇2
H)h

′ = 0. (2.18)

If we in addition assume that the motion is independent of oneof the dependent variables, sayy,
we get

(∂2t + f 2 − gHm∂
2
x)h

′ = 0. (2.19)

We note that (2.19) is hyperbolic int andx. Similarly we observe that (2.18) is elliptic inx and
y. Thus, we note that although the steady state solution to (2.19) is elliptic, the time marching
problem is inherently hyperbolic.

The governing equations describing the time evolution of atmospheric and oceano-
graphic motions are fundamentally hyperbolic. It is important to keep this in mind
when developing numerical methods to solve atmosphere-ocean problems.

We will return to the shallow water equations in Section 6.1 on page 96. There we use them to
show how we should treat the Coriolis term, that is, the term that makes geophysical fluid dy-
namics, like oceanographic and atmospheric problems, stand out from ordinary fluid dynamics.
We also conveniently us it as an example problem to show how multiple variable problems are
solved using numerical methods.

2.5 Boundary conditions

To solve for the dependent variables we have to integrate thegoverning PDE in time and space.
Thus the solution inherently contains integration constants. The number of integration constants
is determined by the order of the PDE. For instance upon integration the linearized shallow water
equations (2.2) - (2.4) in timet gives three integration constants, while integration in space (x, y)
gives another four integration constants (two inx and two iny), a total of seven. Thus we need
seven conditions to determine these constants. These conditions are commonly referred to as
boundary conditions.
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We emphasize that the number of boundary conditions needed must be exactly the same as
the number of integration constants, no more, no less. If we specify too many boundary condi-
tions the system is overspecified, and if we specify too few weend up with an underspecified
system. It is therefore imperative that we adhere to this fundamental principle when we make
use of numerical methods to solve our governing equations. We emphasize that the computer
alwaysproduce numbers. If we over- or underspecify our system, thecomputer will still pro-
duce numbers. These numbers may even look realistic or correct, but are nevertheless incorrect.
The reason is that the only way to ensure that our solution exists and is unique is to have an
equal number of boundary conditions and integration constants. Furthermore, as a corollary, the
solution to our problem is equally dependent on the boundaryconditions as on any other forcing.

To determine for instance the solution to the elliptic Poisson equation (2.6) we need four
boundary conditions, two inx and two iny. To determine the solution to the diffusion equation
(2.9) we need three boundary conditions, two inx and one in timet. Finally, to determine the
solutions to the wave equation we need a total of four conditions to determine the four integration
constants, namely two int and two inx. As we increase the dimensions of the equation we
note that the number of integration constants increases andthus also the number of boundary
conditions needed.

There are essentially two types of boundary conditions belonging to the class ofnatural
boundary conditions1, namely

• Dirichlet conditions,

in which case the variable is known at the boundary, and

• Neuman conditions,

in which case the derivative normal to the boundary is specified. Most other boundary conditions
are just combinations of these.

In Section 1.2 we mentioned that there cannot be any flow through an impermeable wall, that
is, no throughflow across a solid wall, and formulated this condition as

n · v = 0 (2.20)

at the wall surface. Heren denotes the unit vector perpendicular to the wall. In fact this is a
classic example of the Dirichlet type boundary condition inthat specifying the conditionn·v = 0
at the surface constituting the wall is tantamount to specifying the variable itself at the surface.
Thus the condition is of the Dirichlet type.

Next we may derive a classic example of a Neuman type condition by the condition prevailing
at an insulated wall. The natural condition dictated by the physics is that for the wall to be
insulated there cannot be any heat exchange across the boundary. Thus the diffusive flux of heat
through the boundary must be zero. In mathematical terms this is tantamount to

n · Fθ = 0, (2.21)

1A natural boundary condition is one in which the condition isdictated by the physics. This is in contrast to open
boundaries treated in Chapter 7.
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whereFθ = −κ∇θ is the diffusive heat flux vector. Thus (2.21) is the same as specifying the
gradient(in this case a zero gradient) at the boundary. Thus the (2.21) is of the Neuman type.

As alluded to the two conditions may be combined to give othernatural boundary conditions.
One is the so calledCauchy conditionor “slip” condition. For instance consider a flat bottom or
surface atz = −H (or z = 0) at which we give the following condition

ν∂zu = CDu ; z = −H, (2.22)

whereν is the vertical eddy viscosity,u is the horizontal component of the current (or wind), and
CD is a drag coefficient (more often than not the latter is a constant). We note that since (2.22)
does not specify either the gradient nor the variable itself. Thus ifu is the horizontal velocity
component then (2.22) requires thatu is nonzero if the gradient is nonzero (and vice versa).
Hence the name slip condition.

Other common boundary conditions arecyclic or periodic boundary conditions. A periodic
boundary condition is one in which the solution is specified to be periodic in space, that is, that
the solution repeats itself beyond a certain distance. Thusa periodic boundary condition inx for
a given tracer concentrationC(x) would be

C(x, t) = C(x+ L, t), (2.23)

whereL is the distance over which the solution repeats itself, for instance the wavelength in a
monochromatic wave. Such conditions are commonly in use when solving problems where the
atmosphere or ocean is considered to be contained in a zonal channel bounded to the south and
north by a zonal wall. In the longitudinal direction the solution is then dictated by physics to
naturally repeat itself every 360 degrees.

2.6 Taylor series and expansions

The basis for all numerical finite difference methods is thatall “good” functions can be expanded
in terms of a Taylor series. A good function is simply one for which the function itself and all
its first and higher order derivatives exist and are continuous2. As referred to one characteristic
of a good function is that it can always be expanded in a Taylorseries. Another is that it can be
represented by an infinite sum of orthogonal functions such as for instance trigonometric function
(Sections 2.10 and 2.11).

The Taylor series of any good function, sayφ(x), is defined as3

φ|x+∆x = φ|x +
∞∑

n=1

1

n!
(∂nxφ)|x∆xn, (2.24)

2Note that this definition is slightly different from the one offered in the little known but enlightening book by
M. J. Lighthill entitled “Good functions” (Lighthill, 1970)

3The notationφ|x is used to denote evaluation of the functionφ at the pointx.
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where∆x > 0 denotes a positive increment in space. We note that such an expansion is inde-
pendent of whether the functionφ depends on more than one variable. Hence4

φ|tx+∆x,y,z = φ|tx,y,z +
∞∑

n=1

1

n!
(∂nxφ)|tx,y,z∆xn, (2.25)

Similarly we also note that we may expand the functionφ in any of the other independent vari-
ables, e.g.,

φ|t+∆t
x,y,z = φ|tx,y,z +

∞∑

n=1

1

n!
(∂nt φ)|tx,y,z∆tn, (2.26)

For instance consider the functionθ(x, t) to be a good function in spacex and timet. Then
we knowθ(x, t) and all its first and higher order derivatives with respect tox at a particular point
in space, sayx = x. We may then use the Taylor series expansion (2.25) to find thevalues ofθ
at the neighboring pointx+∆x. Thus,

θ|tx+∆x = θ|tx + ∂xθ|tx∆x+
1

2
∂2xθ|tx∆x2 +

1

6
∂3xθ|tx∆x3 +O(∆x4), (2.27)

where, following (2.25),θ and all its first and higher order derivatives with respect tox on the
right-hand side of (2.27) are evaluated at the point (x, t) in space and time, and the notation
O(∆x4) - order of∆x to the fourth - is used to emphasize that there are more terms and that the
first term we have neglected is of fourth order in∆x. If we solve (2.27) with respect to the first
order derivative we get

∂xθ|tx =
θ|tx+∆x − θ|tx

∆x
+O(∆x). (2.28)

We may repeat this procedure by using a Taylor series to find the value of the functionθ(x, t)
at the pointx−∆x. This is achieved by replacing∆x by −∆x in (2.27) to get

θ|tx−∆x = θ|tx − ∂xθ|tx∆x+
1

2
∂2xθ|tx∆x2 −

1

6
∂3xθ|tx∆x3 +O(∆x4). (2.29)

We observe that the only difference between (2.29) and (2.27) is the alternating sign in front of
every second term on the right-hand side of (2.29). Solving (2.29) with respect to the first order
derivative we get

∂xθ|tx =
θ|tx − θ|tx−∆x

∆x
+O(∆x). (2.30)

Moreover, by subtracting (2.29) from (2.27), and solving for ∂xθ|tx we get

∂xθ|tx =
θ|tx+∆x − θ|tx−∆x

2∆x
+O(∆x2). (2.31)

4The notationφ|tx,y,z is henceforth used to denote evaluation of the variable in question at the pointx, y, z, t in
four-dimensional space.
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For later convenience we emphasize at this point that the choice ∆x is arbitrary, we may
equally well choose2∆x. Thus replacing∆x by 2∆x in the Taylor series (2.27) and (2.29) we
get,

θ|tx+2∆x = θ|tx + 2∂xθ|tx∆x+ 2∂2xθ|tx∆x2 +
4

3
∂3xθ|tx∆x3 +O(∆x4), (2.32)

and

θ|tx−2∆x = θ|tx − 2∂xθ|tx∆x+ 2∂2xθ|tx∆x2 −
4

3
∂3xθ|tx∆x3 +O(∆x4), (2.33)

respectively. Again by subtracting the two and solving for∂xθ|tx we get

∂xθ|tx =
θ|tx+2∆x − θ|tx−2∆x

4∆x
+O(∆x2). (2.34)

2.7 Finite difference approximations

To derive possiblefinite difference approximations(FDAs) to the various derivatives of our PDEs
we actually utilize the Taylor series above. For instance toderive feasible FDAs to the first order
derivative in space∂xθ we utilize the expressions (2.27), (2.29) and (2.31) above in which∆x is
a finite distance (nonzero). For instance using (2.31) we simply neglect the higher order terms,
that is, terms ofO(∆x2), and get5

[∂xθ]
t
x =

θ|tx+∆x − θ|tx−∆x

2∆x
. (2.35)

We emphasize that this approximation is valid toO(∆x2) since the first term we have neglected
in the Taylor series in this case isO(∆x2). Similarly we derive other possible FDAs of∂xθ|tx by
neglecting terms ofO(∆x) in (2.27) and (2.29), respectively, that is,

[∂xθ]
t
x =

θ|tx+∆x − θ|tx
∆x

, (2.36)

[∂xθ]
t
x =

θ|tx − θ|tx−∆x

∆x
. (2.37)

We note that while (2.35) is centered on the spatial pointx, (2.36) and (2.37) are one-sided.
The approximation (2.35) is therefore denoted acenteredFDA, while (2.36) and (2.37) are de-
notedone-sidedFDAs. We also note that while (2.36) is stepping forward, (2.37) use a backward
step. Consequently (2.36) is referred to as aforward FDA, while (2.37) is referred to as aback-
ward FDA. There is a major difference between the centered and theforward and/or backward
FDAs. While the centered differences are valid to second order, that is,O(∆x2), the two one-
sided FDAs are only valid to first order, that is,O(∆x). Consequently the centered FDA (2.35)
is also sometimes referred to as a second order FDA, while theone-sided FDAs (2.36) and (2.37)
are referred to as first order FDAs.

5Henceforth an FDA is denoted by brackets. Thus an FDA approximation to∂xθ|tx is denoted[∂xθ]tx.
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PRELIMINARIES 2.7 Finite difference approximations

We may perform exactly the same calculations based on Taylorseries expansion, e.g., (2.26)
to derive a FDA to the differentials in timet. For instance by expandingθ into a Taylor series in
time we get

θ|t+∆t
x = θ|tx + ∂tθ|tx∆t +

1

2
∂2t θ|tx∆t2 +

1

6
∂3t θ|tx∆t3 +O(∆t4), (2.38)

θ|t−∆t
x = θ|tx − ∂tθ|tx∆t +

1

2
∂2t θ|tx∆t2 −

1

6
∂3t θ|tx∆t3 +O(∆t4). (2.39)

To construct a centered FDA to the time rate of change ofθ we simply subtract (2.39) from (2.38)
and solve with respect to∂tθ|tx to obtain

∂tθ|tx =
θ|t+∆t

x − θ|t−∆t
x

2∆t
+O(∆t2). (2.40)

Dropping terms ofO(∆t2) we get

[∂tθ]
t
x =

θ|t+∆t
x − θ|t−∆t

x

2∆t
. (2.41)

Thus we observe that the centered in time FDA (2.41) is valid to second order.
Similarly we may construct FDAs to higher order derivatives. For instance to find a centered

FDA to ∂2xθ|tx, we first simply add the two Taylor expansion (2.27) and (2.29) and solve with
respect to∂2xθ|tx. We then get

∂2xθ|tx =
θ|tx+∆x − 2θ|tx + θ|tx−∆x

∆x2
+O(∆x2). (2.42)

Then by neglecting terms ofO(∆x2) in (2.42) an FDA to the second order derivative is

[∂2xθ]
t
x =

θ|tx+∆x − 2θ|tx + θ|tx−∆x

∆x2
. (2.43)

Since this expression gives equal weight to the pointsx+∆x andx−∆x, that is, to the points on
either side ofx, the approximation is denoted centered. Like in (2.28) we note that the neglected
terms areO(∆x2). This is in contrast to the forward and backward approximations in which
the neglected terms are ofO(∆x). In fact all centered approximations share the fact that the
neglected terms are of higher order than the one-sided approximations.

As exemplified in (2.43) we may formulate FDAs to any higher order derivative with respect
to t, x and other spatial independent variables. For instance to derive a centered in space FDA
for ∂3xθ|tx we combine (2.27) and (2.29) with (2.32) and (2.33) to obtain

∂3xθ|tx =
θ|tx+2∆x − 2θ|tx+∆x + 2θ|tx−∆x − θ|tx−2∆x

2∆x3
+O(∆x2), (2.44)

and hence, neglecting higher order terms, here termsO(∆x2, we get

[∂3xθ]
t
x =

θ|tx+2∆x − 2θ|tx+∆x + 2θ|tx−∆x − θ|tx−2∆x

2∆x3
. (2.45)

Hence (2.45) represents a second order FDA to∂3xθ. Since the FDA (2.45) is centered it comes
as no surprise that (2.45) is valid to second order.
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2.8 Truncation errors

As alluded to the main difference between the one-sided and centered FDAs is the order of the
terms neglected when making the approximation from the Taylor series expansion. While we
neglected terms ofO(∆x2) when using the centered FDA, the terms we neglected when using
the one-sided approximation wasO(∆x). Thus the centered FDA is more accurate than the one-
sided FDA. While the centered FDA has an error of second order, the one-sided FDA has an error
of first order. Since the error is a direct consequence of truncating the Taylor series expansion, we
often refer to this error as thethe truncation error. The order of the truncation error is therefore
a measure of the accuracy of the scheme we have constructed.

As shown in Section 10.1 we may also use the Taylor series expansion to construct FDAs
that are truncated to even higher orders, e.g., toO(∆xn) wheren ≥ 3. Such FDAs are thus even
more accurate and are therefore referred to ashigher order schemesor higher order FDAs. We
note that when constructing such approximations we have to include points that are distances
2∆x or more away from the pointx as we did when deriving a centered FDA for∂3xθ|tx in (2.45).
Although we desire our approximations to be as accurate as possible we emphasize that higher
order schemes have other potential complications (cf. end of Section 10.1 on page 159).

Finally, we underscore that it is good practice to ensure that all the FDAs we make use of to
approximate the various terms in our governing equations have the same truncation error in space
and/or time, but not necessarily to the same order in both time and space. For instance consider
a one dimensional wave propagating in a direction forming anangle to thex andy directions.
The only way to ensure that the numerical solution then has the same accuracy regardless of the
propagation direction of the wave is to use FDAs that have thesame accuracy along all spatial
directions or axes.

2.9 Notations

When solving a PDE using numerical methods, and in particular finite difference methods, it is
common to define a grid or mesh which covers the domain over which the solution is to be found.
As an example let us consider a two-dimensional spatial problem for which we seek a solution
to the Laplace equation (2.8) within a quadratic domain where x, y both starts at0 and ends at
L6. We start by covering the domain by a quadratic mesh as displayed in Figure 2.1. We keep
track of the grid points in the mesh by counting along thex-axis and they-axis, respectively.
Let us furthermore assume that there areJ + 1 points along thex-axis andK + 1 points along
they-axis. To count the points we use dummy indicesj = 1, 2, 3, . . . , J + 1 along thex-axis
andk = 1, 2, 3, . . . , K along they-axis. The pointx = 0 along thex-axis is then associated
with j = 1, while the pointx = L along thex-axis is associated withj = J + 1. Similarly
we associate the pointy = 0 with k = 1 and the pointy = L with k = K + 1. Thejth point
along thex-axis is thenx = xj where the subscript refers to the value forx at thejth point
along thex-axis. Similarly we lety = yk be associated with thekth point along they-axis. The
coordinates of the grid junctions are then given byxj , yk.

6Mathematically this can be expressed byx ∈< 0, L > andy ∈< 0, L >
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Figure 2.1:Displayed is a commonly used grid when employing numerical methods to solve PDEs. The
grid points in thex, y directions are incremented by∆x,∆y, respectively, so that there are a total ofJ
grid points along thex-axis andK grid points along they-axis. The grid points are counted by using the
dummy countersj, k, and the number of grid points areJ ×K.

Let us denote the distance between two adjacent points alongthe x-axis by∆x and the
distance between two adjacent points along they-axis by∆y. Then thejth point along the
x-axis is denoted

xj = (j − 1)∆x, (2.46)

while thekth point along they-axis is denoted

yk = (k − 1)∆y. (2.47)
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We note in particular thatx1 = y1 = 0 and thatxJ+1 = yK+1 = L7. We also notice for later
convenience that the latter gives

∆x = L/J, ∆y = L/K, (2.48)

respectively8. It is also common to use the notationθjk to denote the value of the variableθ(x, y)
at the grid pointxj , yk. Thus

θjk = θ(xj , yk) = θ[(j − 1)∆x, (k − 1)∆y]. (2.49)

Furthermore follows that

θjk = θ(xj , yk) = θ[(j − 1)∆x, (k − 1)∆y], (2.50)

θj−1k = θ(xj−1, yk) = θ[(j − 2)∆x, (k − 1)∆y], (2.51)

and
θjk+1 = θ(xj , yk+1) = θ[(j − 1)∆x, k∆y]. (2.52)

To discriminate between spatial and temporal variables we hereafter use a superscript for the
time counter, which is common practice. Letn be the time counter and∆t the time step or time
increment. Then the time at then’th time level is defined by9.

tn = n∆t, n = 0, 1, 2, · · · (2.53)

from which follows that
θnj = θ(xj , t

n) = θ[(j − 1)∆x, n∆t]. (2.54)

Thus the variableθ(x, t) at the pointxj , tn in space and time is written

θnj = θ|nj = θ|tnxj
= θ(xj , t

n) = θ[(j − 1)∆x, n∆t] (2.55)

We note that if the variable in question is four-dimensionalthe notation we use is

θnjkl = θ(xj , yk, zl, t
n), (2.56)

wherezl = (l − 1)∆z.

7If the starting point in space is at, sayx = x0 along thex-axis andy = y0 along they-axis thenxj =
x0 + (j − 1)∆x andyk = y0 + (k − 1)∆y. Hencex1 = x0, y1 = y0, xJ+1 = x0 + L andyK+1 = y0 + L.

8FORTRAN 90/95 allows us to usej = 0 andk = 0 as dummy counters. Under these circumstancesxj = j∆x
andyk = k∆y. Thusx0 = y0 = 0 while xJ = yK = L as before. Under this circumstances∆x = L/J , and
∆y = L/K

9The apparent inconsistency in starting the time counter atn = 0 and the space counter atj = 1 is historical.
To save space on the computer we never store all time levels. Hence we never make use of do-loops when stepping
forward in time. How many time steps we need to store depend onthe time stepping scheme we use. If for instance
the scheme is a two time level scheme we store only two time levels (and sometimes even only one level).
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Let us consider the Taylor series expansions, e.g., (2.27) and (2.29). Using the preceding
notation we get

θnj±1 = θnj ± ∂xθ|nj∆x+
1

2
∂2xθ|nj∆x2 ±

1

6
∂3xθ|nj∆x3 +O(∆x4), (2.57)

and

θn±1
j = θnj ± ∂tθ|nj∆x+

1

2
∂2t θ|nj∆x2 ±

1

6
∂3t θ|nj∆x3 +O(∆t4). (2.58)

Hence (2.28) and (2.40) are written

∂xθ|nj =
θnj+1 − θnj

∆t
+O(∆x), (2.59)

∂xθ|nj =
θnj+1 − θnj−1

2∆t
+O(∆x2), (2.60)

while the forward in time FDA displayed by (2.41) is

[∂tθ]
n
j =

θn+1
j − θnj
∆t

. (2.61)

Similarly, the centered FDAs of the first order derivative intime and space are written

[∂tθ]
n
j =

θn+1
j − θn−1

j

2∆t
, (2.62)

[∂xθ]
n
j =

θnj+1 − θnj−1

2∆x
, (2.63)

respectively, while the second order FDAs to the second order derivative in time and space are
written

[
∂2t θ
]n
j
=
θn+1
j − 2θnj + θn−1

j

∆x2
, (2.64)

[
∂2xθ
]n
j
=
θnj+1 − 2θnj + θnj−1

∆x2
. (2.65)

Finally we remark that the increments∆x,∆y,∆z and∆t do not have to be constant, but
may be allowed to vary in space and even in time. If the increments vary in space only we refer
to the grid as anunstructured mesh. If the increments vary in both time and space we refer to the
grid as anadaptive unstructured mesh.

2.10 Orthogonal functions

Note that when using finite difference techniques for time dependent or evolutionary problems,
we only consider grid-point values of the dependent variables; no assumption is made about how
the variables behave between grid points. An alternative approach is to expand the dependent
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variables in terms of a finite series of smooth orthogonal functions. The problem is then reduced
to solving a set of ordinary differential equations which determine the behavior in time of the
expansion coefficients.

As an example consider the general linear, one-dimensionaltime dependent problem

∂tφ = H[φ] for x ∈ 〈−L, L〉 and t > 0 (2.66)

whereφ = φ(x, t) is a good function as defined in Section 2.6,H is a linear differential operator
in x, and the computational domain is of length2L in space. Note that to solve (2.66) we have to
specify suitable boundary conditions atx = ±L and an initial condition att = 0. Here we will
simply assume that the condition atx = ±L is thatφ is cyclic and that the initial value is known.
Sinceφ is a good function it may be expanded in terms of an infinite setof orthogonal functions
en(x)

10, wheren = 1, 2, 3, . . .. Thus

φ =
∞∑

n=−∞

ϕn(t)en(x), (2.67)

whereϕn(t) are the time dependent expansion coefficients11. Without loss of generality we may
assume that the expansion functionsen(x) are orthonormal so that

∫ L

−L

en(x)e
∗
m(x)dx =

{
1 ; n = m
0 ; n 6= m

, (2.68)

wheree∗n(x) is the complex conjugate ofen(x). Consider that we know the expansion functions
en(x). It is then the expansion coefficientsϕn(t) whose behavior we want to determine. To this
end we first multiply (2.66) bye∗m, and then integrate over all possiblex-values, to give

∫ L

−L

∂tφ(x, t)e
∗
m(x)dx =

∫ L

−L

H[φ]e∗m(x)dx. (2.69)

The left-hand side is further developed by use of (2.67) and (2.68) to give

∫ L

−L

∂tφe
∗
mdx =

∫ L

−L

(
∑

n

∂tϕnen

)
e∗mdx =

∑

n

∂tϕn

∫ L

−L

ene
∗
mdx =

∑

n

∂tϕn. (2.70)

Since the operatorH only operates onx follows in addition that

H[φ] =
∑

m

ϕmH[em]. (2.71)

10Note that the expansion functionsen(x) are in general complex functions, e.g.,en(x) = eiαnx whereαn is the
wavenumber associated with thenth eigenvalue.

11In fact this is a general method commonly used to separate variables when analytically solving differential
equations involving more than one independent variable.
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Using these results we get

∂tϕn =
∑

m

ϕm

∫ L

−L

H[em]e
∗
ndx ; ∀m. (2.72)

We thus have a set of coupled, ordinary differential equations for the time rate of change for the
expansion coefficientsϕn.

It is now interesting to consider how our choice of expansionfunctions can greatly simplify
the problem

1. If the expansion functions are eigenfunctions ofH, we haveH[em] = λmem whereλm are
the eigenvalues. Equation (2.72) then becomes

∂tϕm = λmϕm ; ∀m (2.73)

and becomes decoupled.

2. If the original equation is
G [∂tφ] = H[φ] (2.74)

whereG is a linear operator, then our problem is simplified by using expansion functions
that are eigenfunctions ofG with eigenvaluesλn. We then have,

λn∂tϕn =
∑

n

ϕm

∫ L

−L

H[em]e
∗
ndx. (2.75)

2.11 Fourier series

A much used orthogonal set of expansion functions are the trigonometric functionseiαnx where
αn are an infinite number of discrete wavenumbers12. Thus any good functionφ(x, t) may be
written

φ(x, t) =

∞∑

n=−∞

ϕn(t;αn)e
iαnx. (2.76)

The series (2.76) is called aFourier seriesand the expression

ϕn(t)e
iαnx (2.77)

is called aFourier component. We note that the complex conjugate to the expansion functions
aree−iαnx, and hence the Fourier series may be written

φ(x, t) = φ0 +

∞∑

n=1

ϕn(t;αn)e
iαnx. (2.78)

It is important to realize that the subscriptn attached to the expansion coefficients implies that
they are different for each wavenumber, and hence depends onthe wavenumberαn as well as
time.

12In the above problem with cyclic boundary conditions atx = ±L the wavenumbers areαn = nπ/L.
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2.12 Fourier transforms

Finally, let us assume that the functionφ depends onx only, and is a good function. Under these
circumstances we may define a functionφ̃ such that

φ̃(α) =

∫ ∞

−∞

φ(x)e−iαxdx. (2.79)

We observe that̃φ is a complex function consisting of a real as well as an imaginary part. As is
common we refer tõφ as theFourier transformof the real functionφ. Furthermore we notice
that theφ̃ is a continuous functions of the wavenumberα ∈ [−∞,+∞]. Hence if we know the
Fourier transform the original real functionφ is retrieved from the real part of theinverse Fourier
transformdefined by

φ(x) =
1

2π

∫ ∞

−∞

φ̃(α)eiαxdα. (2.80)

We observe that the “expansion coefficient”φ̃ now is a continuous function of the wavenumber
α ∈ [−∞,+∞], and that the summation in (2.76) is replaced by an integral.We may also plot
the Fourier transform̃φ as a function ofα. In that case the space spanned byφ̃ andα is called
theFourier spaceand its distribution theFourier spectrum.

As revealed by (2.80) the Fourier transform (2.79) is simplythe amplitude associated with the
wave of wavenumber (or wavelength)α. The amplitude in a sense reveals how much “energy”
is associated with each wavelength. Thus if we plot the Fourier transform in Fourier space the
distribution reveals how much energy is contained in the various wavelengths. The waves with
wavelengths having the highest amplitudes are also the wavelengths that contain the highest
energy content. Knowing the Fourier transform thus revealsinformation about the wavelengths
that dominates the motion.

We use the information in the Fourier spectrum to construct the grid, particularly to objec-
tively the size of the spatial increments to choose (cf. Figure 2.1). If we intend to resolve the
dominant portion of the motion we must choose the incrementsso that we have enough points
per wavelength to resolve it. Ideally we should have 10 points per wavelength. As a minimum
we must require that the size of the increments are such that we have 4 points per wavelength.
Finally we emphasize that our solutions are real functions.Hence, if we know the Fourier trans-
form we find the solution to our problem by first finding the inverse Fourier transform (2.80) and
then extracting its real part.

Exercises

1. Show that both the Helmholtz and the Laplace equations areelliptic in x andy.

2. Show that the diffusion equation is parabolic int, x andt, y, but elliptic inx, y.

3. Show by use of Taylor series expansions that a possible centered FDA of∂4xθ(x) is

[∂4xθ]j =
θj+2 − 4θj+1 + 6θj − 4θj−1 + θj−2

∆x4
, (2.81)
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and that the truncation error isO(∆x2). Note that we have to use points that are distances
2∆x away from the pointxj itself. This is common when deriving centered FDAs to higher
order derivatives (cf. 2.45).

4. Assume thatθ(x, t) and all of its derivatives tend to zero asx → ±∞. Show that under
these conditions the Fourier transform of∂xθ(x, t) and∂2xθ(x, t) are

∂̃xθ = iαθ̃ and ∂̃2xθ = −α2θ̃, (2.82)

respectively, where the notatioñψ denotes the Fourier transform ofψ.

5. Show by making use of the results in Exercise 4 that a formalanalytic solution to the
diffusion equation

∂tθ = κ∂2xθ, (2.83)

whereθ = θ(x, t), κ is a constant, and the boundary conditions are

θ =

{
0 ; x→ +∞,−∞
θ0e

−(x
a
)2 ; t = 0

. (2.84)

is

θ =
aθ0
2
√
π

∫ ∞

−∞

e−α2( 1
4
a2+κt)eiαxdα (2.85)
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Chapter 3

TIME MARCHING PROBLEMS

As alluded to in Chapter 1.1 most of the problems in the atmospheric and oceanographic sciences
involve solving a time marching problem. Typically, we knowthe state of the atmosphere or the
ocean at one specific time and want to know what the state is at alater time. Our task in numerical
weather prediction (NWP) and numerical ocean weather prediction (NOWP) is then to use the
governing equations of Section 1.1 on page 2 to find the state of the atmosphere or the ocean at
some later time, just as postulated byBjerknes(1904) (cf. quote on page iii). Such problems are
known asinitial value problemsin mathematics.

The purpose of this chapter is to therefore to introduce the reader to some particular char-
acteristics of some of the basic processes in the atmosphereand ocean, namely diffusion and
advection and to recapitulate energy conservation by studying the variance.

3.1 Examples of time marching problems

A particular example of a time marching problem, inherent inour governing equations, is the
tracer equation (1.3). It balances the time rate of change ofa variable in response to advective
and diffusive fluxes and source and sink terms, and is therefore sometimes referres to as the
advection-diffusion equation. As the name indicates it is a combination of two different physical
processes. The first is associated with the advection process. As outlined in (Section 2.4) the
PDE is then hyperbolic. The second is associated with the turbulent mixing or diffusion process.
The PDE is then parabolic (cf. Section 2.3).

Another important example is in the momentum equation (1.2)on page 2. A particular bal-
ance included in this equation is the possibility of balancing the pressure force against the Corio-
lis acceleration, the so calledgeostrophic balanceas displayed in (1.39) on page 9. This possibil-
ity is what makes geophysical fluid dynamics stand out compared to ordinary (non-rotating) fluid
dynamics. The importance of this balance is perhaps best illustrated through the shallow water
equations (1.33) and (1.34). Any deviation from this balance manifests itself through non-zero
acceleration terms, so called ageostrophic terms. Examples of such terms are the local time rate
of change of the velocity, non-linear terms, etc.

The advection and diffusion problems (and their combination) and the shallow water equa-
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tions are of fundamental importance in meteorology and oceanography. In fact it is at the very
core of its dynamics (its “heart and soul”). Knowledge on howto solve these simple equations by
numerical means is in fact a “must” for everyone who aspires to become a meteorologist and/or
oceanographer. In the next three Chapters (Chapters 4, 5 and6), we give a detailed account of
how to solve respectively the diffusion eqaution, the advection eqaution and the shallow water
equations by use of numerical methods. In Chapter 10 (Section 10.2 on page 164) we also give
insight into how to solve the combined advection-diffusionproblem.

We maintain that it is of fundamental importance to obtain knowledge on how to treat the
various terms in these three fundamental problems numerically correct. At the same time these
relatively simple problems conveniently serves the purpose of introducing some of the basic con-
cepts needed to solve atmospheric and oceanographic problems employing numerical methods.
Moreover, and equally important, they serve the purpose of illustrating some of the pitfalls.

Before venturing into details we highlight in this chapter some physical properties peculiar
to each of the three fundamental problems. The motivation isthat these important properties
must be retained in any numerical solutions, or else the solution must be discarded as being false
or incorrect. To check the behavior of the solutions againstthese fundamental properties is part
of what is often referred to asmodel verificationwhich is the first step in a chain of activities
commonly referred to as model quality assurance or model evaluation procedures (GESAMP,
1991;Lynch and Davies, 1995;Hackett et al., 1995). When coding errors are thus found we
refer to the process asdebuggingwhich simply means to weed out all errors in the program
code.

3.2 The advection-diffusion equation

We first focus on the tracer conservation equation (1.18) fora Boussinesq fluid. Neglecting
possible tracer sources and sinks (Si = 0) we get

∂tθ +∇ · F = 0, (3.1)

whereθ is any dependent variable (or tracer), for instance potential temperature, andF is aflux
vectorthat includes both the advective flux and fluxes due to turbulent mixing. If θ is the potential
temperature then (3.1) is the conservation equation for internal energy or heat content neglecting
any source terms1.

Note that the flux vector, as the name indicates, represents physical processes that transfer
properties from one location to the next. In the atmosphere and oceans this is basically caused
by two distinct and different physical processes. One is advective processes transporting or
propagating properties from one place to the next via the motion (or waves). The second is
turbulent mixing processes associated with small scale, inherently chaotic processes, that cause
properties to be exchanged between two locations without invoking any mean motion. It is

1The total energy of a system consists of the internal energy and the mechanical energy. The internal energy is
concerned with the heat content and is and important part of the thermodynamics. In contrast the mechanical energy
concerns the motion of the fluid and is thus part of the fluid dynamics.
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therefore useful to separate the flux vectorF into two parts, as we did in (1.18), that is,

F = FA + FD (3.2)

whereFA represents the flux due to advective processes, hence referred to as theadvective flux
vector, andFD represents the fluxes due to turbulent mixing, hence referred to as thediffusive
flux vector.

Since the advective and diffusive flux vectors represent twovery contrasting physical pro-
cesses, they naturally have very different mathematical formulations or parameterizations. The
advective flux vectorFA depends on the motion only. The advective flux of the propertyθ there-
fore follows the path of the individual fluid parcels. Thus its parameterization, or mathematical
formulation, becomes

FA = vθ. (3.3)

In contrast the mathematical formulation, or parameterization, of the diffusive flux vector is
somewhat more complex. The reason is that the turbulent mixing in itself is a complex process,
and its impact on the larger scale motion is in fact partly unknown. We do know however that the
turbulent mixing in many respects acts to even out disturbances in the atmospheric and oceanic
tracer fields, and hence its impact on the larger scale have many characteristics similar to pro-
cesses like diffusion and/or conduction. In fact this is whywe refer to this flux as the diffusive
flux vector. Accordingly the most common parameterization of the turbulent mixing of tracers,
or turbulence closure, is in terms of a diffusive process. Its mathematical formulation is thus,

FD = −K · ∇θ, (3.4)

whereK is the diffusion coefficient (or conductive) capacity2. Equation (3.4) expresses that
the larger the gradient (or difference) the larger the diffusive flux and hence the more effective
diffusion is to decrease any differences in the tracerθ over small distances. Note that since
the diffusion coefficient depends on the strength of the turbulence it is not a constants and may
change in time and space according to the local turbulence characteristics.

3.3 Diffusion

If we for a moment neglect the advective part of the flux vectorthe time rate of change of the
tracer concentration is balanced by the diffusive flux only,that is.

∂tθ = −∇ · FD = ∇ · (K · ∇θ). (3.5)

where the last equal sign follows by use of (3.4) for the diffusive flux. Assuming thatK = κii
we get

FD = −κ∂xθi. (3.6)

2Its original formulation is due to a Dr. Adolf Eugen Fick who in 1855 formulated the parameterizationFD =
−κ∇θ with κ being a constant and a property of the medium.
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Substituting (3.6) into (3.5) we get
∂tθ = κ∂2xθ. (3.7)

where we have assumed thatκ is constant. As outlined in Chapter 2 (3.7) is a parabolic problem
(cf. eq. 2.9 on page 14). The resulting equation is called thediffusion equation, and solving it is
referred to as solving thediffusion problem.

Recall that one of the important properties of the turbulentmixing is to even out small scale
differences in the tracer fields. We thus have to ensure that our parameterization of the diffusive
flux vector indeed have this property3. The noisiness of a field is commonly measured by its vari-
ance. The variance is defined as the square of the deviation from the mean, where the deviation
from the mean is defined by

θ′ = θ − θ or θ = θ + θ′ (3.8)

whereθ is the mean. We may thus investigate whether the noise increases or decreases by
analyzing the time rate of change ofθ′2.

To arrive at an equation for the time rate of change of the variance we first multiply (3.5) by
the tracer concentrationθ itself. We then get

∂tθ
2 = −2θ∇ · FD = −2∇ · (FDθ) + 2FD · ∇θ. (3.9)

Let us assume that (3.5) and by implication (3.9) are valid within a fixed (in time and space)
volumeV bounded by the surfaceΩ. Integrating (3.9) over the total volumeV we get

∂t

(∫

V

θ2dV

)
= −2

∫

Ω

θFD · δσ + 2

∫

V

FD · ∇θdV . (3.10)

Here the vectorδσ = nδσ wheren is a unit vector directed along the outward normal to the
surfaceΩ andδσ is an infinitesimal surface element. To derive (3.10) we havealso used the
Gauss theorem. At the boundaryΩ we must specify a boundary condition. We simply assume
that the condition is either a Dirichlet or a Neuman condition. In the former case we letθ = 0 at
Ω, while in the latter case we letn · FD = 0 at the surfaceΩ. In either case we observe that the
first term on the right-hand side of (3.10) is zero. Hence (3.10) reduces to

∂t

(∫

V

θ2dV

)
= 2

∫

V

FD · ∇θdV . (3.11)

We then define the mean by the total content of the propertyθ within the fixed volumeV ,
that is,

θ =

∫

V

θdV ⇒
∫

V

θ′dV = 0 (3.12)

Thus

∂t

(∫

V

θ2dV

)
= ∂t

(∫

V

θ′2dV

)
(3.13)

3We note in passing that the parameterization also acts to even out any noise created by our choice of numerical
methods, if any, when solving the equation numerically.
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and hence (3.11) reduces to

∂t

(
θ′2
)
= 2

∫

V

FD · ∇θdV . (3.14)

Thus if

FD · ∇θ ≤ 0 (3.15)

the right-hand side of (3.14) is negative, and we get

∂t

(
θ′2
)
≤ 0. (3.16)

Equation (3.16) shows that as long as (3.15) is satisfied the diffusion term indeed acts to even
out any noise in theθ field. We notice that (3.15) is always satisfied as long as the diffusive flux
vectorFD is directed opposite to∇θ. Under these circumstances we refer to the parameterization
of the diffusive flux vector as beingdown the gradient. Assuming thatFD = −κ∇θ, known as
Fickian diffusion, we get

FD · ∇θ = −κ(∇θ)2 ≤ 0, (3.17)

which reveals that Fickian diffusion is indeed down the gradient and hence always tends to even
out any noise in our solution. Thus we conclude that the diffusive flux vector, when properly
parameterized, always acts to even out the variance in any tracer field.

Recall that most problems in oceanography and meteorology are non-linear. While there is
no transfer of energy from one wavelength to the next in a linear system, this is not true for a
non-linear systems. In such systems energy input on long wavelengths (small wave numbers) is
always in the end transferred to progressively shorter wavelengths (high wave numbers). This
fact was described elegantly in the following rhyme credited to G. I. Taylor4:

“Big whirls have smaller whirls that feed on their velocity,and little whirls have
lesser whirls, and so on to viscosity .... in the molecular sense.”

However, when making the finite difference approximations to our PDEs the wavelengths that we
resolve is limited by the specified spatial increments, say2∆x, often referred to as the Nyquist
wavelength (or frequency in the time domain). Thus as the energy is cascading downwards
toward shorter wavelengths we must, in our numerical solutions, mimic this process across the
Nyquist wavelength to wavelengths which are not resolved byour grid. Since diffusion has the
property of damping differences it is one tool at hand that may prove useful to handle what is
known as non-linear instability (cf. Section 10.3 on page 167).

4Geoffrey Ingram Taylor (1886 - 1975) made fundamental contributions to turbulence, championing the need
for developing a statistical theory, and performing the first measurements of the effective diffusivity and viscosity
of the atmosphere. He is commonly remembered as the namesakefor several basic fluid flow instabilities (Taylor -
Couette, Rayleigh - Taylor, and Saffman - Taylor).
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3.4 Advection

If we next for a moment neglect the diffusive part of the flux vectorF, the time rate of change of
the tracer concentration (or the heat content ifθ is the potential temperature) is balanced by the
advective flux only. Hence from (3.1) we get

∂tθ = −∇ · FA = −∇ · (vθ). (3.18)

Equation (3.18) is called the advection equation, and solving it is consequently referred to as
solving theadvection problem.

As for the diffusion problem we are looking for solutions within a limited fixed volumeV in
space bounded by the surfaceΩ, and for all timest ∈ [0,∞]5. On the surfaceΩ the equations are
replaced by the boundary conditions, while the initial condition replaces the equations at time
t = 0. Let the advective flux be parameterized by the common parameterizationFA = vθ, and
let the boundary condition at the surfaceΩ be such thatFA · δσ = 06. Then by performing the
same operation on (3.18) as we did in Section 3.3 we find that the total variance becomes

∂t

(∫

V

θ2dV

)
= 2

∫

V

FA · ∇θdV =

∫

V

v · ∇θ2dV = −
∫

V

θ2∇ · vdV. (3.19)

Thus the total variance may increase or decrease depending on the sign of the velocity divergence.
If the sum of the divergence is positive then the variance will decrease, while if it is negative then
the variance will increase. The case∇ · v = 0 is special. In this case the right hand-side of
(3.19) is zero and hence any disturbances creating a variance in θ will just prevail, that is, the
total variance is conserved.

As mentioned in Section 1.4 the Boussinesq ocean is to a good approximation divergence
free due to its incompressibility (see alsoGill , 1982, side 85). Thus in the ocean the advection
process does not lead to any decrease or increase in the property being advected. Hence any
disturbance generated in a limited domain may be advected toother locations undisturbed. This
is not true for the atmosphere since the atmosphere is highlycompressible. Thus in limited areas
where the divergence is positive (∇ · v > 0), that is, the individual fluid parcels are drawn apart,
any disturbances in the total tracer variance are smoothed.In contrast the disturbances tend to
increase in areas where∇ · v < 0.

Finally we emphasize that the properties outlined above regarding the advection are important
to retain when solving the advective problem by numerical means. In particular we stress that
when the fluid is divergence free, like the ocean, then the total variance should be conserved.
We also note that this is in stark contrast to the diffusion problem where all down the gradient
diffusive fluxes give a decrease in the total tracer variance.

3.5 Shallow water equations

As alluded to the third and final fundamental balance equation important in atmosphere and
ocean dynamics are the shallow water equations as displayedin (1.23) through (1.25) on page 7.

5In practice we have to limit the computation to a finite time span
6This is achieved by assumingv = 0 or v · δσ = 0, that is, no flow across the boundary.
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Neglecting the forcing terms on the right-hand side of (1.25) we get

∇H · u+ ∂zw = 0, (3.20)

∂tu+∇H · (uu) + ∂z(wu) + fk× u = −g∇Hη, (3.21)

where we have used (1.26) to substitute for the pressure7.
Again we will, as we did for the advection and diffusion equations, investigate the properties

of the time rate of change of the variance of the motion integrated over a fixed volumeV , that is,

∂t

(∫

V

u2dV

)
. (3.22)

We note thateK = 1
2
u2 is the kinetic energy per unit mass. Thus

∫

V

u2dV =

∫

V

2eKdV = 2EK , (3.23)

whereEK is thetotal kinetic energy8. The total variance of the motion is therefore twice the total
kinetic energy. We note that the kinetic energy is a positivedefinite quantity, that is,EK ≥ 0.

To find an equation for the time rate of change of the kinetic energy we first multiply (3.21)
by u. We then get

∂teK +∇H · (eKu) + ∂z (eKw) = −gu · ∇Hη (3.24)

where we have made use of the fact that

u · [∇H · (uu) + ∂z(wu)] = ∇H · (eKu) + ∂z(eKw). (3.25)

The latter follows by use of the continuity equation (3.20).Finally we note that the contribution
from the Coriolis term vanishes sinceu · (k × u) = k · (u × u) = 0. Next we integrate (3.24)
over the fixed volumeV to get

∂tEK = C, (3.26)

where

C = −
∫

V

gu · ∇Hηdz. (3.27)

We observe that under the assumptions that there is no forcing terms9, the time rate of change of
the variance of the motion, or the kinetic energy per unit mass is proportional toC, a quantity
yet to be interpreted.

To interpretC we first define the so calledavailable potential energyper unit density (Lorenz,
1955;Røed, 1997, 1999) by

EΦ =

∫

V

gzdV −
∫

V0

gzdV =

∫

A

(∫ η

−H

gzdz −
∫ 0

−H

gzdz

)
dA =

∫

A

1

2
gη2dA, (3.28)

7Note that we useu to denote the horizontal component of the velocity, that is,v = u+ wk
8To be preciseEK is the total kinetic energy per unit density, but since we have assumed a uniform density, that

is, ρ0 = constant, it is common to refer toEK as the total kinetic energy.
9The forcing terms leads only to external source or sink terms, that is, irreversible energy conversion terms

irrelevant for the present presentation
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whereA is the projected area of the volumeV onto a horizontal surface.EΦ is thus the potential
energy in an arbitrary state from which is subtracted the potential energy of the intial state10. The
rationale is that the enormous amount of potential energy ofthe initial state is not available for
release into kinetic energy and is therefore of no interest.

We next show that
∂tEΦ = −C, (3.29)

To this end we first note that (3.27) may be written

−C = g

∫

A

(∫ η

−H

u · ∇Hηdz

)
dA, (3.30)

Sinceη and∇Hη are both independent of depth/height the inner integral maybe expanded as
follows ∫ η

−H

u · ∇Hηdz = −U · ∇Hη = −η∇H ·U+∇H · (ηU) . (3.31)

where

U =

∫ η

−H

udz (3.32)

is the volume transport. Furthermore by integrating the continuity equation (3.20) from bottom
to top and using the kinematic boundary condition (1.7) and (1.9) (cf. Section 1.2 on page 4) we
get

∇H ·U = −∂tη, (3.33)

and hence (3.31) becomes
∫ η

−H

u · ∇Hηdz =
1

2
∂tη

2 +∇H · (ηU) . (3.34)

Substituting (3.34) into (3.30), noting that the second term on the right-hand side of (3.34) is a
flux term that vanishes upon integration over the areaA, we retrieve (3.29).

Adding (3.26) and (3.29) we get
∂tE = 0. (3.35)

whereE = EK + EΦ is the total mechanical energy. ThusC is a reversible energy conversion
term converting potential energy into kinetic energy or vice versa. Equation (3.35) shows that
the total mechanical energy is conserved. Thus if the kinetic energyEK experience an increase
(decrease) there is a similar decrease (increase) in the available potential energyEΦ. We there-
fore conclude that under the assumptions of no external exchange of energy (a consequence of
neglecting the forcing terms in eq. 3.21), the time rate of change of the variance of the motion is
proportional to the conversion of kinetic energy to potential energy. For any numerical scheme to
be trustworthy it should reflect that the total mechanical energy is conserved when constructing
our numerical schemes (cf.Arakawa and Lamb, 1977).

10The initial state is defined as one at rest, and in static equilibrium, that is,u(x, y, z, 0) = 0 andη(x, y, 0) = 0.
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Chapter 4

THE DIFFUSION PROBLEM

The purpose of this chapter is to introduce the reader to the basic concepts on how to cast a
continuum model equation into finite difference form. The reader of this chapter will learn
how to discretize a given equation, and learn why some discretizations work and some not.
This conveniently introduces concepts such asnumerical stability, convergenceandconsistency.
Furthermore the reader will learn how to check whether a dicretization is stable and consistent,
learn aboutexplicitandimplicit schemes, the rudiments ofelliptic solversand finally the concept
of numerical dissipationor artificial damping inherent in our discretizations.

4.1 The one-dimensional, diffusion equation

The first equation we will discretize is the one-dimensional, diffusion equation (3.7), that is,

∂tθ = κ∂2xθ, (4.1)

whereθ can be any dependent variable (e.g., potential temperature, humidity, speed, salinity,
etc.), andκ is the diffusion coefficient. Thus we have assumed that the diffusive flux is parame-
terized as a down-the-gradient diffusion and that the diffusion (mixing) coefficient is uniform in
time and space.

As alluded to in Section 2.3 on page 14, we note that (4.1) is parabolic in nature. The physical
characteristic of the problem is therefore to transfer properties from one location to adjacent
locations by conduction. Hence the diffusion process acts simply to even out differences without
dissipation. If we for instance start with a very narrow tracer distribution (cf. Figure 5.6 on page
85) diffusion acts to transfer these high values to adjacentlocations at the expense of the peak
value as time is marching on. Thus as time passes the peak is diminished while the values at
adjacent locations increases. If we allow the diffusion process to go on forever within a finite
domain the tracer values becomes uniform1. In summary, the diffusion process acts to diminish
differences so that the end result is a much smoother field.

An obvious example of a diffusion process in the atmosphere and the oceans is the turbu-
lent mixing of heat. Thenθ appearing in (4.1) is the potential temperature. Another classic

1In an infinite domain the tracer values will be infinitely small, but will cover the infinite domain.
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atmosphere-ocean example is the so called Ekman problem in which θ represent the velocity.
In the atmosphere it explains how the velocity is reduced in the planetary boundary layer due
to friction at the surface. In the ocean the Ekman problem explains how the momentum due to
surface traction is transferred downwards in the water column.

4.2 Finite difference equation

Consider for instance thatθ describes the deviation (or anomaly) of the potential temperature
away from a given mean temperature profile at zero degree Celsius. Thenκ appearing in (4.1)
is the strength of the turbulent mixing (considered uniform). Let us furthermore assume that we
know the anomalous distribution at timet = 0, and that the temperature at the two end points
x = 0, L are fixed for all times and equals the initial temperature there, that is,

θ(x, 0) = f(x) ∀x, and θ(0, t) = θ(L, t) = 0oC ∀t, (4.2)

wheref(x) is a known function forx ∈< 0, L > and which is zero forx = 0, L. Our task is to
find, by numerically solving (4.1), how the anomaly evolves in time between the two positions
x = 0, L. We note that by considering thatθ = 0oC atx = 0 andx = L for all times we imply
that the boundary condition is a Dirichlet condition. We also assume that the initial anomaly is
different from the trivial solutionθ(x, 0) = 0oC; ∀x, that is, that there exists at least one position
in space wheref(x) 6= 0oC.

To find a numerical solution to (4.1) we follow the notation inSection 2.9. Thus we first
divide the intervalsx ∈ 〈0, L〉 andt ∈ 〈0, T 〉, whereT is some finite time, into respectivelyJ
andN sections of width∆x and∆t, respectively. They then form a grid whose grid points are
located at (xj , tn) wherexj = (j − 1)∆x andtn = n∆t. Herej andn are counters, counting the
number of steps needed to reach the grid point (xj , t

n). Thusj ∈ [1, J +1] andn ∈ [0, N ] where
xJ+1 = L andtN = T (cf. Figure 4.1 on page 41).

Next we must define a finite difference approximation to the derivatives∂tθ and∂2xθ at the
grid points. Using a forward in time approximation to express ∂tθ|nj and a centered in space
approximation to express∂2xθ|nj it follows from Section 2.6 that

[∂tθ]
n
j =

θn+1
j − θnj
∆t

, [∂2xθ]
n
j =

θnj+1 − 2θnj + θnj−1

∆x2
. (4.3)

By substituting the expressions (4.3) into (4.1) we get

θn+1
j − θnj
∆t

= κ
θnj+1 − 2θnj + θnj−1

∆x2
; j = 2(1)J, n = 0(1)N (4.4)

Solving with respect toθn+1
j we get

θn+1
j = θnj +K

(
θnj+1 − 2θnj + θnj−1

)
; j = 2(1)J, n = 0(1)N (4.5)

where

K =
κ∆t

∆x2
. (4.6)
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x

x = 0 x = xj x = L

j = 1 2 3 j − 1 j j + 1 J − 1 J J + 1

t

t = 0

t = tn

t = T

n = 0

1

2

n− 1

n

n+ 1

N − 2

N − 1

N

∆x

∆t

Figure 4.1: Displayed is the employed grid we use to solve (4.1) by numerical means. The grid
points in thex, t directions are incremented by∆x,∆t, respectively. There is a total ofJ + 1
points along thex-axis andN + 1 points along thet-axis, counted by using the dummy indices
j, n. The coordinates of the grid points arexj = (j − 1)∆x andtn = n∆t, respectively.

Note that (4.4) and (4.5) are valid forj = 2(1)J and forn = 0(1)N only. At the boundaries
j = 1 (x = x1 = 0) andj = J + 1 (x = xJ+1 = L) and forn = 0 (t = t0 = 0) the boundary
and initial conditions prevail as given in (4.2). In numerical language they are

θ0j = fj ; j = 1(1)J + 1 and θn1 = θnJ+1 = 0 ; n = 0(1)N, (4.7)

To find θ at the first time leveln = 1 we substituten = 0 into (4.5). We then get

θ1j = θ0j +K
(
θ0j+1 − 2θ0j + θ0j−1

)
; j = 2(1)J. (4.8)

Thus for the first “wet” pointj = 2

θ12 = θ02 +K
(
θ03 − 2θ02 + θ01

)
. (4.9)

We note thatθ01, θ02 andθ03 on the right-hand side of (4.9) are known from the boundary and/or
initial conditions (4.7). We may then proceed to evaluateθ13, θ

1
4, · · · up to and includingθ1J . For

the last wet pointj = J we get in particular

θ1J = θ0J +K
(
θ0J+1 − 2θ0J + θ0J−1

)
, (4.10)
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where againθ0J−1, θ
0
J andθ0J+1 on the right-hand side are known from the initial and/or boundary

conditions (4.7). This procedure thus provides values for the potential temperature anomaly at
all the interior grid points for time leveln = 1 (or at timet = ∆t), that is,θ1j . In additionθ11
andθ1J+1 are known from the boundary condition at time leveln = 1. Thusθ is known at all
grid points at time leveln = 1, and we may proceed to findθ at time leveln = 2. We do this by
substitution ofn = 1 into (4.5). We then get

θ2j = θ1j +K
(
θ1j+1 − 2θ1j + θ1j−1

)
; j = 2(1)J, (4.11)

Again we note thatθ21 andθ2J+1 are known from the boundary condition. Having thus foundθ
for all grid points at time leveln = 2 we may proceed to time leveln = 3 and so on for all time
levelsn up to and includingn = N .

We emphasize that at the boundariesj = 1 andJ + 1 the variableθ is known from the
boundary condition (4.7). This reflects the well known property of differential equations, whether
they are PDEs or ordinary differential equations (ODEs), namely that they are valid only in the
interior of a domain. At the boundaries (whether in time or space) the equations are replaced by
the boundary condition. Thus (4.5) together with the boundary conditions gives usθ for all grid
pointsxj wherej = 1(1)J and all time levelstn wheren = 0(1)N .

We underscore that sincexJ+1 = L = J∆x we cannot chooseJ , L and∆x independently.
Once two of them are chosen the third is given by the formula

J =
L

∆x
. (4.12)

Likewise follows that

N =
T

∆t
(4.13)

showing thatN , ∆t andT also depend on each other.
We emphasize that we are not allowed to specify more than one boundary condition in time.

The application of a forward, one-sided finite difference approximation in time, as for instance
employed in (4.5), is therefore the obvious choice in order to bring us from the initial time level
n = 0 to next time level. The accuracy of this scheme though isO(∆t). Since we applied a
centered finite difference approximation in space the spatial accuracy is higher, namelyO(∆x2).
We may increase the accuracy in time to the same level by employing a centered in time scheme
for the time rate of change as well, that is, let

[∂tθ]
n
j =

θn+1
j − θn−1

j

2∆t
. (4.14)

Substitution of (4.14) into (4.1) then gives

θn+1
j − θn−1

j

2∆t
= κ

θnj+1 − 2θnj + θnj−1

∆x2
; j = 2(1)J, n = 0(1)N, (4.15)

or
θn+1
j = θn−1

j + 2K
(
θnj+1 − 2θnj + θnj−1

)
; j = 2(1)J n = 0(1)N. (4.16)
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To obtain the solution at the first time leveln = 1, that is, to obtainθ1j we substituten = 0 into
(4.16). We then get

θ1j = θ−1
j + 2K

(
θ0j+1 − 2θ0j + θ0j−1

)
; j = 2(1)J, (4.17)

which requires knowledge ofθ−1
j . This corresponds to knowing the potential temperature anomaly

at a timet < 0, in this case at one time levelprior to the initial time level. By using the one-sided
forward scheme we avoid this problem, but sacrifices accuracy. As shown in Sections 4.3 - 4.8
there are, however, more pressing needs that makes us shy away from using a centered in time,
centered in space finite difference approximation to solve the diffusion equation numerically.

4.3 Numerical stability

In fact the scheme (4.16) is what we refer to as beingnumerically unstable. This entails that
the numerical solution, instead of following the continuous solution, steadily deviates from it.
Commonly this happens exponentially just like an analytic instability (think of baroclinic and
barotropic instabilities in the atmosphere and ocean). We therefore call this behavior numerical
instability to distinguish it from the physical barotropicand baroclinic instabilities that we would
actually like to simulate using our numerical models. Thus for our numerical solutions to have
any legitimacy we must require that they are numerically stable. This is an absolute requirement
and is formulated as follows:

A numerical scheme is stable if and only if the numerical solution is limited within
any given finite time span

As a prelude to how we analyze the numerical scheme with respect to its numerical stability,
let us first consider the analytic solution to (4.1). To this end we note that any good functionθ
may be written as a sum of cosines and sines, or even more compact as a sum of exponentials
(e.g., Section 2.11 on page 27 orLighthill, 1970, page 3)

θ(x, t) =

∞∑

m=−∞

Θm(αm, t)e
iαmx =

∞∑

m=−∞

θm (4.18)

whereαm is the wavenumber of them’t Fourier component. Each component in (4.18), that is,

θm = Θme
iαmx, (4.19)

is called a Fourier component. HereΘm(t) is the time dependent amplitude of them’t compo-
nent. Substituting (4.18) into (4.1) we get

∂tΘm = −κα2
mΘm. (4.20)

Note that we have dropped the summation, that is, we analyze each Fourier component sepa-
rately. We observe that (4.20) is an ordinary differential equation (ODE). Solving it with respect
to the amplitudeΘm we get

Θm = Θ0
me

−κα2
mt. (4.21)
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HereΘ0
m is the initial amplitude of modem, that is, the value ofΘm at timet = 0. We find these

initial amplitudes by expanding the initial distribution of θ into a Fourier series, that is,

θ(x, 0) =
∞∑

m=−∞

Θ0
me

iαmx (4.22)

Thus substituting (4.21) into (4.18) we get

θ(x, t) =

∞∑

m=−∞

Θ0
me

−κα2
mteiαmx, (4.23)

which is the analytic solution to (4.1). We note by looking at(4.21) that the amplitudeΘm of
each individual Fourier component decreases monotonically and exponentially as time increases.
Moreover, we observe that the short waves (high wave numbers) decrease faster than the long
waves (small wave numbers). This is in accord with Section 3.3 where we concluded, based on
(3.16), that diffusion acts to smooth out disturbances. Moreover we learn from (4.23) that this
smoothing is not the same for all wavelengths. In fact it is selective in the sense that small scale
disturbances are smoothed fast while the longer waves are less prone to damping in the same
time period. Thus diffusion acts like a filter efficiently smoothing the small scale noise, if any,
without significantly damping the larger scale motion.

As is obvious we would like the numerical solution to behave accordingly. In particular we
expect the numerical solution to the diffusion equation to decrease monotonically in time. Thus
if the numerical solution increases in time it is obviously wrong and possibly unstable. Note that
this instability has nothing to do with the accuracy of the chosen scheme. Yet it is the initial
truncation error inherent in our scheme that is allowed to grow uncontrolled when the solution is
unstable. We will return to this in Section 4.4 below.

To be able to analyze whether our chosen scheme is stable or not we need a proper math-
ematical definition. The requirement of numerical stability is commonly formulated by stating
that for any finite timeT , that is, for0 < T < ∞, there must exist a finite number, sayB, such
that 

Θn

Θ0

 ≤ B (4.24)

whereΘ0 is the initial amplitude of the variableθ. For linear systems, and to certain degree
also non-linear systems, it is possible to analyze the stability of the chosen scheme analytically.
Note that we always perform such an analysisbeforeimplementing the chosen scheme on the
computer.

4.4 von Neumann’s stability analysis

One such method is the so calledvon Neumann’s method. To analyze the stability von Neumann
suggested to use a method somewhat similar to solving the equations analytically. The first step
is to define a discrete Fourier component similar to the analytic one given in (4.19), that is,

θnj = Θne
iαj∆x, (4.25)
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whereΘn is the discrete amplitude at time leveln andα is the wavenumber of that particular
discrete mode2. We now define agrowth factor

G ≡ Θn+1

Θn
⇒ Θn+1 = GΘn and Θn−1 = G−1Θn. (4.26)

ThusG is the amplification of the amplitudeΘ as we proceed from one time level to the next.
We observe that (4.26) is formally similar to (4.24), exceptthat the growth factorG is defined as
the ratio between the next and the former time level, that is,between time leveln + 1 and time
leveln, while (4.24) is the ratio between the value at a random time level and the initial value.
Lettingn = 0 in (4.26) then gives

Θ1 = GΘ0, (4.27)

whereΘ0 is the initial amplitude. By lettingn = 1 in (4.26) and making use of (4.27) we obtain

Θ2 = GΘ1 = G2Θ0. (4.28)

Continuing by lettingn = 3, 4, . . . up to a random numbern = l we get

Θl = GlΘ0. (4.29)

ThusGl is the ratio between the amplitude at the random time leveln = l or random time
t = l∆t and the initial amplitude. Thus (4.24) is satisfied if

|G| ≤ 1, (4.30)

since thenGl decreases as the time level or time increases3. The criterion (4.30) is calledvon
Neumann’s condition for stability. Note that it is a sufficient condition, not a necessary condition.
We return to this in Section 4.7 below.

4.5 Stability of the discrete diffusion equation

As our first example we analyze the forward in time, centered in space (FTCS) scheme given by
(4.5). Substituting (4.25) into (4.5) we get

Θn+1 = Θn +K
(
eiα∆x − 2 + e−iα∆x

)
Θn (4.31)

whereK is as given in (4.6) and where we have divided through by the common factoreiαj∆x.
Noting thateiα∆x + e−iα∆x = 2 cosα∆x we get

Θn+1 = [1− 2K(1− cosα∆x)] Θn. (4.32)

We thus find the growth factor by simply dividing (4.32) byΘn,

G = 1− 2K(1− cosα∆x), (4.33)

2Note that we have dropped the subscriptm onΘ andα for clarity.
3Confer Computer Problem No. 1
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To satisfy (4.30) we observe that

−1 ≤ 1− 2K(1− cosα∆x) ≤ 1. (4.34)

Since0 ≤ (1 − cosα∆x) ≤ 2 the right-hand side inequality is satisfied for all wavenumbersα,
all time steps∆t and all space increments∆x. The inequality on the left-hand side, however, is
satisfied if and only if

K(1− cosα∆x) ≤ 1. (4.35)

Recall that0 ≤ (1− cosα∆x) ≤ 2, and hence (4.35) is satisfied for all wavenumbersα if

K ≤ 1

2
⇒ ∆t ≤ ∆x2

2κ
. (4.36)

This condition ensures that (4.34) is satisfied. Hence von Neumann’s condition (4.30) is satisfied
as well. Furthermore (4.36) tells us that we cannot choose∆x and∆t independently. Once∆x is
chosen the time step∆t must be chosen in accord with (4.36). We therefore say that the forward
in time, centered in space scheme (4.5) isconditionally stableunder the condition (4.36).

We also observe from (4.35) that the waves that first violate the inequality are waves with
wavenumbers given by

cosα∆x = −1, (4.37)

which correspond to those waves that maximizes1 − cosα∆x. The wavenumbers satisfying
(4.37) are

αm∆x = (2m− 1)π; m = 1, 2, . . . . (4.38)

with corresponding wavelengths

λm =
2π

αm
=

2∆x

2m− 1
. (4.39)

The most dominant of these waves is the wave corresponding tom = 1. Thus the most unstable
wave has wavelength

λ1 = 2∆x. (4.40)

This implies that the numerical instability will appear as “2∆x” noise, that is, noise of wave-
length2∆x. Commonly it appears as a saw tooth pattern such as the one displayed in Figure
4.2.

In summary we found that the forward in time, centered in space scheme (4.5) applied to the
diffusion equation, using von Neumann’s method to analyze its stability, is a conditionally stable
scheme. If the method had returned|G| > 1, in which case von Neumann’s condition (4.30) is
not met, the scheme would have been called anunconditionally unstablescheme. If the analysis
had returned|G| ≤ 1 regardless of our choice of∆x and∆t and wavenumbersα, the scheme is
unconditionally stable. If the special case|G| = 1 is true then we in addition say that the scheme
is neutrally stable.

It is worthwhile mentioning that when|G| < 1 it follows from (4.26) that|Θn+1| < |Θn|.
Thus, inherent for all schemes for which|G| < 1 is that they include artificial numerical energy
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Figure 4.2: Displayed are solutions of the diffusion equation using the scheme (4.5) for respec-
tively K = κ∆t/∆x2 = 0.45 (left panel) andK = 0.55 (right panel) forx ∈ (0, 1). The
dependent variableθ is held fixed at the two boundariesx = 0, 1 and the initial condition is
θ = sin πx). The solutions are shown for the time levelsn = 0, n = 50 andn = 90. Note the
saw tooth like pattern in the right panel forn = 90 not present in the left panel. This indicates
that the stability condition (4.36) is violated forK = 0.55, but not forK = 0.45.

dissipation4. We emphasize that even if the physical problem does not exhibit energy dissipation
the numerical solution may exhibit dissipation. We therefore refer to this artificial energy dissi-
pation asnumerical dissipation. We note that this dissipation depends on the absolute valueof
the growth factor, and hence by implication, on our choice ofscheme and spatial and temporal
increments. It is therefore of importance to ensure that thenumerical dissipation is as small as
possible by making choices so that the absolute value of the growth factor is as close to one as
possible to minimize the inherent artifical dissipation.

Any given problem in oceanography and meteorology may include natural energy dissipation.
Thus if our scheme exhibits numerical dissipation it is important to ensure that it is small com-
pared to the natural, physical dissipation. We therefore always favor neutral schemes (|G| = 1),
since such schemes are energy conserving, a highly desirably property. If this is not possible we
recommend to choose the time step and the space increments soas to minimize the numerical
energy dissipation. This is the same as requiring|G| to be as close to one as possible. Regarding
the forward in time, centered in space scheme this implies that we have to choose a time step∆t
that is small enough to satisfy (4.36), but at the same time islarge enough to make∆t ∼ ∆x2/2κ.

4In this context energy dissipation means that the square of the amplitude of the solution decreases in time.
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4.6 The centered in time, centered in space scheme

Let us next analyze the stability of the similar centered in time, centered in space (CTCS) explicit
scheme (4.16) using von Neumann’s method. Substitutingθnj in (4.16) by its discrete Fourier
component as defined in (4.25) and removing the common factoreiαj∆x. Then by use of the
definition of the growth factor (4.26) we get

G = G−1 − 4K(1− cosα∆x). (4.41)

Multiplying by G and rearranging terms we get the second order equation

G2 + 2λG− 1 = 0, (4.42)

to determine the growth factor. Here

λ = 2K(1− cosα∆x) ≥ 0. (4.43)

Solving (4.42) with respect toG we get the two solutions

G1,2 = −λ±
√
1 + λ2. (4.44)

We recall that in order to be numerically stable both solutions must satisfy von Neumann’s con-
dition. We observe that

|G2| = λ+
√
1 + λ2 ≥ 1, (4.45)

and hence that the centered in time, centered in space explicit scheme for the diffusion equation
is unconditionally unstable. Thus:

Never use a centered in time, centered in space scheme for thediffusion problem. It
is always unconditionally unstable.

4.7 The necessary stability condition

We mentioned above that von Neumann’s condition is a sufficient condition. This implies that if
(4.30) is satisfied then the scheme is definitively stable. The question is if its too strict, that is, if
it is also thenecessary condition?

To this end we return to the original stability requirement as formulated in (4.24). Substituting
for Θn by use of (4.29) we get

|G|n ≤ B. (4.46)

Taking the natural logarithmic on both sides then gives

n ln |G| ≤ lnB ≡ B′. (4.47)

Even if von Neumann’s condition is too strict|G| cannot be very much larger than one. Thus
we may write|G| = 1 + ǫ whereǫ is a small (ǫ ≪ 1) positive number. Hence it follows that
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ln |G| = ln(1 + ǫ) ≈ ǫ. Furthermore we note thattn = n∆t or that atn = tn/∆t. When we
substitute these expressions into (4.47) we obtain

ǫ ≤ B′∆t

tn
= O(∆t). (4.48)

Thus the necessary condition that satisfies the numerical stability requirement is

|G| ≤ 1 +O(∆t). (4.49)

This shows that von Neumann’s condition (4.30) is indeed toostrict. However, most physical
problems, even those containing instabilities, always involves some physical energy dissipation.
Thus for all practical purposes we may apply the sufficient condition |G| ≤ 1 when analyzing
the numerical stability of our schemes, in particular if|G| . 1.

Finally, we remark that the growth factorG associated with the one-dimensional diffusion
equation, as displayed by (4.33), is a scalar. For multi-variable and multi-dimensional problems
the growth factor will commonly be a tensor or matrix, sayG. The sufficient condition is then
that its spectral radius is less than or equal to one. This is tantamount to requiring that the largest
eigenvalue ofG is less than or equal to one.

4.8 Explicit and implicit schemes

The spatial operator on the right hand side of the schemes (4.5) and (4.16) are all evaluated at the
time leveln or earlier (n− 1, n− 2, . . .). We refer to such schemes as beingexplicit. In contrast,
if the spatial operator on the right-hand side includes variables evaluated at the new time level
n + 1 we refer to the scheme as beingimplicit. If all of them are evaluated at time leveln + 1
the scheme is a truly implicit scheme. If only one or a few are evaluated at time leveln + 1
we commonly refer to the scheme as beingsemi-implicit. Likewise, if we treat a multi-variable
problem, e.g., the shallow water equations, where some of the terms are treated as being explicit
and some implicit (Section 6.6 on page 120) we also refer to the scheme as being semi-implicit.

Explicit schemes are, as exemplified by the conditionally stable FTCS scheme (4.5), always
simple to solve. Once the unknowns are known for one time level at all grid points, the compu-
tation of the next time level is straightforward, we just proceed from one grid point to the next
as outlined in Section 4.2 (page 41). This is however not truefor implicit schemes. To illustrate
this let us turn the explicit FTCS scheme (4.5) into an implicit FTCS scheme. We do this by
replacing the FDA or discretization of the spatial operatorin (4.5) by one which is at time level
n+ 1, that is, replacing[∂2xθ]

n
j by [∂2xθ]

n+1
j where

[
∂2xθ
]n+1

j
=
θn+1
j−1 − 2θn+1

j + θn+1
j+1

∆x2
. (4.50)

Substituting this in the FTCS discretization of the diffusion equation as it appears in (4.5) we get

θn+1
j = θnj +K

(
θn+1
j−1 − 2θn+1

j + θn+1
j+1

)
; j = 2(1)J, n = 0(1) . . . , (4.51)
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which is an implicit FTCS scheme. Rewriting by moving all terms containing evaluation at time
leveln+ 1 to the left-hand side we get

−Kθn+1
j−1 + (1 + 2K)θn+1

j −Kθn+1
j+1 = θnj ; j = 2(1)J, n = 0(1) . . . . (4.52)

We note that the implicit discretization require us to solvefor θ at time leveln+1 at the three grid
pointsj − 1, j, andj + 1 simultaneously. This illustrates that although the diffusion equation is
parabolic the implicit formulation turns the problem into an elliptic type problem. We will return
to how to solve elliptic problems using direct elliptic solvers in Section 4.11.

We expect that turning an explicit scheme into an implicit scheme may impact its numerical
stability and/or condition for stability. To illustrate this we analyse the implicit FTCS scheme
(4.51). Using von Neumann’s method step by step we get

G =
1

1 + λ
(4.53)

whereλ is as given by (4.43). Thus sinceλ ≥ 0 follows that |G| ≤ 1 for all ∆t, ∆x and
wavenumbersα. Hence, in contrast to the explicit FTCS scheme there is no restriction on the
time step∆t once the space increment∆x is specified. Hence the implicit FTCS scheme is
unconditionally stable.

As another example let us consider an implicit version of theunconditionally unstable, ex-
plicit CTCS scheme (4.16). As above we make it implicit by evaluating the FDA of∂2xθ at time
level n + 1 rather than at time leveln. Consequently we use (4.50) as our FDA for the spatial
operator. We then get

θn+1
j = θn−1

j + 2K
(
θn+1
j−1 − 2θn+1

j + θn+1
j+1

)
; j = 2(1)J, n = 0(1) . . . , (4.54)

which is the implicit CTCS scheme. We note that by treating the CTCS scheme implicitly we
again have to use elliptic solvers if we were to solve it numerically. To analyze its stability we
employ von Neumann’s method. By following the method step bystep, and finally solving for
the growth factor, we get two solutions given byG1,2 = ±|G| where

|G| = 1√
1 + 2λ

, (4.55)

where againλ is as given by (4.43). We observe that as for the implicit FTCSscheme|G| ≤ 1
for all ∆t, ∆x and wavenumbersα. Hence the implicit CTCS scheme isunconditionally stable
as well, which is in stark contrast to the explicit CTCS scheme, the latter being unconditionally
unstable.

In fact all truly implicit schemes are unconditionally stable. This is also true for most semi-
implicit schemes, but not all as for instance exemplified by the Crank-Nicholson scheme treated
in Section 4.10. Since all implicit schemes are unconditionally stable there is no constraint on the
time step∆t. Hence we may choose∆t to be as long as we wish when considering the numeri-
cal stability alone. It is therefo,re tempting to use implicit schemes when solving our governing
equations numerically since we only need a few time steps to reach the solution. Nevertheless it
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is commonly wise to stay away from implicit schemes, in particular under circumstances when
diffusion dominates the physics of our problem. The rationale is, as exemplified by (4.53) and
(4.55), that the growth factor|G| < 15, and hence always contain what is callednumerical dis-
sipation. Moreover, as shown by (4.53) and (4.55),|G| gets smaller and smaller with increasing
time step entailing that the numerical dissipation increases with increasing time step. Conse-
quently, if we employ an implicit scheme we have to ensure that the numerical dissipation is
small compared to the physical dissipation. Hence to minimize the artificial dissipation we have
to choose a time step∆t that is so small that the growth factor is close to one. In summary,
although implicit schemes are unconditionally stable regardless of how long the time step∆t
is, we are constrained by the need to keep the numerical dissipation as small as possible. We
therefore in gnerealstrongly adviceagainst the use of implicit scheme.

4.9 Convergence and consistency: DuFort-Frankel

As is obvious we would like our numerical solutions to mimic the true or analytical solution to
our governing equations. We analyze this by letting the space and time increments∆x,∆y,∆z,
and∆t approach zero independent of each other. If we find that the numerical solution converges
toward the analytic solution when the increments tend to zero independently we call the scheme
convergent. However, to perform such a study and proof is tedious especially for complex cases.
If on the other hand, as shown byLax and Richtmyer(1956), the numerical scheme is stable and
consistentthen the scheme is convergent6. A scheme isconsistentif it, in the limit when the
increments tend zero independently7, approaches the continuous governing equations. If not we
say that the scheme isinconsistent. Hence, if we in addition to stability require that the employed
scheme is consistent we are ensured that the numerical solution is convergent. Consistency and
numerical stability therefore forms the two fundamental properties that our schemes should obey.

We note that all schemes where the FDAs are based on Taylor series expansions (Section 2.6)
satisfies the consistency requirement. Since both of the schemes (4.5) and (4.16) are based on a
Taylor series expansion, they are both prime examples of consistent schemes. We may, however,
quite easily construct numerical schemes without using Taylor series expansions. In these cases a
consistency analysis is required, which is a by far an easiertask than analyzing the convergence.

One example of such a scheme is theDufort-Frankelscheme. To construct the Dufort-Frankel
scheme we start with the consistent, unconditionally unstable and explicit CTCS scheme (4.16).
The trick is to replace the termθnj by an interpolated value using the value ofθ at the two adjacent
grid points(xj , tn+1) and (xj , tn−1) in time. Thus, using a two point, linear interpolation we

5Only for those wavenumbers for whichλ = 0 gives|G| = 1. In general our solution contains all wavenumbers
so that in general we get a growth factor that is truly less than one.

6This is known as the Lax equivalence theorem, which reads: “Given a properly posed initial value problem,
boundary value problem, and a finite difference approximation that is consistent with the PDE, then stability is a
necessary and sufficient condition for convergence.”

7Note that this requirement is independent of how the increments go to zero and independent of how fast each
of them go to zero.
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replaceθnj by 1
2

(
θn+1
j + θn−1

j

)
on the right-hand side of (4.16). Thus we get

θn+1
j = θn−1

j + 2K
(
θnj+1 − θn−1

j − θn+1
j + θnj−1

)
; j = 2(1)J, n = 0(1) . . . (4.56)

We first note that the introduction of the termθn+1
j on the right-hand side makes the new scheme

semi-implicit. Since all implicit schemes are stable we therefore expect the DuFort-Frankel
scheme to be stable as well. We note that in contrast to the implicit scheme (4.54), the implicity
is now limited to the single termθn+1

j involving only the space grid pointxj . We may move this
term from the right-hand side of (4.56) to its left-hand side. We then get

θn+1
j =

[
θn−1
j + 2K(θnj+1 − θn−1

j + θnj−1)
]
(1 + 2K)−1. (4.57)

Thus the DuFort-Frankel scheme (4.56) is an explicit schemedespite the fact that is is semi-
implicit. This is one reason why it has become so popular, in particular in oceanography, (e.g.,
Adamec and O’Brien, 1978). A second reason is that it isunconditionally stable. To show the
latter we apply von Neumann’s stability analysis and get

G1,2 =
2K cosα∆x±

√
1− 4K2 sin2 α∆x

1 + 2K
, (4.58)

which shows that|G1,2| < 1 and hence that the implicit scheme (4.56) is indeed unconditionally
stable (c.f. Exercise 4 on page 59).

Since we constructed the Dufort-Frankel scheme simply by replacing one variable by an
interpolated one we have to analyze the consistency of the scheme as well. To this end we
employ the Taylor series expansions of Section 2.6. By substituting (2.57) and (2.58) into (4.56)
we get

∂tθ|nj − κ∂2xθ|nj = −∆t2

∆x2
[
1 +O(∆t2)

]
+O(∆t2) +O(∆x2). (4.59)

If and only if all the terms on the right-hand side of (4.59) goes to zero in the limit∆x → 0
and∆t → 0 independently, then the scheme is consistent. Evidently this is not the case for the
first term on the right-hand side which tends to infinity if∆x tends to zero faster than∆t. We
therefore note that (4.59) only converges to the continuousequation if(∆t2/∆x2) → 0 when
∆x→ 0 and∆t→ 0. This implies that the scheme is consistent iff8 ∆t tends to zero faster than
∆x. Thus there is a condition associated with the consistency of the scheme, and hence, in line
with the formulation used for the stability condition, we refer to the Dufort-Frankel scheme as a
conditionally consistentscheme under the condition that∆x→ 0 slower than∆t→ 0.

As already mentioned at the end of Section 3.3 the diffusion term κ∂2xθ is often added to
the governing equation as a numerical artifact or “trick” todissipate energy contained on the
smaller scales. Commonly this small scale “noise” is created due to the presence of non-linear
terms in the equations leading to interactions among the various wavelengths, which in turn
is responsible for cascade of energy towards progressivelysmaller and smaller scalesPhillips
(1966). If we neglect to somehow parameterize this energy cascade at or near our grid resolution

8The formulation iff is short for “if and only if.
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wavelengths, that is, energy contained in the2∆x − 4∆x tail of the energy spectrum, energy
tend to accumulate in this wavelength band. At some time or another into the integration this
accumulation og energy leads to a violation of the linear, numerical stability criterion and the
numerical solution goes unstable (or “blows up”).

When the diffusion term is used for as an artifact to parameterize the energy cascade it does
not represent any of the physical processes we want to resolve. Rather it is introduced to avoid
our model to blow up due to an accumulation of energy near the unresolved scales, so as to
parameterize a smooth transfer of energy towards the unresolved scales of our grid9. Since
this parameterization and/or the parameters it contains may change in accord with the models
resolution we refer to it assubgrid scale(SGS) parameterization.

4.10 The Crank-Nicholson scheme

We finally consider a popular scheme called theCrank-Nicholsonscheme. Like the Dufort-
Frankel scheme it is semi-implicit. Its popularity is due totwo facts. First, it is unconditionally
stable, and second it is second order accurate in both time and space.

We start by recalling the two schemes (4.5) and (4.51), that is,

θn+1
j = θnj +K(θnj−1 − 2θnj + θnj+1) (4.60)

and
θn+1
j = θnj +K(θn+1

j−1 − 2θn+1
j + θn+1

j+1 ). (4.61)

We note that both are centered in space schemes. However, (4.60) is a forward in time (FTCS)
and explicit scheme, while (4.61) is a backward in time (BTCS) and a truly implicit scheme.
Hence (4.60) is conditionally stable under the condition2K ≤ 1 while (4.60) is unconditionally
stable. Finally, we note that both are consistent since theyare based on Taylor series expansions.

We now combine the two schemes (4.60) and (4.61) to get

θn+1
j = θnj +K

[
γ(θn+1

j−1 − 2θn+1
j + θn+1

j+1 ) + (1− γ)(θnj−1 − 2θnj + θnj+1)
]
, (4.62)

whereγ is a number so that0 ≤ γ ≤ 1. If γ = 0 then (4.62) reduces to the explicit scheme
(4.60). If γ = 1 then (4.62) reduces to the implicit scheme (4.61). Ifγ is between0 and1 the
scheme contains both implicit and explicit terms. Hence thescheme (4.62) is semi-implicit and
stability is not ensured.

To analyze the stability of the scheme we use von Neumann’s method. The growth factorG
is (cf. Exercise 5 on page 59)

G =
1− 2K(1− γ)(1− cosα∆x)

1 + 2Kγ(1− cosα∆x)
. (4.63)

9Note that for a given grid size2∆x equals the Nüquist wavelength. Thus wavelengths smaller than2∆x are
unresolved by our grid.
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We recall that the condition|G| ≤ 1 or −1 ≤ G ≤ 1 is a sufficient condition for numerical
stability. From (4.63) follows thatG ≤ 1 is always satisfied, whileG ≥ −1 is satisfied for all
wavelengths iff

2K(1− 2γ) ≤ 1. (4.64)

We note that for1
2
≤ γ ≤ 1 the left hand side of (4.64) is always negative or zero, implying that

(4.64) is automatically satisfied. Under these circumstances the scheme is stable regardless of
the value chosen for the increments∆x, ∆t and the wavenumberα. Thus the scheme (4.62) is
unconditionally stableprovided1

2
≤ γ ≤ 1. This does not come as surprise, since under these

circumstances the weight is on the implicit part10. If however0 ≤ γ < 1
2

the weight is on the
explicit part. Under these circumstances the scheme isconditionally stableunder the condition
(4.64). We note that forγ = 0, in which case (4.62) equals the forward in time, centered in
space finite difference approximation for the diffusion equation as displayed in (4.5), we indeed
retrieve the condition (4.36) of Section 4.4, that is,2K ≤ 1 .

The valueγ = 1
2

is special. It constitutes the critical value at which the scheme (4.62)
changes from being unconditionally stable (γ > 1

2
) to become conditionally stable (γ < 1

2
) under

the condition (4.64). Substituing this particular value ofγ into (4.62) we get

θn+1
j = θnj +

1

2
K
(
θn+1
j−1 − 2θn+1

j + θn+1
j+1 + θnj−1 − 2θnj + θnj+1

)
, (4.65)

which is referred to as theCrank-Nicholson scheme.
We note that the Crank-Nicholson scheme is unconditionallystable. The scheme is special

also in another respect. Despite the fact that we employ a one-sided in time, finite difference
approximation for the time rate of change for∂tθ, it is actually second order accurate in time as
well as in space. To prove it we start by utilizing the Taylor series expansions (2.24) and (2.25)
as outlined in Section 2.6 on page 18. By substituting these series into the centered differences
on the right-hand side of (4.65) we first get

θn+1
j − θnj
∆t

=
1

2
κ
(
∂2xθ|n+1

j + ∂2xθ|nj
)
+O(∆x2). (4.66)

Expandingθn+1
j and∂2xθ|n+1

j using Taylor series we get

θn+1
j − θnj
∆t

= ∂tθ|nj +
1

2
∂2t θ|nj∆t +O(∆t2), (4.67)

and
∂2xθ|n+1

j = ∂2xθ|nj + ∂t(∂
2
xθ)|nj∆t+O(∆t2). (4.68)

Substituting these series in (4.66) and rearranging terms we get

∂tθ
n
j = κ∂2xθ|nj −

1

2

[
∂2t θ|nj − κ∂t(∂

2
xθ)|nj

]
∆t +O(∆t2) +O(∆x2), (4.69)

10As a corollary we note that this proves that the truly implicit scheme (4.61), which follows from (4.62) by
lettingγ = 1, is indeed unconditionally stable.
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Furthermore, by appling the continuous diffusion equation(4.1) we get

∂2t θ|nj = κ∂t(∂
2
xθ)|nj . (4.70)

The second term on the right-hand side of (4.69) therefore vanishes and hence we finally get

∂tθ|nj = κ∂2xθ|nj +O(∆t2) +O(∆x2). (4.71)

Thus besides being unconditionally stable, the Crank-Nicholson scheme is of second order
accuracy in both time and space. These two facts is why the Crank-Nicholson scheme is popular
when solving true diffusive problems.

Nevertheless it has one disadvantage compared to the more standard schemes. We illustrate
this by first rearranging the terms in (4.65) to obtain

Kθn+1
j−1 − 2(1 +K)θn+1

j +Kθn+1
j+1 = −2θnj −K

(
θnj−1 − 2θnj + θnj+1

)
. (4.72)

Thus we cannot solve forθn+1
j without knowingθn+1

j−1 and/orθn+1
j+1 . Let us consider that we solve

(4.72) for increasing values ofj. Then for any arbitraryj we have already solved forθn+1
j−1 , and

it thus known. However, we have not yet solved forj + 1, and thusθn+1
j+1 is unknown. Thus the

otherwise parabolic equation is by use of the Crank-Nicholson scheme turned into one which
numerically look like an elliptic problem, just as we observed for the implicit CTCS scheme
(4.54). Hence they both require us to employ what is called anelliptic solver for every time step.
One such method called a direct elliptic solver is outlined in the next section.

4.11 A direct elliptic solver

Many of the model codes employed in numerical weather and numerical ocean weather predic-
tion today employ semi-implicit methods. As we observed forthe implicit CTCS and Crank-
Nicholson scheme above, the consequence of introducing terms that are treated implicitly is that
we have to solve an equation like (4.72) for each time step (e.g., Section 6.6). We are therefore in
need of a method whereby problems such as (4.72) can be solvedfast and efficient on a computer.
Such methods are commonly referred to aselliptic solvers.

The most efficient elliptic solvers are those referred to as direct elliptic solvers. In the infancy
of NWP most elliptic solvers were iterative or indirect elliptic solvers. Even though they may be
accelerated, as for instance when applying the iterative elliptic solver called “Successive over-
relaxation”, they are much slower than the direct methods. To get insight into how the direct
elliptic solvers work we will show the so calledGauss eliminationmethod as an example.

Gauss elimination

The method consists of two steps. The first is called aforward sweep. Next we find the final
solution by performing abackward substitution. To get started, we first rewrite (4.72) into a
more general form,

anj θ
n+1
j−1 + bnj θ

n+1
j + cnj θ

n+1
j+1 = hnj ; j = 2(1)J, n = 0(1)N (4.73)
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whereanj , bnj , andcnj represents the coefficients in (4.72). The use of the subscript j and su-
perscriptn attached to these coefficients acknowledges that they in general may be functions of
space and time. Likewisehj on the right-hand side represents all “forcing” terms, thatis, our
knowledge of the solution at the previous time step(s). We also note that we are required to solve
(4.73) within a finite domain. Thusθn1 andθnJ+1 are determined by the boundary conditions. We
therefore assume for simplicity that these are known whatever boundary condition is applied for
all time levelsn.

Since we are required to solve (4.73) for every time step we consider one time level only and
hence drop the superscriptsn andn+1 for convenience. Thus we illustrate the Gauss elimination
method by solving,

ajθj−1 + bjθj + cjθj+1 = hj, j = 2(1)J, (4.74)

under the conditions
θ1 = θ̂0, and θJ+1 = θ̂L, (4.75)

whereθ̂0 andθ̂L are considered known functions. We observe that (4.74) may be more compactly
written as

A · θ = h′, (4.76)

where the tensorA is thetridiagonal matrix

A =




b2 c2 0 . . . 0 0 0
a3 b3 c3 . . . 0 0 0
0 a4 b4 . . . 0 0 0
...

...
...

. . .
...

...
...

...
...

...
...

. . .
...

...
0 0 0 . . . aJ−1 bJ−1 cJ−1

0 0 0 . . . 0 aJ bJ




. (4.77)

and the vectorsθ andh′ are, respectively,

θ =




θ2
θ3
...

θJ−1

θJ



, (4.78)

and

h′ =




h2 − a2θ̂0
h3
...

hJ − cJ θ̂L


 . (4.79)

Note that the boundary conditions now are consumed into the the vectorh′, and therefore is part
of the “forcing”. This is in line with the mantra that the boundary condtions are as important as
the governing equations in order to determine the solution.
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Forward sweep

We are now ready to perform the forward sweep. The idea is to replace all elements of the matrix
A positioned in the lower left half with zeros. At the same timeit is convenient to normalize the
diagonal elements, that is, turn everyone of them into the value 1. We start with the equation for
j = 2. From (4.76) follows

b2θ2 + c2θ3 = h′2. (4.80)

We then normalize by dividing byb2

θ2 + d2θ3 = w2, (4.81)

where

d2 =
c2
b2

and w2 =
h′2
b2
. (4.82)

For j = 3 we get from (4.76)
a3θ2 + b3θ3 + c3θ4 = h′3 (4.83)

Substituting forθ2 from (4.81) and normalizing gives

θ3 + d3θ4 = w3 (4.84)

where

d3 =
c3

b3 − d2a3
and w3 =

h′3 − a3w2

b3 − d2a3
. (4.85)

Repeating this forj = 4 we get
θ4 + d4θ5 = w4 (4.86)

where

d4 =
c4

b4 − d3a4
and w4 =

h′4 − a4w3

b4 − d3a4
. (4.87)

Thus repeating this procedure up to and includingj = J − 1 we get

θj + djθj+1 = wj , j = 2(1)J − 1. (4.88)

where the coefficientsdj andwj are defined by the recursion formula

dj =





c2
b2

; j = 2

cj
bj−dj−1aj

; j = 3(1)J − 1

0 ; j = J

, wj =





h′

2

b2
; j = 2

h′

j−ajwj−1

bj−dj−1aj
; j = 3(1)J

, (4.89)

respectively. We observe thatdJ is set to zero. This is due to the fact that forj = J (4.76)
becomes

aJθJ−1 + bJθJ = h′J , (4.90)
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and hence by substituting forθJ−1 from (4.88) we simply get

θJ = wJ . (4.91)

Note that all the coefficientsdj andwj can be calculated once and for all.
We also notice that in matrix form (4.77) now reads

A′ · θ = w, (4.92)

where the matrixA′ is

A′ =




1 d2 0 . . . 0 0
0 1 d3 . . . 0 0
0 0 1 . . . 0 0
...

...
...

. . .
...

...
0 0 0 . . . 1 dJ−1

0 0 0 . . . 0 1




, (4.93)

and the vectorw is

w =




w2

w3
...

wJ−1

wJ



. (4.94)

Thus we have completed aforward sweepin which the equation matrix is normalized and is
upper triangular only.

Backward substitution

We are now ready to perform thebackward substitution. First we note that all thewj ’s and the
dj ’s are known using the recursion formula (4.89). Second we note from (4.91) thatθJ is simply
given bywJ and that the latter is known from (4.89). Thus we are in a position whereθJ is
known. Hence applying (4.88) forj = J − 1 and solving with respect toθJ−1 we get

θJ−1 = wJ−1 − dJ−1θJ . (4.95)

We may continue this and solve forθJ−2, θJ−3, . . . and so on. Hence we can solve for all the
remainingθj ’s by backward substitution into (4.88), that is,

θj = wj − djθj+1 for j = J − 1(−1)2. (4.96)

The Gauss elimination method is very simple to program, and it is also very efficient and fast
on the computer. An example on the usefulness of this method,in which you are also required to
program the method, is given in Computer Problem 5 named “Yoshida’s equatorial jet current” in
the accompanied, but separate Computer Problem notes. We urge the reader to do this problem,
at least to solve the resulting ODE by employing the Gauss elimination method.
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Exercises

1. Show that the scheme (4.16) is unconditionally unstable.Hint: Show that|G| > 1 regard-
less of the choice made for∆t and∆x.

2. Show that if|G| = 1 then the chosen scheme has no numerical dissipation.

3. Show that the growth factor associates with the scheme (4.54) is

G =

[
1 +

4κ∆t

∆x2
(1− cosα∆x)

]− 1

2

(4.97)

and hence that the scheme is unconditionally stable. Also show that|G| < 1 for all wave-
lengths. Note that|G| decreases as∆t increases.

4. Show that the growth factor for the DuFort-Frankel scheme(4.56) is indeed (4.58)

5. Show that the expression (4.63) is indeed the expression for the growth factor of the scheme
(4.62) when using von Neumann’s analysis method.
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Chapter 5

THE ADVECTION PROBLEM

In this chapter we will investigate possible discretizations of the linear advection equation. As
for the diffusion equation we will learn why some discretizations work and some not. In par-
ticular we learn that the discretization that made the finitedifference approximation to the dif-
fusion equation conditionally stable makes the finite difference approximation to the advection
equation unconditionally unstable. In addition we will learn about various stable and consis-
tent schemes such as theleapfrog, the upstream(or upwind) theLax-Wendroffand theSemi-
Lagragianschemes. Moreover we will learn about how to avoid the initial problem in centered
in time schemes, and concepts such asnumerical dispersion, numerical diffusionandunphysical
modesand how to minimize their effect. In particular we will learnhow to correct for numerical
diffusion by using aflux corrective method.

5.1 The one-dimensional advection equation

Recall that the advective flux vectorFA = vθ wherev is the wind in the atmosphere or current
in the ocean. Let us assume that the Boussinesq approximation is valid. Thenv is non-divergent,
that is,∇ · v = 0. Under these circumstances the advection equation (3.18) reduces to

∂tθ + v · ∇θ = 0. (5.1)

As we did for the diffusion problem we will reduce it to its simplest form1, and therefore consider
a one-dimensional advection process throughout this chapter. Consequently we letv = ui,
whereu is the advection speed along thex-axis. Note that in generalv is determined from the
momentume equation and so varies in both time and space. However, if we requirev = ui and
the Boussinesq approximation to be valid we get∂xu = 0, in which case the space dependence
vanish. To keep things as simple as possible we therefore assume thatu = u0 whereu0 is
uniform in both time and space. Hence from (5.1) we get

∂tθ + u0∂xθ = 0. (5.2)

1“Make things as simple as possible, but no simpler” Albert Einstein (1879-1955)
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The general analytic solution to (5.2) is2

θ = θ(x− u0t). (5.3)

To illustrate this let us assume thatθ is a good function (cf. Chapter 2, Section 2.11 on page 27).
Then we may represent it by a Fourier series, that is,

θ(x, t) =

∞∑

m=0

Θm(t)e
iαmx, (5.4)

whereαm is the wavenumber of mode numberm, andΘm is the associated amplitude of that
mode3. By differentiating (5.4) with respect tox and then with respect to timet, and substituting
the results into (5.2), we get

∞∑

m=0

(
dΘm

dt
+ iαmu0Θm)e

iαmx = 0. (5.5)

This is true only as long as

dΘm

dt
+ iαmu0Θm = 0 ; ∀m. (5.6)

Hence we get
Θm = Θ0

me
−iαmt, (5.7)

whereΘ0
m is the initial value of the amplitude of wavenumber modem at timet = 0. Substituting

(5.7) into (5.4) we get

θ(x, t) =
∞∑

n=0

Θ0
me

iαm(x−u0t), (5.8)

which indeed shows that the solution is a function ofx−u0t only. Moreover (5.8) shows that all
the waves propagates with same speedu0. An observer travelling with that speed will therefore
experience no change in the propertyθ as time progresses. This is line with the results of Section
3.4 on page 36, that is, if the wind (or current) is non-divergent then there is no change in the
variance.

Finally, let us assume that the initial condition is specified by a single harmonic (monochro-
matic) wave of wavelengthλ and amplitudeA. Then initially

θ(x, 0) = Aei
2π
λ
x, (5.9)

and the only possible solution is a monocromatic wave of wavelengthαm = α = 2π/λ and
Θ0

m = A, and the solution (5.8) becomes

θ(x, t) = Aei
2π
λ
(x−u0t). (5.10)

2Exercise 1 on page 90 at end of this Chapter.
3We note that solving (5.2) for a limited domain, sayx ∈ [0, L], there is an upper bound to the wavelength, that

is, there is a lower bound onαm.
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This particular solution is a wave of wavelengthλ propagating with a phase speedu0 in the
positivex direction (assumingu0 > 0). As alluded to in Chapter 1, this solution is typical of
hyperbolic systems. Indeed, the solutions (5.3), (5.8) and(5.10) are all such that if we travel
along with the advection speed we will experience no change in the propertyθ. If we, however,
observe the wave from a fixed position in space, the propertyθ will change in accord with (5.3)
as the “wave” passes by. In fact this may be inferred from Section 3.4. In our case the velocity
is non-divergent. From (3.19) then follows that the variance of θ is conserved implying that any
initial distribution of the propertyθ is conserved as time progresses.

The formal solution (5.8) underscores that the general analytic solution (5.3) to the advection
equation consists of waves of various wavelengths (wavenumbers) and amplitudes all propa-
gating at the same speedu0. Furthermore, (5.8) underscores that the wave that dominates the
solution is the wave belonging to the mode that contains mostenergy, that is, the wave that
initially has the largest amplitudeΘ0

m.

5.2 Finite difference forms

Our concern is to develop a method to solve (5.2) numerically. To this end we discretize (5.2)
following the procedure in the previous chapter. Thus we start by replacing the terms in the
advection equation by appropriate FDAs. Since we require our numerical solution to converge to
the analytic solution, which is equivalent to require that our numerical schemes are numerically
stable and consistent, this might not be quite straightforward. If the scheme turns out to be
unstable or inconsistent it is of no use to us and has to be discarded. Hence once a finite difference
form is chosen we have to analyze it with respect to its stability and consistency. The former is
performed making use of von Neumann’s method (cf. Section 4.4), while the latter is analyzed
by use of Taylor series (cf. Section 2.6) as outlined in Section 4.9 on page 52.

Let us start by applying the forward in time and centered in space (FTCS) scheme that worked
well for the diffusion equation. In accord with (2.61) a forward in time FDA for the time rate of
change based on Taylor series is

[∂tθ]
n
j =

θn+1
j − θnj
∆t

. (5.11)

In a similar fashion, a centered in space FDA for the first order space derivative in (5.2) is by use
of (2.63)

[∂xθ]
n
j =

θnj+1 − θnj−1

2∆x
. (5.12)

By replacing the two terms in (5.2) by the FDAs (5.11) and (5.12), and solving with respect to
θn+1
j we get

θn+1
j = θnj − u0

∆t

2∆x

(
θnj+1 − θnj−1

)
(5.13)

which is then our first constructed numerical scheme to solvethe advection equation. As is
common we will refer to (5.13) as theEuler scheme.

Since the Euler scheme (5.13) is based on Taylor series expansions, we know a priori that
the consistency requirement is satisfied. It therefore remains to analyze its stability to satisfy
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ourselves that the scheme is stable and hence convergent. Tothis end we make use of von
Neumann’s method. Hence we start by substituting the discrete Fourier component (4.25) into
(5.13). After some manipulations we get

Θn+1 = Θn −
u0∆t

2∆x

(
eiα∆x − e−iα∆x

)
Θn, (5.14)

where we have divided through by the common factoreiαj∆x. Recalling the definition of the
growth factor (4.26), and noting thateiα∆x − e−iα∆x = 2i sinα∆x, we get

G = 1− iλ, (5.15)

where

λ =
u0∆t

∆x
sinα∆x. (5.16)

We observe that the growth factor is a complex number with a real part given by1 and an
imaginary part given byλ. According to von Neumann’s method we are required to evaluate
the absolute value of the growth factor. To this end we use thewell known property of complex
numbers, namely that its absolute value equals the square root of the sum of the squares of the
real and imaginary parts4. Thus

|G| =
√
1 + λ2. (5.17)

Sinceλ2 in general is a positive definite the radical is always largerthan one, and hence|G| ≥ 1.
Only for the special wavenumbers that makesinα∆x = 0 we get |G| = 1. The scheme is
therefore in generalunconditionally unstable. We then have the somewhat curious result that
although the forward in time, centered in space scheme worked successfuly for the diffusion
problem, it is totally unacceptable with regard to the advection problem.

Never use a forward in time, centered in space scheme for the advection problem.
It always leads to an unconditionally unstable scheme.

This does not come as a total surprise. As alluded to in Chapter 2 the advection equation and
the diffusion equation represent quite different physics and have quite different characteristics.
While the diffusion equation is parabolic the advection equation is hyperbolic. We should there-
fore expect that a discretization that works well for the diffusion problem does not necessarily
work well for the advection problem.

Thus we have to replace the Euler scheme by a discretization that leaves us with a stable
numerical scheme. In fact there are many stable and consistent schemes suggested over the past
to solve the advection equation (e.g.,O’Brien, 1986, page 165 and onwards). The reason is that
advection is one of the most prominent processes regarding the motion of the atmosphere and the
ocean. As in real life there is no such thing as a perfect scheme. The various schemes all have ad-
vantages and disdvantages. Often a new scheme is suggested to minimize unwanted properties of

4LetA = a+ ib be an imaginary number with real parta and imaginary partb. Then|A| =
√
AA∗ =

√
a2 + b2

whereA∗ = a− ib is the complex conjugate ofA.
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other schemes, while other schemes are suggested focusing on their efficiency on the computer.
Because of the dramatic increase in the power and speed of computers over the years the earlier
requirements of computer efficiency is simply lessened today. The focus is therefore shifting
towards deriving schemes that provide better conservationproperties and higher order accuracy,
say schemes ofO(∆t4) andO(∆x4) or higher (cf. Section 10.1 on page 159). Among the for-
mer are so called flux corrective schemes (cf. Section 5.16 onpage 87) and semi-Lagrangian
schemes (cf. Section 5.12 on page 80).

It is nevertheless constructive to analyze some of the earlier schemes. In particular we will
study schemes that forms the basis for many of the more recently suggested schemes. Thus we
start by analyzing four earlier schemes, namely theleapfrog scheme, theUpwind or Upstream
scheme, theDiffusive scheme, and theLax-Wendroff scheme.

5.3 The leapfrog scheme

We showed in the previous section that the forward in time Euler scheme yielded an uncondi-
tionally unstable scheme. It is therefore natural to test out whether a centered in time scheme
would work better despite the fact that a centered in time scheme yielded an unconditionally
unstable scheme applied to the diffusion equation. In fact the centered in time and centered in
space scheme (CTCS) is stable and was early on employed to solve the advection equation in
atmospheric and oceanic problems. It is still fairly popular and widely used at least as one option
in many atmospheric and oceanic numerical models even today, and is commonly referred to as
the leapfrog scheme.

To construct the leapfrog scheme we use Taylor series expansions to ensure that the scheme
is consistent. Thus we simply replace the forward in time FDAfor the time rate of change used
in the Euler scheme by one which is centered in time. We thus replace (5.11) by (2.62), while
keeping the centered in space FDA (5.12) to the first order space derivative. By replacing the two
terms in (5.2) by their respective FDAs (2.62) and (5.12), and solving with respect toθn+1

j , we
get

θn+1
j = θn−1

j − u0
∆t

∆x

(
θnj+1 − θnj−1

)
. (5.18)

Since we used centered FDAs in both time and space to derive the finite difference equation
(5.18) the truncation error is ofO(∆x2) + O(∆t2). The scheme is therefore often referred to
as a second order scheme5. Inspection of (5.18) shows that we only use information about the
variableθ from all the grid points surrounding it inx, t space, but do not incorporate information
of the variable from the grid pointxj , tn itself. We are in a sense leapfrogging the grid point
xj , t

n, and the name of the scheme is derived from this fact.
We underscore that since the leapfrog scheme is derived exclusively using Taylor series, it is

a consistent scheme. Since it is also stable it satisfies Lax theorem. Thus its numerical solution
approaches the continuous solution as∆x and∆t tend to zero. The associated stability condition

5In describing their model people often writes “..., while a second order scheme is employed for advective
terms”.
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is detailed in the next scetion, where the famous Courant-Friedrich-Levy or CFL condition is
presented.

As disclosed above the scheme is traditionally fairly popular and still widely used for three
main reasons. For one the scheme is, as shown in Section 5.4, neutrally stable. Hence there is
no numerical or artificial dissipation (damping) associated with the scheme, a highly desirable
property. Secondly the scheme is of second order accuracy. Moreover, the scheme is explicit and
thus easy to implement, and last but not least it works fast and efficiently on most computers.

Finally we refer to the fact that the leapfrog scheme also hassome disadvantageous proper-
ties. First the scheme contains what is described asnumerical dispersionthat sometimes leads to
negative tracer concentrations (cf. Section 5.5 on page 67). Secondly the scheme (cf. Section 5.7
on page 70) contains what is labeledunphysical modeswhich has to be dealt with. Finally, since
the scheme is centered in time, we also have to deal with the initial value problem disclosed in
Section 4.6 on page 48.

5.4 Stability of the leapfrog scheme: The CFL condition

To analyze its stability we make use of von Neumann’s method as outlined in Section 4.4. Thus
we first replace the dependent variableθ in (5.18) by its discrete Fourier component (4.25) to
give

Θn+1 = Θn−1 − 2iu0
∆t

∆x
sinα∆xΘn (5.19)

To find the growth factorG we first make use of (4.26) and then multiply by the growth factor to
obtain

G2 + 2iλG− 1 = 0, (5.20)

where as in (5.16)

λ = u0
∆t

∆x
sinα∆x. (5.21)

The two solutions for the growth factor are

G1,2 = −iλ±
√
1− λ2, (5.22)

and hence they are complex functions. This was to be expectedsince the factor in front of the
first order term in (5.20) is imaginary. We note that if the radical in (5.22) is negative, that is,
λ ≥ 1, then the two solutions becomes purely imaginary functions. We also observe that under
these circumstances|G1| ≥ 1. Hence for a stable scheme we have to require that the radicalin
(5.22) is positive. Then reusing the theorem that the absolute value of a complex number is the
square root of the complex number itself multiplied by its complex conjugate we get (cf. eq.
5.17 of Section 5.2)

|G1,2| =
√
G1,2G∗

1,2 =
√
1− λ2 + λ2 = 1. (5.23)

Since by definitionΘn+1 ≡ |G|Θn it follows that there is no artificial or numerical dissipation
(damping) involved. The scheme (5.18) is thereforeneutrally stable. We note that since we
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have assumed the advection velocity to be constant (i.e.,v = u0i) its gradient is zero. Hence it is
highly desirably that the property of the scheme is in line with the property of advection processes
as outlined in Section 3.4, namely that when the Boussinesq approximation is observed the total
variance should be conserved as well.

We recall that for (5.23) to be true the radical in (5.22) mustbe positive. Hence

1− λ2 ≥ 0 or |λ| ≤ 1. (5.24)

Since−1 < sinα∆x < 1 we note that if

|u0|
∆t

∆x
≤ 1 (5.25)

is true then (5.24) is satisfied. Thus (5.25) is a sufficient condition for stability for the leapfrog
scheme (5.18). The condition (5.25) is referred to as theCourant-Friedrich-Levy conditionor
simply the CFL condition. The ratio or non-dimensional number

C = |u0|
∆t

∆x
(5.26)

is usually cited as theCourant number. The CFL condition is therefore commonly written simply
asC ≤ 1. Since∆x more often than not is given by the need to resolve the spatialstructure or
typical wavelengths of the physical problem, the CFL condition becomes a rigorous upper bound
on the time step∆t, that is,∆t ≤ ∆x/|u0|. Therefore the larger the advection speed the smaller
the time step, and the smaller the grid size the smaller the time step.

In the atmosphere and ocean the dominant wavelength (or length-scale) we have to resolve
is associated with the first baroclinic Rossby radius, sayLR. At Norwegian latitudesLR ≈ 1000
km in the atmosphere, while in the oceanLR ≈ 10 km. Thus in the atmosphere the Rossby
radius is well resolved by using a space increment of∆x ≈ 100 km, while in the ocean the
similar space increment is two orders of magnitude smaller,that is,∆x ≈ 1 km. On the other
hand a typical wind speed is about 10 ms−1, while a typical current in the ocean is 0.1 ms−1.
Hence the speed of the ocean currents is two order of magnitudes smaller than the wind speed.
Thus the time step∆t we have to use to satisfy the CFL condition is about 1 day both in the
atmosphere and in the ocean. However, we will show later (Chapter 6) that the condition for
stability is not determined by the advective part of the solution. In fact the speed that enters the
CFL condition is the propagation speed of baroclinic waves,which have serious impact on the
time step we have to apply in ocean and atmospheric models.

5.5 Numerical dispersion

The concept of dispersiveness is well known from other branches of physics and geophysics. In
particular it is a common phenomenon regarding wave dynamics. By throwing stones in a still
water most of us have indeed experienced it in practice. After the initial splash we observe that
circular waves propagates away from the original splash point in such a way that that longer
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waves leads progressively shorter waves. The reason for this is that the phase speed, sayc,
depends on the wavenumber (or wavelength), that is, waves ofdifferent wavelengths propagate
at different speeds. Regarding gravity waves in deep watersthe longer the wavelength the faster
the phase speed. Thus the longer waves will lead the progressively shorter waves. The same is
also true for other types of waves for instance planetary Rossby waves.

Mathematically this is expressed through the dispersion relation ω = ω(α) whereω is the
frequency andα is the wavenumber. Recall that the phase speed is

c =
ω

α
. (5.27)

If the frequency is a linear function ofα, then the phase speed becomes a constant and all waves
propagate at the same speed, that is,∂αc = 0. The solution is then said to benon-dispersive. In
the general case, however,ω is a non-linear function of the wavenumberα. Then∂αc 6= 0 and
hence the phase speed depends on the wavelength. The solution is then said to bedispersive.
Recall that the energy contained in the wave propagates withthe group velocity defined by

cg = ∂αω = α∂αc+ c. (5.28)

Hence if the wave is non-dispersivecg = c and the energy contained in the wave propagates at
the same speed as the wave itself. On the other hand if the waveis dispersive then both the phase
speed and the group velocity depend on the wavelength. Moreover if ∂αc < 0, which is the case
for gravity waves, then the waves travel at speeds faster than their group velocity. Thus gravity
waves tend to travel faster than their energy is propagated6.

If we apply a wave solution to the advection equation (5.2), that is,

θ = Θ0e
iα(x−ct), (5.29)

we find that the phase speed isc = u0. Under these circumstances all the waves propagates with
the same constant advection velocity, namelyu0, and hence the true solution to the advection
equation is non-dispersive. The question then arises. Is this true for our employed numerical
scheme? To investigate this we simply apply a similar analysis based on the FDA to the advection
equation using a discrete version of (5.29), that is,

θnj = Θ0e
iα(j∆x−c∗n∆t), (5.30)

wherec∗ is the wave speed of our numerical scheme.
As an example let us consider the leapfrog scheme (5.18). We know that this scheme is

neutrally stable. Furthermore, as long as all the gradientsare well resolved by our grid it is a
superb scheme in the sense that it is a stable and consistent scheme with no numerical dissipation.
To get started we first substitute the discrete Fourier component (5.30) into (5.18). We then get

−2i sin(αc∗∆t) = −2iu0
∆t

∆x
sin(α∆x) (5.31)

6For capillary waves∂αc > 0 and hence a capillary wave travels at a speed slower than its energy.
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or

c∗ =
1

α∆t
arcsin

(
u0

∆t

∆x
sinα∆x

)
. (5.32)

Obviously∂αc∗ 6= 0. The leapfrog scheme is therefore dispersive. Since this dispersiveness is
due to the FDA, that is, associated with our numerical solverand hence is artificial, we commonly
refer to this asnumerical dispersion. We note that as∆x and∆t goes to zero while|u0|∆t ≤ ∆x,
that is, the stability condition is observed, thenc→ u0 and the wave becomes non-dispersive.
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Figure 5.1: Numerical dispersion for the leapfrog scheme. The curves depicts the numerical phase
speedc∗ as a function of the wavenumberα based on (5.32) for various values of the Courant number
C = |u0|∆t/∆x. The vertical axis indicates the phase speed normalized by the advection speedu0.
The horizontal axis indicates the wavenumber normalized byinverse space increment∆x or π/∆x. The
analytic dispersion curve is just a straigt line corresponding to the phase speedc∗ = u0, that isc∗/u0 = 1.
As the wavenumber increases (that is the wavelength decreases) the numerical phase speed deviates more
and more from the correct analytic phase speed for all valuesof the Courant number. For wavenumbers
which givesα∆x/π > 0.5, that is for waves of wavelengthsλ < 4∆x the slope of the curves indicates that
the group velocity is negative. Thus for waves of wavelengths shorter than4∆x the energy is propagating
in the opposite direction of the waves.

This is visualized in Figure 5.1 showing the normalized numerical phase speed as a function
of the normalized wave number for various Courant numbers. The figure clearly exhibit the
dispersive nature of the leapfrog scheme. By inspection of Figure 5.1 we also notice, as was
first discerned byGrotjhan and O’Brien(1976), that the dispersiveness gets worse the less the
Courant number. In fact from (5.28) follows thatcg is zero when

α∂αc = −c. (5.33)

By use of (5.32) it follows that this is true regardingc∗ for wavenumbers satisfyingcos(α∆x) =
0, that is, for wavenumbers

αm =
1

2
(2m− 1)π, m = 1, 2, . . . (5.34)
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We therefore conclude that the longest wave for whichcg = 0 is form = 1, that isλ = 2π/α1 =
4∆x. As displayed in Figure 5.1 this corresponds to the normalized wavenumber being equal to
0.5. For higher wavenumbers, that is, waves whose wavelength are shorter than4∆x the group
velocity actually becomes negative. Thus if the wave is poorly resolved the leapfrog scheme will
actually propagate energy opposite to the wave itself. Thisis clearly unphysical and must be
avoided.

It is therefore extremely important that the scales that dominates the property that is advected
is well resolved. Let the dominant wavenumber beα. Then by looking at Figure 5.1∆x must
be chosen so thatα∆x < 0.3π for Courant numbers close to one and even less if the Courant
number is smaller.

5.6 The initial problem in CTCS schemes

Another problem is that the leapfrog scheme requires more than on boundary condition in time.
This is referred to as the initial value problem. We have already touched upon this problem in
Section 4.2 regarding the diffusion problem. Thus the question arises how to start the time march-
ing procedure when employing the leapfrog scheme. To our rescue comes the Euler scheme7.
Although, as shown in Section 5.2, it is unconditionally unstable, we may nevertheless make use
of the Euler scheme when applying it to a single time step only.

Thus we start by using the scheme

θ1j = θ0j − u0
∆t

2∆x

(
θ0j+1 − θ0j−1

)
. (5.35)

For the time level 2 and onwards we then use the leapfrog scheme (5.18). The step (5.35) and
more generally the forward in time, centered in space schemeis usually referred to as the Euler
scheme. We emphasize that although the Euler scheme is unconditionally unstable it does not
ruin the solution when applied for one time step only. It may even be used from time to time to
avoid the unphysical mode inherent in the leapfrog scheme (cf. Section 5.7).

5.7 Computational modes and unphysical solutions

In Section 5.5 above we showed that the leapfrog scheme contains numerical dispersion. Al-
though this property, as it name suggests, have a physical interpretation it is nonetheless results
of the employed scheme and hence unphysical or a numerical artifact. Later (Section 10.6 on
page 177) we will show that there exists a method called the spectral method which avoids the
dispersion inherent in the leapfrog scheme. However, this method is applicable only for global
models. For limited area models there is no such remedy available.

We will now show that the leapfrog scheme contains yet an additional unphysical property,
namely falsecomputational modesor numerical modes that leads to unphysical solutions. Let

7Any forward in time scheme may be used for this purpose
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us start by assuming that the initial condition is similar tothat given in (5.9), that is, a single
harmonic wave with wave numberα0 and amplitudeΘ0. The true solution is then given by

θ = Θ0e
iα0(x−u0t), (5.36)

that is, a single monochromatic wave with wavenumberα0 propagating with the phase speedu0
in thepositivex direction. Recall that any good function can be written in terms of an infinite
sum of waves (cf. Section 4.3 on page 43). Thus if we are able tofind the solution for one
monochromatic wave we find the solution to any arbitrary initial condition by summing up (in
wavenumber space) over all possible wavenumbers.

To reveal that the leapfrog scheme actually contains two modes we will solve it analytically
using the monochromatic wave of wavenumberα0 and amplitudeA as our initial condition, that
is, initially

θ0j = Aeijα0∆x; ∀j (5.37)

We start by recalling that in terms of the growth factorG = Θn+1/Θn, the analytic solution to
any numerical scheme is

θnj = Θne
ijα∆x = GΘn−1e

ijα∆x = GnΘ0e
ijα∆x (5.38)

where the last equality follows by induction. Furthermore we recall from the stability analysis of
the leapfrog scheme (cf. Section 4.4 on page 44) that the growth factor for this scheme has two
solutions. Thus the full solution to the leapfrog scheme is

θnj = (Gn
1Θ1 +Gn

2Θ2)e
ijα∆x, (5.39)

whereΘ1 andΘ2 are as yet two unknown constants. The two possible growth factors are as given
by (5.22) on page 66. For our purpose we rewrite these two solutions as

G1 = P ∗, and G2 = −P, (5.40)

where
P =

√
1− λ2 + iλ and P ∗ =

√
1− λ2 − iλ (5.41)

are complex conjugate numbers andλ is given by (5.21). Note that we have assumed that the
CFL condition for stability is satisfied so that

√
1− λ2 is a real number. Recall that any complex

numberB = a + ib may be writtenB = |B|eiφ where|B| =
√
a2 + b2 andφ = arcsin(b/|B|).

In our case|P | = |P ∗| = 1 and hence we get

P ∗ = eφ1 where φ1 = arcsin(−λ) = − arcsinλ, (5.42)

P = eφ2 where φ2 = arcsinλ. (5.43)

From (5.32) follows that

arcsinλ = arcsin(u0
∆t

∆x
sinα∆x) = αc∗∆t. (5.44)
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Thus we get
G1 = e−iαc∗∆t and G2 = −eiαc∗∆t (5.45)

Substituting these solutions into (5.38) yields

θnj = Θ1e
iα(j∆x−c∗n∆t) + (−1)nΘ2e

iα(j∆x+c∗n∆t), (5.46)

Invoking the one and only initial condition (5.37) we finallyobtain

θnj = (A−Θ2)e
iα0(j∆x−c∗n∆t) + (−1)nΘ2e

iα0(j∆x+c∗n∆t). (5.47)

We note that the first term on the right-hand side of (5.47) is awave propagating in the
positivex direction with phase speedc∗ and amplitudeA − Θ2. In contrast the second term on
the right-hand side is a wave propagating in thenegativex direction, but with the same phase
speed. Furthermore, the latter has an amplitude alternating between±Θ2. We conclude that
by making use of the leapfrog scheme, the finite difference solution contains two solutions in
the form of two waves propagating in opposite directions with the dispersive phase speed given
by (5.32). In contrast the true solution (5.10) to the advection equation contains only one wave
that propagates in thepositivex direction with phase speedu0. The two waves that occur in the
finite difference solution is due to the fact that the leapfrog scheme is of second order. As such
it requires us to give two boundary conditions in time. We aretherefore in need of an additional
condition to determine the remaining constant, which is notat our disposal.

The latter problem is associated with the initial boundary problem discussed in Section 5.6
above, but manifests itself in the unknown constantΘ2 in (5.47). One remedy suggested in
Section 5.6 is to apply an Euler step as the first step. Note that this was suggested to start the
time marching problem, otherwise we had to assign a value toθ at the time step prior to the initial
time. We recall that the Euler step (5.35) is

θ1j = θ0j − u0
∆t

2∆x

(
θ0j+1 − θ0j−1

)
. (5.48)

Substituting the initial condition (5.9) into (5.48) and (5.47) (lettingn = 1) the additional condi-
tion becomes8

A[1− i sin(α0c
∗∆t)] = (A−Θ2)e

−iα0c∗∆t −Θ2e
iα0c∗∆t (5.49)

and hence that

Θ2 = −A1− cos(α0c
∗∆t)

2 cos(α0c∗∆t)
. (5.50)

The complete finite difference solution is then

θnj = A
1 + cos(α0c

∗∆t)

2 cos(α0c∗∆t)
eiα0(j∆x−c∗n∆t) + (−1)n+1A

1− cos(α0c
∗∆t)

2 cos(α0c∆t)
eiα0(j∆x+c∗n∆t). (5.51)

We observe, as mentioned in the previous Section 5.5, that aslong as the stability criteria
(5.25) is satisfied thenc∗ → u0 when∆t and∆x goes to zero independently. Under these
circumstances

1 + cos(α0c
∗∆t)

2 cos(α0c∗∆t)
→ 1 and

1− cos(α0c
∗∆t)

2 cos(α0c∆t)
→ 0. (5.52)

8Note that from (5.31) followsu0
∆t
∆x

sin(α0∆x) = sin(α0c
∗∆t)
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Thus as we allow∆t→ 0 and∆x→ 0 the first term on the right-hand side of (5.51) approaches
the true solution while the second term vanishes. We therefore conclude that the second term is
an unphysical or computational mode while the first term is the physical mode. The occurrence of
the two modes in the leapfrog scheme are sometimes referred to astime splittingin the literature.

It is of utmost importance that we do control the computational mode so as not to create
unphysical solutions. Unless we do it may create noise in ourcalculations, particularly true since
it alternates between attaining positive and negative values. Moreover, in extreme cases it may
even generate numerical instabilities.

5.8 How to get rid of the computational mode: The Asselin
filter

The simplest way to get rid of the numerical or unphysical mode in the leapfrog scheme is from
time to time to replace it with a forward in time scheme, e.g.,the Euler scheme (cf. Equation 5.13
on page 63). Although the Euler scheme is numerically unstable, we may still apply it for single
time steps without destroying the stability of the leapfrogscheme or any other stable schemes.

Another method, originally suggested byRobert(1966) and further developed byAsselin
(1972), is to apply a time filtering technique. Since the computational mode alternates between
positive and negative values from time step to time step it isobvious that a time filter will work
the trick. We start by remarking that in general a time filter,invoking only the neighboring time
levels, may be written

θ(x, t) = γθ(x, t +∆t) + (1− 2γ)θ(x, t) + γθ(x, t−∆t), (5.53)

whereθ(x, t) is the filtered function andγ is a weighting parameter. By use of the notation
introduced in Section 2.9 we get

θ
n

j = θnj + γ[θn+1
j − 2θnj + θn−1

j ]. (5.54)

Note that ifγ = 0 we retrieve the original function, while forγ = 1
4

the filter is the standard
1-2-1 filter,

θ
n

j =
1

4
[θn+1

j + 2θnj + θn−1
j ], (5.55)

which gives twice the weight to the mid time leveln. We also emphasize that the last term on
the righ-hand side of (5.54) is a diffusion term with a diffusion coefficientγ∆x2. Thus to apply
a filter is akin to add a diffusion term.

To investigate the properties of the filter it is common to usethe so calledresponse function
defined by

R(γ) =
θ
n

j

θnj
(5.56)

As before we study one single period or frequencyω only. To this end we represent the function
θ by its Fourier component in time, or

θnj = θ̂je
iωn∆t. (5.57)
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Substituting this into (5.54) we get

R(γ) = 1− 2γ + 2γ cosω∆t. (5.58)

For the 1-2-1 filter, that is, forγ = 1
4
, the response function becomes

R(
1

4
) =

1

2
(1 + cosω∆t) (5.59)

Since the period isT = 2π/ω we notice that for the standard 1-2-1 filterR = 0 for waves of
periodT = 2∆t, whileR = 1

2
for waves of periodT = 4∆t. Therefore waves or noise on the

Nüquist frequency, that is, waves of periods2∆t, vanish. Since the unphysical mode inherent
in the leapfrog scheme alternates between attaining negative and positive values from time step
to time its dominate waveperiod is exactly2∆t. The 1-2-1 filter is therefore a perfect filter in
order to get rid of the computational mode inherent in the leapfrog scheme. Moreover, the noise
of scales close to slightly longer periods, say4∆t, is damped to half of their original energy,
while the effect on the longer periods are minimal. It was these advantageous properties of the
the 1-2-1 filter that leadRobert(1966) andAsselin(1972) to suggest to use this method to damp
the computational mode inherent in the leapfrog scheme.

In practice we do this as follows. Let us assume that the filtered solution have been deter-
mined for time leveln − 1, that is, assume thatθ

n−1

j is known and has been stored. Let us
furthermore assume that the unfiltered value at time leveln, that is,θnj , has been stored as well.
Applying the leapfrog scheme (5.18) to compute the unfiltered value at the new time time level
n + 1, that is,θn+1

j , using the unfiltered valuesθnj at time leveln and the filtered valuesθ
n−1

j at
time leveln− 1 we get

θn+1
j = θ

n−1

j − u0
∆t

∆x
(θnj+1 − θnj−1). (5.60)

Next we compute the filtered values at time leveln using the filter (5.54), that is,

θ
n

j = θnj + γ
[
θn+1
j − 2θnj + θ

n−1

j

]
. (5.61)

We may then advance to the next time level reusing (5.60).
We empahsize though, as referred to, that applying a time filter like the Asselin filter produces

numerical diffusion and hence impacts the numerical stability9. It is possible to show that while
the numerical diffusion increases with increasing values of the weighing parameterγ the critical
value for stability decreases. The latter implies that the stability criterion becomes more strict and
that we have to diminish the time step∆t. This fact entails that although we wish to employ the
simple 1-2-1 filter since it exactly kills the computationalmode, it becomes unstable unless we
decrease the time step. Decreasing the time step in turn means that our computations becomes
less efficient. It is therefore common to apply a lower value for the weighing function, say
γ = 0.08. Note that even a weak Asselin filter eventually modifies the longer wave periods by
diffusion. Hence we must apply the Asselin filter with some care and not necessarily for every
time step.

9Since we in practise use (5.60) the diffusion term is not as straightforward as alluded to after (5.54)
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5.9 The upstream scheme

One of the unwanted properties of the leapfrog scheme is thatit is inherently dispersive (cf.
Section 5.5) causing it to generate negative tracer concentrations, even though concentrations are
positive definite quantities by definition. A scheme that conserves the positive definite nature
of concentrations is the so calledupwind or upstreamscheme. Due to this fact it was quite
popular early on and is quite common even today. As the name indicates the scheme make use of
information exclusively from points upstream to calculatethe value at the new time level. Thus
if u0 ≥ 0 then it uses information from the pointxj−1, and ifu0 < 0 is uses information from
pointsxj+1. The upwind scheme is a first order, two time level scheme, that is, it is forward in
time and one-sided in space,. Hence the truncation error isO(∆t) +O(∆x). Thus, again using
Taylor series expansions, we get

θn+1
j = θnj − |u0|

∆t

∆x

{
θnj − θnj−1 ; u0 ≥ 0
θnj − θnj+1 ; u0 < 0

. (5.62)

The scheme is conditionally stable under the CFL condition,that is, |u0|∆t ≤ ∆x or ∆t ≤
∆x/|u0| (cf. Exercise 2 on page 90). We note for later convenience that (5.62) may be written as

θn+1
j = (1− C)θnj + C

{
θnj−1 ; u0 ≥ 0
θnj+1 ; u0 < 0

. (5.63)

whereC is the Courant number as defined in (5.26).
One of the major advantages of the upwind scheme is that it conserves the fact that tracer

concentration is a positive definite quantity. Furthermorewe observe that it is a consistent scheme
since it is derived using Taylor series. Being a two level scheme it also works fast end efficient
on the computer. Despite of these circumstances the upwind scheme has one major drawback.
It contains, as detailed in Section 5.15 on page 85, what we refer to asnumerical diffusion.
Depending on the choices we make regarding the time step and the space increment the numerical
diffusion may be large and sometimes larger than the actual physical diffusion of the original
problem. It therefore tends to even out the solution artificially as time progresses. In particular
areas where large gradients appear, e.g., frontal areas, are prone to artificial diffusion. Thus fronts
are diffused which in turn inhibits realistic baroclinic instability processes.

In addition we observe that the upwind scheme has truncationerrors that are first order in
time and space, that is, its accuracy isO(∆t) andO(∆x), which is one order of magnitude less
than the leapfrog scheme. Because of these rather disadvantageous properties this author does
not recommend the use of the upstream scheme alone. Its usefulness is that it forms the basis for
more complicated schemes, e.g., the Lax-Wendroff scheme and the flux correction schemes.

5.10 The diffusive scheme

As shown in Section 5.2 the FTCS scheme applied to the advection equation gives an uncondi-
tionally unstable scheme. In an attempt to avoid this numerical instability, but retain a forward
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in time scheme it was early on suggested to replaceθnj in (5.13) by1
2
(θnj+1 + θnj−1). Thus we get

θn+1
j =

1

2
(θnj+1 + θnj−1)− u0

∆t

2∆x

(
θnj+1 − θnj−1

)
. (5.64)

To be useful to us we must satisfy ourselves that the scheme isstable and consistent. The latter
is not obvious in this case since the scheme is no longer basedon Taylor series.

To analyze its consistency we first subtractθnj on both sides of (5.64) to get

θn+1
j − θnj =

1

2
(θnj+1 − 2θnj + θnj−1)− u0

∆t

2∆x

(
θnj+1 − θnj−1

)
. (5.65)

Then using Taylor series we observe that the terms on the left-hand side becomes

θn+1
j − θnj = ∂tθ|nj∆t +

1

2
∂2t θ|nj∆t2 +O(∆t3) (5.66)

while the first term on the right-hand side become

1

2
(θnj+1 − 2θnj + θnj−1) =

1

2
∂2xθ|nj∆x2 +O(∆x4). (5.67)

The last term on the right-hand side of (5.65) becomes

u0
∆t

2∆x

(
θnj+1 − θnj−1

)
= u0∆t

(
∂xθ|nj +

1

6
∂3xθ|nj∆x2 +O(∆x4)

)
, (5.68)

Substituting (5.66) - (5.68) into (5.65) and rearranging terms we therefore get

∂tθ|nj + u0∂xθ|nj =
1

2

∆x2

∆t
(1− C2)∂2xθ|nj +O(∆x2) +O(∆t). (5.69)

whereC is the Courant number as defined in (5.26). Hence we find that the scheme is only
conditionally consistent in that∆x2 has to go to zero faster than∆t. We also observe that
the source of the inconsistency is the first term on the right-hand side of (5.69). We observe
that this term acts as a diffusion term with a diffusion coefficient ofκ = 1

2
∆x2

∆t
(1 − C2). The

finite difference equation (5.64), in which we employ finite space and time increments, therefore
contains a diffusive term not present in the continuous advection equation. This is why the
numerical scheme (5.64) is commonly referred to as thediffusive scheme.

We now turn to analyze the stability of the diffusive scheme.Again using von Neumann’s
method we find that the growth factor is given by

G =
√
1− (1− C2) sin2 α∆x, (5.70)

whereC is the Courant number. Sincesin2 α∆x is a positive definite it follows that|G| ≤ 1 iff
C ≤ 1. Hence the scheme is conditionally stable under the condition that the Courant number is
less than or equal to one. We notice that this condition is exactly the same as the one we derived
for the leapfrog and the upwind schemes.
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5.11 The Lax-Wendroff scheme

To avoid or lessen the impact of the first order numerical diffusion inherent in the diffusive
scheme, to make it consistent, and to increase its accuracy,Richtmyer and Morton(1967) advo-
cated the use of a scheme based on the work ofLax and Wendroff(1960) now commonly referred
to as the Lax-Wendroff scheme. It is a two step scheme which combines the diffusive scheme
and the leapfrog scheme by first performing a diffusive step (also known as the predictor step)
and then add a leapfrog step (also known as the corrective step). In summary we first derive
the solution at the mid time leveltn+

1

2 and at the mid increments in spacexj+ 1

2

(cf. the crosses
marked in the dashed grid of Figure 5.2) employing the diffusive scheme. Then we use the results
as the basis for the corrective step. In the latter we employ the leapfrog scheme to calculate the
value of the variable at the new time level (tn+1) and at the regular grid points in space, that is,
xj (cf. the circled points in the solid grid in Figure 5.2).

× ×

j − 1 j j + 1

n

n + 1
2

n + 1

Figure 5.2: Displayed is the grid layout for the Lax-Wendroff scheme. The solid lines denote the
grid through the circledxj , tn points. The dashed lines denote the grid through thexj+ 1

2

, tn+
1

2 -
points which are marked with a cross.

Thus in the predictor step we construct a forward in time, centered in space finite difference
equation employing the diffusive scheme. Note that in this first step we only proceed to time

leveln+ 1
2
, that is, we computeθ

n+ 1

2

j+ 1

2

using (5.64). Hence we get

θ
n+ 1

2

j+ 1

2

− 1
2

(
θnj+1 + θnj

)

1
2
∆t

+ u0
θnj+1 − θnj

∆x
= 0, (5.71)

or

θ
n+ 1

2

j+ 1

2

=
1

2

(
θnj+1 + θnj

)
− u0

∆t

2∆x

(
θnj+1 − θnj

)
. (5.72)

We note that even though the forward in time, centered in space scheme is unstable the trick of
replacingθnj by half the sum of its nearest space neighbors makes the scheme stable under the
condition that the Courant number is less than or equal to oneas shown in Section 5.10.
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The second step is to employ the leapfrog scheme (5.18) to findθn+1
j , that is, the solution at

time leveln+ 1 at the pointj based on the values found at the mid time level. Thus we get10

θn+1
j = θnj − sgn (u0)C

(
θ
n+ 1

2

j+ 1

2

− θ
n+ 1

2

j− 1

2

)
, (5.73)

whereC is the Courant number. We now eliminate the dependence onn ± 1
2

and j ± 1
2

by
substitution of (5.72) into (5.73). Thus we get

θn+1
j = θnj − 1

2
sgn(u0)C

(
θnj+1 − θnj−1

)
+

1

2
C2
(
θnj+1 − 2θnj + θnj−1

)
, (5.74)

which is the Lax-Wendroff scheme
As shown by (5.74) the Lax-Wendroff scheme is an explicit scheme. Hence we expect it to

be conditionally stable. To analyze its stability we use vonNeumann’s method. We therefore
start by substituting the variables by their respective discrete Fourier components, and find next
the equation for the growth factorG. After some straightforward manipulations we get

G = (1− C2 + C2 cosα∆x)− i sgn(u0)C sinα∆x (5.75)

which shows that the growth factor is a complex function. Themagnitude of the growth factor is
therefore

|G| =
√
(1− C2 + C2 cosα∆x)2 + C2 sin2 α∆x. (5.76)

By performing some straightforward manipulations we get

|G| =
√
1− (1− C)(1 + C)C2(1− cosα∆x)2. (5.77)

The sign of the last term in the radical is determined by the factor 1 − C, the remaining factors
being positive definite quantities. Consequently, as long as 1 − C is positive|G| ≤ 1. The
Lax-Wendroff scheme is therefore, like the leapfrog, the upwind and the diffusive schemes, con-
ditionally stable under the condition that the Courant number is less than one. Other nice features
are the absence of any temporal unphysical mode as for instance present in the leapfrog scheme
(cf. Section 5.7 on page 70), the lack of numerical diffusioninherent in the upwind and diffusive
schemes (cf. Section 5.15 on page 85), and finally the want of any intial value problem present
in the CTCS schemes (e.g., the leapfrog scheme). However, asshown in Figure 5.3, the scheme
is numerical dispersive and contains some numerical dissipation. The latter is minimized by
choosing∆x ≈ u0∆t which is tantamount toC ≈ 1. It may also be minimized by choosingC
close to zero, that is,∆t≪ ∆x/u0, but this is not to be recommnded.

We observe that the last term on the right-hand side of (5.74)looks like an FDA of the second
order derivative ofθ with respect tox, that is, a diffusive term, and it may therefore appear that
the Lax-Wendroff scheme has some inherent numerical diffusion. Moreover if we consider the
first term on the right-hand side it looks like a discrete version or FDA of the first order derivative

10The functionsgn returns the sign of its argument. Thussgn(u0) returns the sign of the velocityu0, that is,
u0 = sgn(u0)|u0|.
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Figure 5.3: Comparison of the numerical solution to the advection equation (5.2) using the
leapfrog, the upwind and the Lax-Wendroff schemes with a Courant numberC = 0.5. The
solution, using a periodic or cyclic boundary condtion, is shown after 10 cycles. The true solu-
tion is the initial bell function shown by the black solid curve. We note that both the leapfrog and
the Lax-Wendroff schemes give rise to numerical dispersion, that the upwind scheme gives rise
to numerical diffusion. Also the Lax-Wendroff scheme has some inherent numerical diffusion,
but as depicted it is smallcompare to the diffusion inherentin the upstream scheme.

of θ. Hence it looks like an Euler scheme with a diffusion term added, or that we are solving an
advection-diffison equation, that is,

∂tθ + u0∂xθ = κ∂2xθ. (5.78)

This is however not the case as shown in the next paragraph.
Another question is whether the scheme is consistent? In contrast to the leapfrog scheme and

the upwind scheme, who are both derived using Taylor series,the latter is not obvious. In fact
we showed in the preceding section that the diffusive scheme, which is the first step we used
above is indeed inconsistent. To analyze the consistency ofthe Lax-Wendroff scheme we start
by substituting the respective Taylor series into (5.74). The result is

∂tθ|nj + u0∂xθ|nj = −1

2

(
∂2t θ|nj − u0∂

2
xθ|nj

)
∆t+O(∆t2) +O(∆x2). (5.79)

Since (5.2) implies that∂2t θ = −u0∂x(∂tθ) = u20∂
2
xθ, we may neglect the first term on the right-

hand side, and hence we get

∂tθ|nj + u0∂xθ|nj = O(∆t2) +O(∆x2). (5.80)
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We first observe that (5.2) is recovered when∆x → 0 and∆t → 0 independently. Hence
the scheme is indeed consistent. Second we observe that the terms neglected areO(∆x2) and
O(∆t2), and hence that the scheme is second order accurate. Moreover, and equally important
we got rid of the apparent diffusive term mentioned in the preceding paragraph.

5.12 The semi-Lagrangian scheme

Some years ago, several attempts were made to construct stable time integration schemes per-
mitting larger time steps than those limited by the CFL condition, e.g., the leapfrog, upstream
and Lax-Wendroff schemes. In the early 1980sRobert(1981) proposed what he referred to as
thesemi-Lagrangiantechnique for the treatment of the advective part of the equations govern-
ing the evolution of the atmosphere and ocean. As an introduction it is useful to apply it to the
one-dimensional advection equation (5.2). Later in Chapter 6 (e.g., Section 6.2 on page 103) we
show how the technique is applied to solve the shallow water equations. We also use this method
below (Section 5.14) to understand why the upwind and leapfrog schemes are unstable when the
CFL condition is violated.

The scheme evolves from analytic methods developed to solvethe breaking of the dam prob-
lem (Stoker, 1957, page 513), a highly non-linear problem. At that time it was referred to as
the method of characteristics. In the 1960s the method was developed into a numerical scheme,
(e.g.,Lister, 1966), but since the works of, e.g.,Robert(1981) it is commonly referred to as the
semi-Lagrangian technique in NWP and NOWP models.

Let the slopes
D∗x

dt
= u(x, t) (5.81)

define special curves in thet, x space (cf. Fig. 5.4), and let us simultaneously define the special
differential operator

D∗

dt
≡ ∂t +

D∗x

dt
∂x. (5.82)

Then the advection equation (5.2) may be rewritten to yield

D∗θ

dt
= 0 (5.83)

along the slopes
D∗x

dt
= u0. (5.84)

We commonly refer to the curves defined by (5.84) as thecharacteristicsand (5.84) as thechar-
acteristic equation. Since the solutions to (5.2) are solutions to (5.83) as well, we often refer
(5.83) as thecompatibility equationin the sense that (5.2) and (5.83) are compatible equations.
Thus either one can be used to arrive at the solution.

We observe that (5.83) tells us thatθ is conserved along the characteristics (5.84). Thus if
we know the solution at timet = 0, that is,θ(x, 0) for 0 ≤ x ≤ L, the solution at any later
time t > 0, and at any particular pointx in space, is found by simply following the characteristic
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x

t
t = tc

t = 0
x = 0 x = L

Figure 5.4: Sketch of the characteristics in thex, t plane. Foru = u0 = constant> 0 the
characteristics are the straight lines sloping to the the right in x, t space as given by (5.81). If
x = Lmarks the end of the computational domain, then all information about the initial condition
is lost for timest > tc.

back from the pointx, t toward its origin at the initial timet = 0 as illustrated in Figure 5.4.
In our case withu0 = constant the characteristics are straight lines with positive slopes1/u0
whenu0 > 0. From Figure 5.4 we may conclude that after a critical timet = tc = L/u0 all
information about the initial distribution ofθ is lost. Indeed fort > tc it follows that the solution
in the computational domain0 < x < L is determined wholly by the boundary condition at
x = 0. Since (5.2) only contains the first derivative with respectto x, only one condition in
x is allowed. The boundary atx = L is therefore open in the sense that there is no boundary
condition that replaces the differential equation there. Indeed the differential equation is valid
also at the artificial boundaryx = L. The physical space therefore, in principle, continues to
infinity. Thus the boundaryx = L is a numerical boundary necessitated by the fact that any
computer, however large, are limited in its capacity. This problem is especially compound for
oceanographic models, since the oceanic spatial scales aresmall compared to the similar scales in
the atmosphere. We return to this problem in Chapter 7 where we investigate details concerning
conditions constraining the solutions at open boundaries.

We emphasize, as alluded to above, that since (5.2) and (5.83) are compatible, a solution
to (5.83) is also automatically a solution to (5.2). We may therefore solve (5.83) employing
numerical methods in which case the numerical scheme is referred to as thesemi-Lagrangian
scheme. We emphasize that the semi-Lagrangian scheme is applicable to much more complex
problems and systems than the simple advection equation (e.g.,Lister, 1966;Røed and O’Brien,
1983), and we return to its application to more complex systems in Chapter 6.

Our problem is thus to solve (5.83) using finite difference approximations. As is common
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Q

Figure 5.5: Sketch of the method of characteristics. The distance between the grid points are
∆t in the vertical and∆x in the horizontal direction. The sloping solid line is the characteristic
through the pointj, n + 1. It is derived from (5.81) and the slope is given by1/u (u > 0). The
point labeledQ is therefore a distanceu∆t to the left ofxj . As long asu∆t < ∆x thenQ is
located betweenxj−1 andxj . If howeveru∆t > ∆x then the pointQ is located to the left of
xj−1.

we divide the computational domain in thex, t space into a grid as displayed in Figure 5.5.
Recalling that in our simple case (5.83) tells us thatθ is conservedalong the characteristics, a
straightforward finite difference approximation to (5.83)is

θn+1
j = θnQ, (5.85)

whereθnQ is the potential temperature at the pointQ in space where the characteristic through the
grid point (xj , tn+1) crosses the time leveln (Figure 5.5). We refer to this point asxQ, and we
find its position along thex-axis by making a finite difference approximation of (5.84),that is,

xj − xQ
∆t

= u0 or xQ = xj − u0∆t. (5.86)

Since we know bothunj andxj , (5.86) is really an equation which determines the location
of xQ. We note that as long asunj∆t < ∆x thenxQ is located between the grid pointsxj and
xj−1. Sinceθnj is known for all grid points, we may interpolate linearly between the adjacent grid
points to findθnQ, or the value ofθ at the locationxQ at time levelt = tn. To this end we may use
a two point linear interpolation. Thus as long asxj−1 ≤ xQ ≤ xj we get

θnQ = θnj−1 +
θnj − θnj−1

∆x
(xQ − xj−1). (5.87)
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SubstitutingxQ from (5.86) into (5.87) we get

θnQ = (1− C)θnj + Cθnj−1, (5.88)

where

C = |u0|
∆t

∆x
(5.89)

is the Courant number. Sinceθ in accord with (5.83) is conserved along the characteristic, that
is, (5.85) is satisfied, we finally get

θn+1
j = (1− C)θnj + Cθnj−1. (5.90)

The advantage of this method is that if the position ofxQ does not fall betweenxj andxj−1,
but for example betweenxj−1 andxj−2, which happens if∆t is such that∆x < u0∆t < 2∆x,
then we simply approximateθnQ by linearly interpolation betweenθnj−1 andθnj−2, that is, we get

θn+1
j = θnj−2 +

θnj−1 − θnj−2

∆x
(xQ − xj−2) = (2− C)θnj−1 + (C − 1)θnj−2. (5.91)

Thus as long as we keep track of the position ofxQ there is no restriction on the time step∆t we
may use, that is, the scheme isunconditionally stable. This is in contrast to the other schemes
where we had to impose the CFL condition for stability.

If we replace the constant speedu0 by a speed that is varying in time and space, sayu(x, t),
then the characteristics are no longer straight lines. Under these circumstances we find the posi-
tion xQ by for instance a higher order finite difference approximation, say,

xj − xQ
∆t

=
1

2

(
unj + un+1

j

)
or xQ = xj −

1

2

(
unj + un+1

j

)
∆t. (5.92)

The position ofxQ thus found we find aθn+1
j by performing a two point interpolation, that is, as

long asxj−1 ≤ xQ ≤ xj we get

θn+1
j = (1− Cn

j )θ
n
j + Cn

j θ
n
j−1, (5.93)

where

Cn
j =

1

2

(
unj + un+1

j

) ∆t

∆x
. (5.94)

5.13 The implicit scheme

As for the diffusion equation we may also construct an implicit scheme for the advection equa-
tion. This is easily constructed by using a backward in time,centered in space scheme. Thus

θn+1
j = θnj − u0

∆t

2∆x

(
θn+1
j+1 − θn+1

j−1

)
,

{
j = 2(1)J − 1
n = 0(1) . . .

. (5.95)
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We observe that this scheme isO(∆t) andO(∆x2), that is, first order in time and second order
in space accurate. We also note that since it is implicit it requires the use of an elliptic solver for
each time step. In this regard the direct elliptic solver outlined in Section 4.11 is a good choice.

To investigate the stability of (5.95) we make use of von Neumann’s method. Thus we get

Θn+1 = Θn − iC sinα∆xΘn+1, (5.96)

which results in a complex growth factor given by

G =
1

1 + iC sinα∆x
. (5.97)

Thus the magnitude of the growth function is

|G| = 1√
1 + C2 sin2 α∆x

(5.98)

which satisfies|G| ≤ 1 for all finite time steps. Thus the implicit scheme, as expected, is
unconditionally stable, and hence avoids the restrictive CFL condition.

Finally we note that the time step, just like the grid size, must be sufficient to resolve the
typical periods of the physical problem. Commonly in atmospheric and oceanic applications the
typical period is much longer than the Nüquist frequency2∆t, and hence the CFL condition
in most cases puts a much more stringent requirement on∆t than the requirement of resolving
the typical periods of the physical problem. Thus for most meteorological and oceanographic
problems the resolution requirement is on the grid size. We notice, however, that if∆t becomes
too large the growth factor will be small implying that the scheme will contain a large numerical
dissipation.

5.14 Physical interpretation of the CFL condition

Figure 5.5 is drawn foru0 > 0, implying thatu0 = |u0|, and may be used to visualize the
CFL criterion for the upwind scheme. First we note that sinceu0 > 0 (5.86) says thatxQ <
xj . Moreover (5.86) also implies that the distance betweenxQ andxj is u0∆t. Thus if we
additionally desire thatxj−1 ≤ xQ thenu0∆t ≤ ∆x. If we compare this result with the upwind
scheme as given in (5.62) we observe that foru0 > 0 the information used to computeθn+1

j does
originate by weighting the two pointsθnj andθnj−1. In fact we may rewrite (5.62) foru0 > 0 to
give

θn+1
j = (1− C)θnj + Cθnj−1, C = |u0|

∆t

∆x
(5.99)

which matches (5.90) exactly. Thus from (5.99) follows thatthe upwind scheme may be inter-
preted as the value ofθ at the time leveln + 1, that is,θn+1

j , is found by a simple weighting of
the valuesθnj andθnj−1 using the Courant number as weight. What the method of characteristics
(5.90) reveals is that the latter interpretation is only valid as long as|u0|∆t ≤ ∆x. This is exactly
what the CFL criterion demands in order to make the numericalupwind scheme stable, that is,
the Courant number must be less than one or that (5.25) must besatisfied.
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Figure 5.6: Displayed is an example of the diffusion inherent in the upwind scheme. The solid
curve shows the initial distribution at time leveln = 0, while the dashed curve (red) shows the
distribution at time leveln = 200. The Courant number isC = 0.5. Cyclic boundary conditions
are used at the boundaries of the computational domain.

Moreover, if|u0|∆t > ∆x then the characteristic throughxj at time leveln + 1 (cf. Figure
5.5) will cross the time leveln to the left ofxj−1, that is,xj−2 < xQ < xj−1. Under these
circumstances the upwind scheme will still use (5.99) to calculateθ at the new time level, that
is, continue to use the weighted information using values atxj andxj−1 at the previous time
level. This is obviously wrong and use of (5.99) will lead to amajor error. If this is allowed
to continue for time step after time step the error accumulates and will finally give rise to a
numerical instability.

The speed defined by∆x and∆t, that is,∆x/∆t, is often referred to as the signal speed
of the grid or simply the grid speed. The CFL criterion (5.25)may therefore be interpreted as
a condition which constrains the grid speed to be larger thanthe advection speedu0. In other
words, the advection speed must be small enough to let the area of dependence be between within
xj−1 andxj+1 at time leveln.

5.15 Numerical diffusion

Although the leapfrog scheme is neutrally stable we have just shown that it has at least one major
disadvantage; it is dispersive. In particular, as displayed in Figure 5.1, this is true when the
resolution is poor, that is, in areas where∆x is inadequate to resolve the dominant wavelength,
that is,α∆x is not necessarily small. Also the impact of the dispersion increases with decreasing
Courant number. In addition as shown in Section 5.7 the leapfrog scheme contains an unwanted
computational mode giving rise to unphysical solution.
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As a result the upstream scheme was for a long time the favoredadvection scheme. Unfortu-
nately also the upstream scheme is far from perfect. It contains what is referred to asnumerical
diffusion. The name derives from the fact that the error made by truncating the Taylor series to
first order to arrive at the finite difference equation (5.65)acts similar to physical diffusion, that
is, the inherent truncation error tend to diminish differences in the tracer distribution. This is
exemplified in Figure 5.6 where an initial narrow, peak like tracer distribution spreads out while
being advected. In contrast the analytic solution that the numerical solution tries to mimic is one
in which the initial tracer distribution is advected without change. We underscore that this does
not imply that any tracer content is lost. The numerical diffusion process, just like its physical
counterpart, conserves the total tracer content. What happens is that the numerical diffusion
smooth out any differences in the initial tracer concentration. Thus it redistributes the initial
tracer distribution while conserving the initial total tracer content. This is evident in Figure 5.6.
Comparing the area under the dashed curve and the area under the solid curve they are actually
the same. Note again that this redistribution is artificial and arises due to the application of the
upstream scheme to solve the advection equation (5.2).

To analyze the origin of the numerical diffusion in the upstream scheme let us reconsider
(5.62). We first rewrite it in terms of an advective flux definedby

F n
j =

1

2

[
(u0 + |u0|)θnj + (u0 − |u0|)θnj+1

] ∆t
∆x

. (5.100)

We note that sinceu0 = sgn(u0)|u0| the last term on the right-hand side of (5.100) is zero when
u0 ≥ 0 and the first term is zero whenu0 < 0. Under these circumstancesF n

j = Cθnj if u0 ≥ 0
andF n

j = −Cθnj+1 if u0 < 0. Thus (5.62) is written

θn+1
j = θnj − (F n

j − F n
j−1), (5.101)

which is valid regardless of the sign ofu0. If we substitute each of the terms in (5.101) by its
associated Taylor series expansion, that is,

θn+1
j = θnj + ∂tθ|nj∆t+ 1

2
∂2t θ|nj∆t2 +O(∆t3),

θnj±1 = θnj ± ∂xθ|nj∆x+ 1
2
∂2xθ|nj∆x2 +O(∆x3),

(5.102)

we get

∂tθ|nj +
1

2
∂2t θ|nj∆t+O(∆t2) = −u0∂xθ|nj +

1

2
|u0|∂2xθ|nj∆x+O(∆x2). (5.103)

We note that by differentiating (5.2) we get∂2t θ|nj = u20∂
2
xθ|nj , and hence by rearranging terms

that

∂tθ|nj + u0∂xθ|nj =
1

2
|u0|(∆x− |u0|∆t)∂2xθ|nj +O(∆x2) +O(∆t2). (5.104)

Defining

κ∗ =
1

2
|u0|(∆x− |u0|∆t) (5.105)
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(5.104) may be written

∂tθ|nj = −u0∂xθ|nj + κ∗∂2xθ|nj +O(∆x2) +O(∆t2). (5.106)

Thus to second order in time and space we solve the equation

∂tθ + u0∂xθ = κ∗∂2xθ. (5.107)

We recognize (5.107) as an advection-diffusion equation (Chapter 3) with a diffusion coef-
ficient κ∗ given by (5.105). The terms of orderO(∆x) andO(∆t) which we neglected when
employing the upstream scheme therefore give rise to a diffusion. This diffusion is unphysical
and an artifact that appears due to the numerical method used. It is therefore referred to asnumer-
ical diffusion. The strength of the numerical diffusion is determined by the diffusion coefficient
defined in (5.105). We note that the diffusion is insignificant if the Courant number is close to
or equals one. This corresponds to the upper limit of the CFL criterion (5.25) for stability, and
is associated with a near neutrally stable scheme. The diffusion term also goes to zero when∆x
and∆t goes to zero, hence showing that the upstream scheme is consistent.

5.16 Flux corrective schemes

In contrast to the second order leapfrog scheme the first order upwind (or upstream) scheme
has the advantage that it is a positive definite scheme. Thus if the distribution of sayθ(x, t)
at some arbitrary timet is such thatθ ≥ 0 for all x then alsoθ ≥ 0 for all later timest =
t+n∆t, n = 1, 2, . . .. Another important property, as exemplified in Figure 5.6 onpage 85, is
that the position of the peak values are correctly propagated at any time without any dispersion.
These are valuable properties well worth retaining in any scheme. The question arises if it is
possible to construct a scheme that retains these properties while at the same time avoids, or at
least minimizes, the numerical diffusion inherent in the scheme?

There are several schemes that offers a solution. Here we will present one of them called
MPDATA11, a scheme first suggested bySmolarkiewicz(1983) (see alsoSmolarkiewicz and Mar-
golin, 1997). It’s key element is to correct the diffusive flux inherent in the upstream scheme.
MPDATA therefore belongs to a class of schemes known asflux corrective schemes. To illustrate
the method we first note that the one-dimensional advection equation (5.2) may be written

∂tθ + ∂xFA = 0, (5.108)

whereFA = uθ, and where the velocityu is considered a function of time and space. As shown
in Section 5.15 solving (5.108) using the upstream scheme results in a solution that to second
order in time and space solves (5.107), that is, an advectiondiffusion equation. Thus, rather than
solving (5.108) we, to second order, appear to solve

∂tθ + ∂x(FA + F ∗
D) = 0, (5.109)

11MPDATA is an abbreviation of “Multiple Positive Definite Advection-Transport Algorithm”
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whereF ∗
D = −κ∗∂xθ is a diffusive flux with a diffusion coefficient (cf. eq. 5.105)

κ∗ =
1

2
|u|(∆x− |u|∆t). (5.110)

Thus the upwind scheme introduces an artificial or numericaldiffusion represented by the flux
F ∗
D. To avoid this unwanted diffusionSmolarkiewicz(1983) suggested to solve

∂tθ + ∂x(FA + F ∗
A) = 0 (5.111)

rather than (5.108). HereF ∗
A = u∗θ is an artificially introduced advective flux whereu∗ is called

theanti-diffusion velocityand the flux itself is called the corrective oranti-diffusive flux. The idea
is to letF ∗

A exactly opposeF ∗
D introduced by the upstream scheme. We achieve this by letting

F ∗
A = −F ∗

D, that is, by lettingu∗θ = κ∗∂xθ. Thus we get

u∗ ≡ κ∗∂xθ

θ
. (5.112)

We note that according to (5.112)u∗ = 0 where∂xθ = 0. Thus the propagation of the
peak values where∂xθ = 0 are not affected by adding the anti-diffusive flux. The positions of
the extrema after timet are therefore correctly advected even though we add the corrective flux.
Moreover, we observe thatu∗ is proportional to∂xθ. Hence its magnitude is proportional to|∂xθ|
while its sign follows the sign of the slope. Thus, solving the advection equation without any
corrective term and where the initial distribution is a narrow bell function, we get for instance
the solution illustrated by the red dashed curve in Figure 5.6 on page 85 (assumingu = u0 =
constant). If we at this stage add the corrective fluxF ∗

A the effect is nil where the distribution has
its maximum value. Thus the propagation of the maximum in theinitial distribution is unaffected
and its position is correctly advected. To the left of the “top” ∂xθ > 0. Hence, adding the
artificial flux offsets the numerical diffusive flux there andbrings the distribution closer to its
initial distribution or the correct solution. To the right of the top∂xθ changes sign, and hence
the anti-diffusive flux changes sign as well and helps to bring the solution towards the correct
solution also in this area. Thus, as expected, the anti-diffusive flux helps to revoke the diffused
gradients regardless of the sign of the slope. Moreover, it affects the solution most where∂xθ
is steepest, that is, where∂2xθ changes sign. Moreover the anti-diffusive flux is just rightto
neutralize the artificial or numerical diffusive flux introduced when using the upwind scheme.

The numerical implementation suggested bySmolarkiewicz(1983) is equally simple. He
suggested to perform the correction using the so calledpredictor-corrector method. It consists
of performing the numerical calculation in two steps. In thefirst step, thepredictor step, we
compute a predictionθ∗ based on the true advection equation (5.108) using a low order advection
algorithm, that is, an algorithm with a truncation error ofO(∆t) andO(∆x). Using for instance
the upstream scheme for this purpose we get

θ∗j = θnj −
(
FA|nj − FA|nj−1

)
, (5.113)

where12

FA|nj =
1

2

[
(unj + |unj |)θnj + (unj+1 − |unj+1|)θnj+1

] ∆t
∆x

. (5.114)

12The FDA for the advective flux above is valid for a non-staggered grid only. In his original paper (Smo-
larkiewicz, 1983) Smolarkiewicz used a staggered grid (cf. Section 6.3), which results in a slightly different FDA.
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We note that this step retains all the advantageous properties of the upwind scheme. We know,
however, that the predictor solutionθ∗j , to second order accuracy, is “infected” by a numerical
diffusion which in its continuous form is represented by a diffusive flux that readsF ∗

D = −κ∗∂xθ,
whereκ∗ is given (5.110). This causes the predictionθ∗j in general, and in particular for Courant
numbers less than one, to appear smoother than its analytic or continuous counterpart. This is
particularly evident in areas where the initial distribution features steep gradients as for instance
visualized in Figure 5.7.

In the second step, thecorrector step, we solve the advection equation (5.111)without the
original advection term, that is,

∂tθ + ∂xF
∗
A = 0. (5.115)

Also for this corrector step we apply the low order upwind scheme. Hence we get a corrected
solutionθn+1

j by solving
θn+1
j = θ∗j − (F ∗

A|j − F ∗
A|j−1) , (5.116)

where

F ∗
A|j =

1

2

[
(u∗j + |u∗j |)θ∗j + (u∗j+1 − |u∗j+1|)θ∗j+1

] ∆t
∆x

. (5.117)

To ensure that the anti-diffusive velocityu∗j = 0 at the peak values we may for instance use a
centered scheme when computing the gradient∂xθ

∗. From (5.112) we then get

u∗j =
1

4∆x
|unj |

(
∆x− |unj |∆t

)(θ∗j+1 − θ∗j−1

θ∗j + ǫ

)
. (5.118)

Note that we have added, as suggested bySmolarkiewicz(1983), a small numberǫ in the denom-
inator to ensure thatu∗j goes to zero whenθ∗j is zero at the same time. If we make use of (5.118)
to compute the anti-diffusive velocity the gradients are re-steepened. Moreover, it does not effect
the predicted solution where the predictor slopes are zero.Thus the position of the maximum is
unchanged during the corrector step. As an example look at the red dashed curve curve in Figure
5.6. If this was the predictive step the largest correction will be affected along the two flanks and
thus steepen the diffused gradients. Note also that since the area under the curve is conserved
when employing the upwind scheme, the maximum value increases during the corrector step.
The solution therefore retains all the advantageous properties of the upwind scheme, and appears
to avoid the artificial smoothing of the steep gradients whenapplying the upwind scheme only.
Moreover we observe that the corrector step makes the solution correct toO(∆x2) andO(∆t2).
Hence MPDATA is a second order scheme that in theory compensates exactly for the artificial
diffusive flux inherent in the lower order upwind scheme.

We underscore that since we employed an upstream scheme to correct the fluxes, the MP-
DATA method also contains some artificial diffusion to higher order. This artificial diffusion
may in turn be further corrected by running a second corrector step using the corrected solu-
tion as input, which in turn contains even higher order diffusion which may be corrected by a
third corrector step forming an iterative procedure where the number of iterative steps are deter-
mined by the user required accuracy only. A simpler and cheaper method (in terms of consumed
computer time) is to slightly overestimate the anti-diffusive velocity by multiplying (5.118) by
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Figure 5.7:Solutions to the advection equation using the MPDATA schemesuggested bySmolarkiewicz
(1983). Left panel corresponds to a scaling factor of 1.0 (noscaling), while the right-hand panel employs
a scaling factor of 1.3. The Courant number is 0.5 in both cases. Solid, black lines show the initial value
(time stepn = 0), while the red dotted lines show the solution after 200 timesteps (one cycle). The green
dashed lines are after 400 time steps (two cycles) while the blue, dash-dot lines are after 800 time steps
(four cycles). Periodic boundary conditions are employed.(cf. Computer problem No. 6 in the Computer
Problem notes).

a scaling factor larger than one, a method already suggestedby Smolarkiewicz(1983). Thus we
redefine the anti-diffusive velocity to read

u∗j =
1

4
Sc(1− Cn

j )|unj |
(
θ∗j+1 − θ∗j−1

θ∗j + ǫ

)
, (5.119)

whereSc ≥ 1 is the scaling factor. As an example Figure 5.7 shows the solution to (5.108)
employing MPDATA featuring an initial narrow Gaussian distribution. In the left-hand panel the
scaling factor is set to one (no scaling), while in the right-hand panel a scaling factor ofSc = 1.3
is used.

Exercises

1. Show that the true solution to (5.2) is indeed (5.3). Hint:Make use of Fourier series.

2. Show that the CFL criterion for the leapfrog scheme, the diffusive scheme and the upwind
scheme all are given by (5.25).
Hint: Express the growth function in terms ofG =

√
1− (1− C)f whereC = |u0|∆t/∆x

is the Courant number andf = f(C, α,∆x).
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3. Let us assume that the Courant number equals one. Show thatunder these circumstances
the upstream scheme has no truncation errors. Use the methodof characteristics to illus-
trate why this is the case.

4. Show that (5.46) is a solution to (5.18). Moreover, show that (5.51) follows from (5.46)
when the initial distribution is given by (5.48), and where (5.13) is made use of to findθ−1

j .
Hint: Show first thatG1,2 from (5.22) may be written

G1 = e−iχ, G2 = ei(χ+π) (5.120)

whereχ is given by (5.47).
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Chapter 6

THE SHALLOW WATER PROBLEM

Since advection and mixing (diffusion) are the foremost processes by which tracers are trans-
ported and spread in the atmosphere and ocean, we maintain that they are two of the most fun-
damental and important balances to treat correctly when solving the governing equations nu-
merically. Most commonly the two processes are combined in the so called advection-diffusion
equation, an equation treated in Chapter 3. Inherent in thisequation is the velocity by which the
tracer is advected. In the preceding chapter (Chapter 5) we assumed this velocity to be a known
function and mostly treated it as a constant. In reality the velocity is part of the dynamics of
the atmosphere-ocean system, and hence a function of time and space. The prognostic equation
from which it is determined is the momentum equation (1.1) presented on page 2 in Chapter 1.
Accordingly we need to get insight into how to solve the momentum equations numerically in
addition to the advection-diffusion equation.

As alluded to in Chapter 3 an essential element of the atmosphere-ocean dynamics, that
makes it stand out from ordinary fluid dynamics, is the effectof the Earth’s rotation giving rise
to the so called Coriolis force1. The appearance of this force makes it possible to obtain time-
independent solutions to the momentum equation that differs from the trivial state of rest. This
stationary solution is made possible by balancing the Coriolis and the pressure force as displayed
in (1.39) on page 9 and we commonly refer to it as thegeostrophic balance.

Consequently we devote this chapter to methods whereby we may determine the advection
velocity by solving the momentum equation numerically. As in the preceding chapters we con-
tinue to follow Albert Einstein’s mantra of making things assimple as possible, but no simpler.
Thus we turn our attention to the shallow water equations derived in Section 1.5 on page 7. The
equations themselves, as presented in (1.23) - (1.24) or their depth integrated versions (1.30) and
(1.31) on page 8, are indeed simple, yet they include the essence of atmosphere-ocean dynamics.
Most importantly they retain the possibility of a geostrophic balance. We note that the momen-
tum equation (1.30) involves two unknowns, namely the the horizontal velocityu and the height

1Gaspard-Gustave de Coriolis or Gustave Coriolis (21 May 1792 - 19 September 1843) was a French mathe-
matician, mechanical engineer and scientist. He is best known for his work on the supplementary forces that are
detected in a rotating frame of reference, and one of those forces nowadays bears his name. (Source: Wikipedia).
Note that this force is virtual in the sense that its presenceis caused by our choice of coordinate system, namely one
fixed to the rotating Earth
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of a fluid column (or pressure). Thus we need the continuity equation (1.31) to close the system.
Even though the shallow water equations are simple, and contains a much reduced momen-

tum equation, they are complex enough to let us appreciate the methods whereby the governing
equations, including the momentum equation, are solved numerically. One of the reasons for this
is that the fully three-dimensional, barotropic/baroclinic equations of motion may be described
in terms of so called vertical normal modes, where each mode is governed by a set of shallow
water equations2. Another way of illustrating this is to discretize a model into sayN moving
vertical layers3 where the density is constant within each layer. For each layer we then get a set
of shallow water equations to solve that are coupled to the other layers through the pressure forc-
ing and through the vertical mixing term. In either case we end up with a set ofN shallow water
equations to solve. Each of them has a so called “equivalent depth” (or equivalent geopoten-
tial height) corresponding roughly to the height of the coordinate surface above ground/bottom.
Note that the shallow water equations as presented in (1.30)and (1.31) correspond to a one layer
model in which the surface is the Lagrangian (movable) vertical coordinate. They also represent
the first and foremost vertical normal mode in the normal modeapproach. To obtain the effect of
baroclinicity we may introduce a second layer or a second normal mode. The interface between
the two layers is then the second movable Lagrangian vertical coordinate4.

Below we therefore study the shallow water equations as given in (1.33) and (1.34). For a
one-layer model of uniform densityρ0 they read,

∂tu+ u · ∇Hu+ fk× u = −∇Hφ+
τ s − τ b

ρ0h
+

X

h
, (6.1)

∂tφ+ u · ∇Hφ = −φ∇H · u, (6.2)

whereφ = gh = g(H + η) is the geopotential andh is the geopotential height. In a one layer
model like the present one the geopotential height is simplythe depth (or height) of fluid column
whereH = H(x, y) is the equilibrium depth andη = η(x, y, t) the deviation of the top surface
away from a reference geopotential level as illustrated in Figure 6.1. Furthermoreτ s is the stress
at the top surface (in the ocean referred to as the wind stress, that is, the traction the atmosphere
exercises on the ocean surface), whileτ b is the stress at the bottom, e.g., friction. We note that
the wind stress then acts as an energy source, while the bottom friction acts as an energy sink,
that is, dissipates energy. Finally,X contains lateral (horizontal) viscosity arising from lateral
viscous processes, e.g., momentum diffusion (commonly referred to as eddy viscosity). Thus the
eddy viscosity acts to diffuse or even out small scale motionin the atmosphere and ocean. Thus
it is no different from the diffusion of tracers as treated inChapter 4.

The set (6.1) and (6.2), consisting of the two components of the horizontal momentum equa-
tion and the continuity equation (conservation of mass), highlights the importance of geostrophy,
and is a particularly useful and simple yet complicated enough set of equations to simulate many
dynamical processes active in the atmosphere and ocean. Equally important, they allow us to

2An elegant derivation is given in the Appendix ofLighthill (1969)
3The layer interfaces are then Lagrangian surfaces and thus move up and down in the vertical in response to the

dynamics. We will return to this in Chapter 8 on page 143 wherewe treat various vertical coordinate systems.
4This was first introduced by Jule Charney in his fundamental paper published in 1955 (Charney, 1955)
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Figure 6.1:Sketched is a one layer-model of the atmosphere or ocean. Hereh = H + η is the total depth
of a fluid column, whereH = H(x, y) is the equilibrium depth whileη = η(x, y, t) is the deviation of the
top reference surface away from its (level) equilibrium position. The mean velocity of the fluid column is
u, while the uniform density of the layer is denotedρ0.

introduce methods whereby the momentum and continuity equations may be solved by numeri-
cal means, without having to concern ourselves with the thermodynamic processes. It should be
stressed though that thermodynamic processes are indeed important processes in the atmosphere
as well as the ocean. Their influence on the dynamics is through the active tracers like potential
temperature, humidity and salinity. These tracers are in turn determined by the tracer equations,
that is, by advection-diffusion equations treated in the previous chapters (Chapters 4 and 5).

In addition we note that the set (6.1) and (6.2) contains multiple dependent variables, that is,
φ, u, andv, and hence conveniently introduces methods whereby partial differential equations
containing more than one dependent variable may be solved numerically. Moreover, as is evident
from (6.1) and (6.2), the shallow water equations is a set of non-linear equations. Since there is
a fundamental difference between linear and non-linear systems, we split the presentation below
into linear and non-linear versions of the shallow water equations. Furthermore, to highlight
some salient fact of importance when solving the shallow water equations by numerical means,
we also separate between non-rotating and rotating systems.

Since the mixing and friction terms are energy source and/orsink terms we may, without loss
of generality, neglect these terms, as we for instance did inSection 3.5. Under these circum-
stances the set (6.1) and (6.2) becomes

∂tu+ u · ∇Hu+ fk× u = −∇Hφ, (6.3)

∂tφ+ u · ∇Hφ = −φ∇H · u. (6.4)

We observe that (6.3) and (6.4) are non-linear, and that theycontain three dependent variables,
namely the two horizontal, depth integrated, velocity componentsu, v and the geopotentialφ.
We also notice that the set (6.3) and (6.4) is complete in the sense that we have three equations
to solve for the three unknownsu, v, φ. By the same token we observe that to find a solution
for the unknowns we need three initial conditions and six boundary conditions to determine the
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integration constants. Finally, we note that the set (6.3) and (6.4) contains three independent
variables, namelyx, y andt.

To repeat, the shallow water equations are not only a set of equations that describe important
and fundamental aspects of the atmosphere-ocean dynamics.It is also a convenient set of equa-
tions whereby the numerical treatment of equations containing more than one dependent variable
as well as several independent variables may be introduced within a geophysical fluid context.

6.1 Linearization of the shallow water equations

To linearize the system (6.3) - (6.4) we start by assuming that the dependent variables can be
written in terms of a basic state plus a perturbation, that is,

u = ū+ u′ and φ = φ̄+ φ′ (6.5)

where the perturbed velocity (or basic state) isū = ūi + v̄j and the perturbed geopotential isφ̄.
To be consistent we require that the basic state is in dynamical balance, implying that the basic
state is a solution to the governing equations when the perturbations are zero. Thus from (6.3)
and (6.4) follows that the basic state is a solution to the set

∂tū+ ū · ∇Hū+ fk× ū = −∇H φ̄, (6.6)

∂tφ̄+ ū · ∇H φ̄+ φ̄∇H · ū = 0 (6.7)

Substituting (6.5) into (6.3) - (6.4) invoking (6.6) and (6.7) we get

∂tu
′ + ū · ∇Hu

′ + u′ · (∇Hū+∇Hu
′) + fk× u′ = −∇Hφ

′, (6.8)

∂tφ
′ + ū · ∇Hφ

′ + u′ · (∇H φ̄+∇Hφ
′) + φ̄∇H · u′ = −φ′(∇H · ū+∇H · u′) (6.9)

Note that the basic state variables such asū andφ̄ are functions of the independent variablesx,
y andt, but are slowly varying in both space and time. Thus

|∂tū| ≪ |∂tu′|, |∇Hū| ≪ |∇Hu
′|, |∇H · ū| ≪ |∇H · u′|,

|∂tφ| ≪ |∂tφ′|, |∇H φ̄| ≪ |∇Hφ
′|. (6.10)

Thus (6.8) and (6.9) are further reduced to

∂tu
′ + ū · ∇Hu

′ + u′ · ∇Hu
′ + fk× u′ = −∇Hφ

′, (6.11)

∂tφ
′ + ū · ∇Hφ

′ + u′ · ∇Hφ
′ + φ̄∇H · u′ = −φ′∇H · u′. (6.12)

By nature a perturbation is defined as being “small”. Here we define small to imply that prod-
ucts of the perturbations can be dropped in comparison with the perturbation itself (in a non-
dimensional sense), that is, ∣∣∣u

′2

ū2

∣∣∣≪
∣∣∣u

′

ū

∣∣∣,
∣∣∣φ

′2

φ̄2

∣∣∣≪
∣∣∣φ

′

φ̄

∣∣∣. (6.13)
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Thus (6.11) and (6.12) become

∂tu+ ū · ∇Hu+ fk× u = −∇Hφ, (6.14)

∂tφ+ ū · ∇Hφ+ φ̄∇H · u = 0. (6.15)

where we have dropped the primes on the perturbations for clarity. These equations then describe
the time evolution of the perturbations.

If we assume that the acceleration of the basic state, that is, ∂tū+ ū ·∇Hū, is small compared
to the Coriolis acceleration (small Rossby number, cf.Section 1.6 on page 9), it follows that the
basic state must be in geostrophic balance, that is,

ū =
1

f
k×∇H φ̄. (6.16)

Thus if the basic state is one at rest (ū = 0) then (6.16) requires̄φ to be constant, saȳφ = φ̄0 =
gH0, whereH0 is a constant geopotential height. Substituting this simple basic state into (6.14)
and (6.15) we arrive at a particular simple linear subset, namely,

∂tu+ fk× u = −∇Hφ, (6.17)

∂tφ+ c20∇H · u = 0, (6.18)

wherec0 =
√
gH0 is known as the phase speed (propagation speed) of inertia-gravity waves.

Again using Einstein’s mantra to keep things as simple as possible, but no simpler, we will
in what follows assume that the problem is one-dimensional.To achieve this we let∂y = 0
which forces us to assume that∂yf = 0 as well. Assuming thatf does not change with latitude
is normally referred to as thef -plane approximation, an approximation that excludes Rossby
waves (cf. page 98). The set (6.14) and (6.15) then becomes

∂tu+ ū∂xu− fv + ∂xφ = 0, (6.19)

∂tv + ū∂xv + fu = 0, (6.20)

∂tφ+ ū∂xφ+ φ̄∂xu = 0. (6.21)

while the subset (6.17) and (6.18) becomes

∂tu− fv + ∂xφ = 0, (6.22)

∂tv + fu = 0, (6.23)

∂tφ+ c20∂xu = 0. (6.24)

For later reference we note that the geostrophic velocity components of the basic state are
given by

ū = −1

f
∂yφ̄ and v̄ =

1

f
∂xφ̄, (6.25)

respectively. Note that to ensure that the perturbation arefunction ofx only we must for con-
sistency require that̄u = ū(x, t), that is,∂yū = 0. Thus (6.25) requires that the basic state
dependence ony is such that̄φ is a linear function ofy.

97



6.2 Linear, non-rotating THE SHALLOW WATER PROBLEM

Rossby waves

Let us for a moment assume that the time rate of change of the geopotential in (6.18) is so small
that the motion is effectively divergence free, that is,∇H · u = 0. We may then introduce a
streamfunctionψ by defining

u = k×∇Hψ, or u = −∂yψ and v = ∂xψ. (6.26)

Operating on (6.17) using the operatork · ∇H×, and remembering that the Coriolis parameter is
a function of the latitudey, we get

∂tζ + β∂xψ = 0, (6.27)

whereζ = k · ∇H × u = ∇2
Hψ is the vorticity,β = ∂yf is the rate of change of the Coriolis

parameter with latitude (sometimes referred to as the Rossby parameter). To arrive at (6.27) we
have made use of (6.26) and that∇H · u = 0. We note that ( 6.27) is the barotropic vorticity
equation whose solutions contain theRossby waves. In fact if substitute for a Fourier component,
that is, let

ψ = ψ0e
i(αx+ly−ωt), (6.28)

whereα is the zonal wave number andl is the meridional wave number, we arrive at the well
known dispersion relation for Rossby waves, that is,

c =
ω

α
= − β

(α2 + l2)
. (6.29)

where c is the zonal phase speed of the wave. The zonal group velocity, as defined by (5.28), is
then

cg = α∂αc+ c =
β(α2 − l2)

(α2 + l2)2
(6.30)

Thus when the zonal wave number is large compared to the meridional wave number for which
the group velicity iscg ≈ β

α
the group velocity is positive implying that while the Rossby wave

itself is propagating westward the energy is propagating eastward.

6.2 Linear, non-rotating shallow water equations

We now proceed to solve the shallow water equations by use of numerical methods. To illustrate
the schemes we will use and how to work out the numerical stability of the schemes we first
investigate possible numerical methods to solve the non-rotating case. Thus we letf = 0 which
exclude the possibility of having a basic state in geostrophic balance. Hence the basic state is
one at rest (̄u = v̄ = 0) with a constant geopotential height. Under these circumstance the set
(6.22) - (6.24) reduces to

∂tu = −∂xφ, (6.31)

∂tφ = −c20∂xu. (6.32)
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Note that whenf = 0 (6.23) is obsolete (v = constant= 0) and we are left with two equations
for the two unknownsu andφ. Furthermore, substituting (6.31) into (6.32) we get

∂2t φ− c20∂
2
xφ = 0, (6.33)

which is the linear wave equation. Hence the system is hyperbolic
We first explore possible analytic solutions to (6.31) and (6.32). Recall that the full solution

may be represented as an infinite sum over all wavelengths, inwhich each Fourier component
has its own amplitude. Thus each wave must be a solution of thegoverning equation. Hence we
seek solutions of the form

φ = φ0e
iα(x−ct) and u = u0e

iα(x−ct) (6.34)

whereu0 andφ0 are arbitrary wave amplitudes different from zero andc = ω/α is the wave
speed. Substituting (6.34) into (6.31) and (6.32) and dividing through by the common non-zero
factors we get

−cu0 + φ0 = 0, (6.35)

c20u0 − cφ0 = 0. (6.36)

Solving with respect tou0 or φ0 we get the dispersion relation

c2 − c20 = 0. (6.37)

Thus we get two solutions for the wave speedc, namely

c1,2 = ±c0, (6.38)

implying that the solution for the geopotential5 is

φ = φ1e
iα(x−c0t) + φ2e

iα(x+c0t). (6.39)

Hence the solution is two ordinary gravity waves propagating with a constant phase speedc0 in
opposite directions.

Thus when constructing an FDA scheme to solve (6.31) and (6.32) numerically we expect
the numerical solution to replicate (6.39). As in Chapter 5 there are several schemes that may
be used. Here we construct and investigate three schemes, namely the CTCS (leapfrog), the
forward-backward and the semi-Lagrangian scheme.

The CTCS scheme

Since (6.31) and (6.32) is a hyperbolic system (cf. Section 2.4) we expect the leapfrog scheme,
that is, the centered in time, centered in space (CTCS) scheme to work well. Thus we replace the
derivatives using centered FDAs for the differential terms. Hence we get

un+1
j − un−1

j = −∆t

∆x
(φn

j+1 − φn
j−1) (6.40)

φn+1
j − φn−1

j = −c20
∆t

∆x
(unj+1 − unj−1). (6.41)

5Note thatu has a similar solution
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Since we made use of Taylor series to derive the approximations, we know a priori that the
scheme is consistent. To satisfy ourselves that the scheme is numerically stable we use von
Neumann’s method. Thus we start by defining the discrete Fourier components, that is,

unj = Une
iαj∆x and φn

j = Φne
iαj∆x. (6.42)

Substituting (6.42) into (6.40) and (6.41) we get

Un+1 − Un−1 = −2iγΦn, (6.43)

Φn+1 − Φn−1 = −2ic20γUn, (6.44)

where

γ =
∆t

∆x
sinα∆x. (6.45)

Sincen is only a time step counter we may rewrite (6.43) to give

Un+2 − Un = −2iγΦn+1, (6.46)

and similarly
Un − Un−2 = −2iγΦn−1. (6.47)

Subtracting (6.47) from (6.46) we get

Un+2 − 2Un + Un−2 = −2iγ (Φn+1 − Φn−1) . (6.48)

Finally substituting for(Φn+1 − Φn−1) using (6.44) we get

Un+2 − 2λUn + Un−2 = 0, λ = 1− 2c20γ
2. (6.49)

Next we define a growth factor byG ≡ Un+2/Un. Substitution into (6.49) then results in a
second order equation to solve for the growth factor. Solving with respect toG we get the two
solutions

G1,2 = −λ±
√
λ2 − 1 = −λ± i

√
1− λ2. (6.50)

Thus requiringλ2 ≤ 1 the growth factor is complex and has an imaginary part. Underthese
circumstances

|G1,2| =
√
λ2 + 1− λ2 = 1, (6.51)

and the scheme isneutrally stable. This is as expected since we employ a CTCS scheme to
solve for a hyperbolic system. Recall that this result depends on the fact that the radical in (6.50)
is positive definite. Thus neutral stability is ensured if and only if −1 ≤ λ ≤ 1. While the
right-hand inequality is trivially satisfied, the left-hand inequality requires

c20

(
∆t

∆x

)2

≤ 1 ⇒ C = c0
∆t

∆x
≤ 1, or ∆t ≤ ∆x

c0
, (6.52)
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whereC is the Courant number6. Since the scheme is neutrally stable it contains no numerical
dissipation and hence no energy loss, provided the Courant number is less than or equal to one.
We observe that the velocity entering the the Courant numberin (6.52) is the phase speedc0
rather than the advection velocityu. The phase speed is normally much larger than the advection
speed. In fact a typical advection velocity or current speedin the ocean is 0.1 m/s, while the
internal wave phase speed is typically of order 1 m/s, that is, one order of magnitude larger.
Similar, in the atmosphere a typical wind speed is 10 m/s, while the phase speed is typically of
order 100 m/s. Hence the constraint on the time step as displayed in (6.52) gives a much more
stringent constraint on the time step for the momentum equation than for the tracer (advection)
equation.

We note that if we define the growth factor asG′ ≡ Un+1/Un, as we normally do, then
G′ = ±

√
G. We then get the four solutions

G′
m,n = (−1)m

√
Gn = (−1)n

√
λ− (−1)ni

√
1− λ2, m, n = 1, 2. (6.53)

Recalling the formula for a square root of a complex number7 we get

|G′
m,n| =

√
Gn =

√
1 + λ

2
+

1− λ

2
= 1, (6.54)

as expected. Hence whenever we get a fourth order equation tosolve for the growth factor we
may reduce it to a second order equation by defining the growthfactor asG ≡ Un+2/Un instead
of G ≡ Un+1/Un. The result in terms of the stability condition is always thesame.

We recall from Sections 5.5 and 5.7 that the leapfrog scheme applied to the advection equa-
tion contained numerical dispersion and unphysical modes.The question therefore arises if this
carries over when applying the leapfrog scheme to the shallow water equations. To investigate
the numerical dispersion we let

unj = U0e
iα(j∆x−cn∆t) and φn

j = Φ0e
iα(j∆x−cn∆t). (6.55)

Substituting (6.55) into (6.40) and (6.41) we get

sin(αc∆t)U0 − γΦ0 = 0, (6.56)

−c20γU0 + sin(αc∆t)Φ0 = 0, (6.57)

and hence that

c1,2 = ± 1

α∆t
arcsin(γc0) = ± 1

α∆t
arcsin(C sinα∆x), (6.58)

whereC = c0∆t/∆x is the Courant number. Thus the leapfrog scheme applied to the shallow
water equations contains a numerical dispersion similar tothe one we deduced for the advection

6Recall thatc0 is defined as a positive definite quantity. Thus we do not use the absolute value in the definition
of the Courant number as we did for the advection problem.

7
√
a+ ib = ±(a′ + ib′) wherea′ =

√
a+

√
a2+b2

2
andb′ = sgn(b)

√
−a+

√
a2+b2

2
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equation. The main difference is that the advection velocity is replaced by the phase speed. We
also note that we retrieve the results given in the analytic dispersion relation, namely that we
have two waves propagating in opposite directions. For a more detailed investigation the reader
is referred toGrotjhan and O’Brien(1976).

Regarding the unphysical mode this may be investigated muchthe same way as we did in
Section 5.7, with the same result. Thus we note that the leapfrog scheme applied to the shallow
water equations contains unphysical or artificial modes. The appearances of these modes may be
avoided by for instance using the Asselin filter as detailed in Section 5.8.

The forward-backward scheme

In contrast to the advection equation the shallow water equations consist of two equations with
two unknowns. Thus we are in a position to use different time schemes for the two equations.
For instance, as first suggested bySielecki(1968), we may use a forward in time, centered in
space scheme for (6.31) while using a backward in time, centered in space scheme for (6.32),
that is,

un+1
j − unj = − ∆t

2∆x
(φn

j+1 − φn
j−1), (6.59)

φn+1
j − φn

j = −c20
∆t

2∆x
(un+1

j+1 − un+1
j−1 ). (6.60)

We note that this scheme is forward in time and hence of first order accuracy in time. We also
note that it is a two level scheme in the sense that we only haveto carry two time levels in
memory at any time. This is in contrast to the CTCS scheme which is a three level scheme.
Finally we note the factor 2 in the denominators on the right-hand sides of (6.59) and (6.60). It
crops up since we switched to a forward in time scheme.

Again we have used Taylor series expansions to construct thescheme, and hence it is con-
sistent. To investigate the stability we use von Neumann’s method. Thus we first substitute the
variables using the discrete Fourier components (6.42). Wethen get

Un+1 − Un = −iγΦn, (6.61)

Φn+1 − Φn = −ic20γUn+1, (6.62)

whereγ is as given by (6.45). Using the same “trick” as we did to arrive at (6.49) and defining
the growth factor byG = Un+1/Un we get

G2 − 2λFBG+ 1 = 0, λFB = 1− 1

2
c20γ

2, (6.63)

and hence that
G1,2 = λFB ± i

√
1− λ2FB. (6.64)

We note that iffλ2FB ≤ 1 then|G1,2| = 1 and hence the scheme, like the CTCS scheme, has no
dissipation. The energy is therefore conserved despite thefact that the scheme looks as if it is a
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semi-implicit scheme. We underscore that the scheme is stable if and only if λ2FB ≤ 1 is true.
We therefore must require thatC = c0

∆t
∆x

≤ 2, or that the Courant number is less than or equal
to two. The condition for stability of the forward-backwardscheme is therefore less stringent on
the time step than the leapfrog (CTCS) scheme, in fact,

∆t ≤ 2∆x

c0
. (6.65)

The semi-Lagrangian scheme

As we did for the advection equation (Section 5.14) we may also utilize the Semi-Lagrangian
technique to solve the shallow water equations numerically. The task becomes slightly more
complex since we need to solve (6.31) and (6.32) simultaneously, that is, two equations with two
unknowns. Thus we get two compatibility equations along with two characteristic equations. We
also note that when solving the advection equation using theSemi-Lagrangian technique there
was one single invariant, namely the variable itself. Regarding the shallow water equation it
turns out that we get two invariants that are combinations ofthe two variables entering (6.31)
and (6.32).

To find the compatibility equations and the characteristic equations we first multiply (6.32)
by an as yet unknown functionλ and add the result to (6.31). We then get

(∂t + λc20∂x)u+ λ

(
∂t +

1

λ
∂x

)
φ = 0. (6.66)

Next we define an operatorD
∗

dt
such that

D∗

dt
= ∂t +

D∗x

dt
∂x, (6.67)

where we require
D∗x

dt
= λc20 =

1

λ
. (6.68)

Hence we have two solutions for the unknown functionλ

λ1,2 = ± 1

c0
, (6.69)

which gives us the two characteristic equations

D∗
1,2x

dt
= ±c0, (6.70)

and the two operators
D∗

1,2

dt
= ∂t ± c0∂x. We therefore get two compatibility equations

D∗
1R+

dt
= 0 along

D∗
1x

dt
= +c0, (6.71)

D∗
2R−

dt
= 0 along

D∗
2x

dt
= −c0, (6.72)
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x

j − 1 j j + 1

t

n− 1

n

n+ 1

+

P

−

Q

Figure 6.2: Sketch of the Semi-Lagrangian technique for the shallow water equations. The distance
between the grid points are∆t in the vertical and∆x in the horizontal direction. The sloping solid, blue
line (marked+) is the positive characteristic through the grid pointj, n + 1, while the solid, red line
(marked−) is the negative characteristic through the same grid point. They are derived from (6.71) and
(6.72) and the slopes are respectively given by±1/c0. The point labeledP is therefore a distancec0∆t
to the left ofxj, while the pointQ is a distancec0∆t to the right ofxj. As long asc0∆t ≤ ∆x thenP is
located betweenxj−1 andxj andQ betweenxj+1 andxj. If howeverc0∆t > ∆x then the pointsQ,P
are located to the left and right of respectivelyxj−1 andxj+1.

where

R± = u± 1

c0
φ (6.73)

are commonly referred to as the two Riemann invariants8. We underscore that solutions to (6.71)
and (6.72) are also solutions to (6.31) and (6.32). This is indeed the very reason why we refer to
(6.71) and (6.72) as the compatibility equations. We may therefore solve (6.71) and (6.72) nu-
merically, much the same way as we outlined in Section 5.12, that is, using the Semi-Lagrangian
technique.

We start by noting that the slope of the two characteristics are given by (6.70) and thus are
±1/c0. As illustrated in Figure 6.2 the characteristics through the grid point (xj , tn+1) crosses

8The wording invariants is used since (6.71) and (6.72) states that the Riemann invariants are conserved along
their respective characteristic. They are named after Georg Friedrich Bernhard Riemann (1826 - 1866), an influential
German mathematician who made lasting contributions to analysis, number theory, and differential geometry, some
of them enabling the later development of general relativity. He first obtained the invariants in his work on plane
waves in gas dynamics.
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the time leveln at the two points markedP andQ, respectively. We find the locationxP and
xQ of these two points along thex-axis by making a straightforward first order, finite difference
approximation to the characteristic equations (6.70). Theresult is

xP = xj − c0∆t and xQ = xj + c0∆t. (6.74)

Moreover, making a similar straightforward finite difference approximation of the compatibility
equations (6.71) and (6.72), noting that the two Riemann invariants are conserved along their
respective characteristic, we get[R+]n+1

j = [R+]nP and[R−]n+1
j = [R−]nQ or

un+1
j +

1

c0
φn+1
j = [R+]nP , (6.75)

un+1
j − 1

c0
φn+1
j = [R−]nQ, (6.76)

where[R+]nP and[R−]nQ are the values ofR± at the pointsP andQ respectively at the previous
time leveln. Solving with respect to the two unknownsun+1

j andφn+1
j we get

un+1
j =

1

2

(
[R+]nP + [R−]nQ

)
, (6.77)

and

φn+1
j =

1

2
c0
(
[R+]nP − [R−]nQ

)
. (6.78)

It remains to determine[R+]nP and[R−]nQ. Since we now the exact position of the two points
xP andxQ along thex-axis we are in a position to make a first estimate by interpolation using
their values at the neighboring grid points. As an example let us assume thatc0∆t ≤ ∆x, or that
the Courant number is less than one. Then the pointsxP andxQ are located betweenxj−1 andxj
andxj andxj+1, respectively. Hence using Newton’s Interpolation Formulae to the lowest order,
also referred to as a two point linear interpolation, we get

[R+]nP = (1− C)[R+]nj + C[R+]nj−1, [R−]nQ = (1− C)[R−]nj + C[R−]nj+1, (6.79)

whereC = c0∆t/∆x is the Courant number. Substituting (6.79) into (6.77) and (6.78) we finally
get

un+1
j = (1− C)unj +

1

2
C
(
[R−]nj+1 + [R+]nj−1

)
, (6.80)

and

φn+1
j = (1− C)φn

j −
1

2
c0C

(
[R−]nj+1 − [R+]nj−1

)
. (6.81)

We note that ifc0∆t > ∆x the pointsxP andxQ are located to the left of, respectively, to
the right of,xj−1 andxj+1. Under these circumstances the Courant number is actually larger
than one, which for other schemes, e.g., the leapfrog scheme, commonly entails that it would
be numerically unstable. However, since we know the exact position of the pointsxP andxQ
we continue to interpolate using the adjacent points using Newton’s Interpolation Formulae to
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lowest order. Note that we may also use higher order interpolations. In either case we are
not limited by the time step constraint posed by the CFL condition. We do however add some
overhead calculation to keep track of the location of the pointsxP andxQ, and performing the
interpolation, in particular if we employ higher order terms in Newton’s Interpolation Formulae.
Thus although we may increase the time step, for instance to six times the value constrained by
the CFL condition, some of the gain will be lost to this overhead.

6.3 Staggered grids

We note that the system (6.31) and (6.32) contains four integration constants, namely, two in time
and two in space. Focusing on space we note we are allowed to specify two boundary conditions
in x, no more no fewer. If we were to solve (6.31) and (6.32) forx ∈< 0, L > we then have three
options. The first option is to specify one condition atx = 0 and one condition atx = L. The
second is to specify two conditions atx = 0, while the third option is to specify two condition at
x = L. Let us assume that there are impermeable walls atx = 0 andx = L. Then the natural
condition is no flow through them, that is,

u|x=0 = 0 and u|x=L = 0 ∀t. (6.82)

Lettingxj = (j − 1)∆x in whichx1 = 0 andxJ = L (6.82) numerically translates to

un1 = 0 and unJ = 0 ∀n. (6.83)

Note that in this case no boundary condition is specified forφ, that is,φn
1 andφn

J are unknown.
To show that this causes a problem we first rewrite (6.40) and (6.41), that is, the CTCS scheme,
to give

un+1
j = un−1

j − ∆t

∆x

(
φn
j+1 − φn

j−1

)
, (6.84)

φn+1
j = φn−1

j − c2o
∆t

∆x

(
unj+1 − unj−1

)
. (6.85)

Note that these equations are to be solved for all “wet” points j = 2(1)J − 1 andn = 1(1)∞9.
To find the value at an arbitrary time leveln+ 1 at the first “wet” pointj = 2 we get

un+1
2 = un−1

2 − ∆t

∆x
(φn

3 − φn
1 ) , (6.86)

φn+1
2 = φn−1

2 − c2o
∆t

∆x
(un3 − un1 ) . (6.87)

Here the termφn
1 exhibited by (6.86) poses a problem simply because it is unknown, and we have

no boundary conditions that allow us to specify it. We also have a similar problem at the other

9As alluded to in Section 5.6 we have to use an Euler scheme to get the solution at n=1 by lettingn = 0 in (6.84).
However, this does not avoid the problem to be described.
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boundaryx = L. In fact evaluating (6.84) and (6.85) for the last “wet” point j = J − 1 we get

un+1
J−1 = un−1

J−1 −
∆t

∆x

(
φn
J − φn

J−2

)
, (6.88)

φn+1
J−1 = φn−1

J−1 − c2o
∆t

∆x

(
unJ − unJ−2

)
. (6.89)

Again the termφn
J poses a problem since it is unknown.

If we try to remedy this problem by using option (ii) above, that is, specifyφ at x = 0 as
well, the problem aggravates atx = L. However tempting we are not allowed to specify more
than two conditions in space total. If we continue and specifiesφ at the boundaries in addition to
u, we run into the problem of over-specifying the system, a dangerous path. We do get numbers
out of the computer, they may even look reasonable, but they are wrong. This author strongly
advocates against exploring such an avenue.

To avoid the problemMesinger and Arakawa(1976) suggested to use what is referred to as
staggered grids. Instead of calculating the two variablesu andφ at the same points in space,
they suggested to stagger one of them with respect to the other, say one half grid length along the
x-axis (Figure 6.3). With this arrangement, or grid structure, we calculateu at xj+ 1

2

points and
φ atxj points. As an example let us consider the CTCS scheme. Using the notation depicted in
Figure 6.3b to avoid the cumbersome use ofj + 1

2
notations the finite difference approximations

to (6.31) and (6.32) become

un+1
j = un−1

j − 2∆t

∆x

(
φn
j+1 − φn

j

)
, (6.90)

φn+1
j = φn−1

j − c2o
2∆t

∆x

(
unj − unj−1

)
. (6.91)

Note the appearance of the factor2 in the second term on the right-hand sides of (6.90) and (6.91).
It appears because the distance between two adjacent pointsin the finite difference approximation
of ∂x in the staggered formulation is∆x rather than2∆x, while the centered in time scheme still
carries2∆t. We emphasize that (6.90) and (6.91) are correct if and only if the two grids are
staggered exactly one half grid length. In principle any staggering will avoid the problem of
overspecifying the number of boundary conditions.

It remains to check what impact the staggering has on the numerical stability. To investigate
this we first note that care has to be exercised when constructing the discrete Fourier components.
Since we have staggeredu one half grid length with respect toφ, as illustrated Figure 6.3b, we
get

φn
j = Φne

iαj∆x and unj = Une
iα(j+ 1

2
)∆x (6.92)

respectively. Substituting these expressions into (6.90)and (6.91) we get

Un+1 − Un−1 = −4iγ′Φn, (6.93)

Φn+1 − Φn−1 = −4iγ′c2oUn. (6.94)

where

γ′ =
∆t

∆x
sin

(
α∆x

2

)
(6.95)
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φj−1

uj−1

φj

uj
φj+1

uj+1

n

n+ 1

φj−1

uj−1

φj

uj
φj+1

uj+1

n
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: φ-point : u-point

(a) (b)

Figure 6.3:Comparison of the structure of (a) an unstaggered and (b) a staggered grid in one spatial
dimension. The circels are associated withφ-points, while the ellipses are associated withu-points. The
illustrated staggering in panel (b) is such that theφ-points andu-points are one half grid distance apart,
but at the same time level.

EliminatingUn we get
Φn+2 − 2Φn + Φn−2 = −16γ′2c20Φn. (6.96)

Moreover, defining a growth factor byG ≡ Φn+2

Φn
we get

G2 − 2λ′G+ 1 = 0, (6.97)

where

λ′ = 1− 8c20

(
∆t

∆x

)2

sin2 α∆x

2
. (6.98)

The growth factor therefore has two complex conjugate solutions given by

G1,2 = λ′ ± i
√
1− λ′2. (6.99)

Thus as long asλ′2 ≤ 1 we get|G1,2| = 1. The staggered scheme is therefore neutrally stable as
expected. However, this is only true as long asλ′2 ≤ 1, which requires that

C ≤ 1

2
, or ∆t ≤ ∆x

2c0
. (6.100)

We observe that (6.100) is a more stringent CFL condition compared to the CFL condition (6.52)
associated with the non-staggered grid. This is no surprise. When we stagger the grids we ef-
fectively decreases the distance between two adjacent points to one-half the original grid length.
Thus the distance between two adjacent points in the staggered grid, say∆xstagg, is simply
∆xstagg = ∆x/2. Using∆xstagg instead of∆x the CFL condition becomes the expected

∆t ≤ ∆xstagg
c0

. (6.101)
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We finally note that the this stronger constraint on the time step due to the staggering is also valid
for other schemes, e.g., the forward-backward scheme.

6.4 Linear, rotating shallow water equations

We are now ready to analyze the effect of the Earth’s rotationby retaining the Coriolis terms. We
first study their linear, one-dimensional version, that is,(6.22) - (6.24) on page 97.

As we did for the non-rotating case (cf. Section 6.2) we startby analyzing the various wave
motions supported by (6.22) - (6.24)10. Thus we assume a wave solution,

X = X0e
iα(x−ct), (6.102)

whereα is the wavenumber in thex direction andX denotes a vector consisting of the three
dependent variables, that is,

X =



u
v
φ


 and X0 =



u0
v0
φ0


 , (6.103)

whereX0 is the amplitude.
Inserting (9.25) into (6.22) - (6.24) we get

−iαcu0 − fv0 + iαφ0 = 0, (6.104)

−iαcv0 + fu0 = 0, (6.105)

cφ0 − c2ou0 = 0, (6.106)

To find the dispersion relation we first multiply (6.104) by−iαc and (6.105) byf and add the
results together. By substituting the result into (6.106) we get

c

{
c2 − c20

[
1 +

(
1

αLR

)2
]}

= 0, (6.107)

where
LR = c0/f (6.108)

is Rossby’s deformation radius. Thus one solution isc1 = 0, a stationary wave. The two remain-
ing solutions are

c2,3 = ±c0

√

1 +

(
1

αLR

)2

. (6.109)

10Recall that any solution of (6.22) - (6.24), under the assumption that the solution is a good function, may be
represented by an infinite number of waves of different wavelengths and amplitudes in accord with Section 2.11 on
page 27.
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These are gravity waves modified by the Earth’s rotation and are commonly referred to as inertia-
gravity waves. The gravity waves are associated with wave speedsc = ±c0, and are thus associ-
ated with the first term in the radical. The inertia part is associated with oscillating frequencies
ω = f or phase speedc = f/α, that is, frequencies proportional to the inertia frequency or
inertial oscillation, and is contained in the second term inthe radical.

We may also apply the same procedure if the basic state is in geostrophic balance, that is,
using the linearized equations (6.19) - (6.21) on page 97. Substituting (6.103) into (6.19) - (6.21)
we get

iα (ū− c) u0 − fv0 + iαφ0 = 0, (6.110)

fu0 + iα (ū− c) v0 = 0, (6.111)

φ̄u0 + (ū− c)φ0 = 0. (6.112)

Following the same procedure the dispersion relation becomes

(ū− c)
[
−α2 (ū− c)2 + f 2 + α2φ̄

]
= 0. (6.113)

Thus again there are three solutions for the phase speedc, namely

c1 = ū, (6.114)

c2,3 = ū± c0

√

1 +

(
1

αLR

)2

, (6.115)

where

c0 =

√
φ̄ =

√
gH. (6.116)

The first solution is an infinitely long wave in which the motion is in geostrophic balance com-
monly referred to as the Rossby mode. We easily derive this interpretation by substitutingc1 = ū
from (6.114) into (6.110). The latter equation then becomes

−fv + iαφ = 0 or v =
1

f
iαφ. (6.117)

Using the Fourier solution backwards we thus recover the geostrophic balance (1.40), that is,

v =
1

f
∂xφ. (6.118)

The two other solutions are the inertia-gravity wave modes referred to in the previous para-
graph, where the inertia part is associated with oscillating frequenciesω = f and the two gravity
waves with wave speedsc = ±c0. The only difference is that the waves now ride on the basic
currentū. We note that commonly the inertia-gravity mode has a much higher wave speed than
the Rossby mode, that is|c0| ≫ |ū|. Thus lettingū ≈ 0 in (6.19) - (6.21) brings us back to
solving (6.22) - (6.24), that is, the problem with a basic state at rest.
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Finite difference forms

To solve (6.22) - (6.24) numerically using a finite difference method we replace the derivatives
by finite difference approximations. Below follows detailson the leapfrog (CTCS), the forward-
backward and the semi-Lagrange scheme.

The CTCS scheme

Since the problem is hyperbolic we apply the centered in time, centered in space (CTCS) leapfrog
scheme on a non-staggered grid. We then get

un+1
j − un−1

j = 2f∆tvnj − ∆t

∆x

(
φn
j+1 − φn

j−1

)
, (6.119)

vn+1
j − vn−1

j = −2f∆tunj , (6.120)

φn+1
j − φn−1

j = −c20
∆t

∆x

(
unj+1 − unj−1

)
. (6.121)

We note that these equations reduces to (6.40) and (6.41) when f = 0. It is therefore of interest to
investigate the impact of rotation on the numerical stability. To this end we replace the variables
by their discrete Fourier components

unj = Une
iαj∆x, vnj = Vne

iαj∆x, φn
j = Φne

iαj∆x. (6.122)

Substituting (6.122) into (6.119) - (6.121) we get

Un+1 − Un−1 = 2f∆tVn − 2iγΦn, (6.123)

Vn+1 − Vn−1 = −2f∆tUn, (6.124)

Φn+1 − Φn−1 = −2iγc20Un, (6.125)

where as before

γ =
∆t

∆x
sinα∆x. (6.126)

EliminatingVn andΦn we get11

Un+2 − 2λUn + Un−2 = 0, (6.127)

where
λ = 1− 2γ2c20 − 2f 2∆t2. (6.128)

Defining the growth factor asG ≡ Un+2/Un we get two complex conjugate solutionG1,2 =
λ ± i

√
1− λ2 provided the radical is a positive definite quantity. As expected |G1,2| = 1 and

hence the CTCS scheme is neutrally stable. The impact of throwing in the Coriolis effect is

11This most efficiently done by first raisingn by one in (6.123) giving an expression involvingUn+2, Un, Vn+1

andΦn+1. Next decreasingn by one gives an expression containingUn, Un−2, Vn−1 andΦn−1. Subtracting and
using (6.124) and (6.125) then results in (6.127).
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inherent in the expression forλ. To ensure that the growth factor is complex we must require
λ2 ≤ 1. This is satisfied if and only if

γ2c20 + f 2∆t2 ≤ 1 or c20

(
∆t

∆x

)2

sin2 α∆x+ f 2∆t2 ≤ 1. (6.129)

Thus the CFL criterion for stability becomes,

∆t ≤ ∆x

c0

[
1 +

(
∆x

LR

)2
]− 1

2

, (6.130)

whereLR is Rossby’s deformation radius as defined in (6.108). If we choose the mesh size∆x
such that it resolves Rossby’s deformation radius, say∆x = 1

10
LR, in which case∆x/LR << 1,

then the first term in the radical dominates. Under these circumstances it follows that the practical
condition is

∆t <
∆x

c0
or C < 1. (6.131)

In most models of the atmosphere today’s computers are powerful enough so that the mesh
size satisfies the condition∆x/LR << 1. Thus the condition (6.131) is sufficient. This is not
necessarily the case for models of the ocean. In particular this is true for ocean models employed
in global climate modeling. Thus for many applications∆x/LR is of O(1), and hence we must
take into account also the second term in the radical. We underscore that for such problems the
CFL condition becomes more stringent.

In an atmospheric model the largest equivalent depth is approximately10 km giving a speed
of the inertia-gravity waves of the order of300 m/s. This is considerably more than the wind
speed and sets strong limitations to how long time steps we can take. In an ocean model the
situation is the same. Although the oceanic equilibrium depth is one order of magnitude less,
about 1 km, the wave speed is still about100 m/s considerably larger than a typical ocean current
speed of0.1 m/s. Thus both in the ocean and the atmosphere the CFL condition limits the
time steps to minutes and sometimes seconds12. We emphasize that inertia-gravity waves are
important properties in the ocean and contain for instance the barotropic tidal motion as well
as storm surges. Thus, in contrast to atmospheric models, oceanic models are restricted to such
limitations on the time step since we have to simulate these important oceanic features explicitly.
In the atmosphere the inertia-gravity waves carries littleenergy compared to for instance Rossby
waves. Hence these motions are not part of the signal and is commonly neglected by treating the
terms semi-implicitly (cf. Section 6.6 on page 120).

12For and ocean of equilibrium depthH = 4 · 103 m, g = 10 ms−2 and non-eddy resolving grid size∆x = 20
km follows from (6.131) that∆t < 141 s or slightly more than two minutes.
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The forward-backward scheme

As long as the system is still linear we may also employ the forward-backward scheme (e.g.,
Sielecki, 1968;Martinsen et al., 1979). Thus we construct the scheme

un+1
j = unj + f∆tvnj − ∆t

2∆x
(φn

j+1 − φn
j−1), (6.132)

vn+1
j = vnj − f∆tun+1

j , (6.133)

φn+1
j = φn

j − c20
∆t

2∆x
(un+1

j+1 − un+1
j−1 ). (6.134)

We note again that the scheme reduces to (6.59) and (6.60) when f = 0. We emphasize that the
order in which (6.132) - (6.134) are solved is random. The idea is that as soon as a variable is
updated it is used in the next equation. Thus we may equally well make use of the schemes

φn+1
j = φn

j − c20
∆t

2∆x
(unj+1 − unj−1), (6.135)

un+1
j = unj + f∆tvnj − ∆t

2∆x
(φn+1

j+1 − φn+1
j−1 ), (6.136)

vn+1
j = vnj − f∆tun+1

j , (6.137)

or

vn+1
j = vnj − f∆tunj , (6.138)

φn+1
j = φn

j − c20
∆t

2∆x
(unj+1 − unj−1), (6.139)

un+1
j = unj + f∆tvn+1

j − ∆t

2∆x
(φn+1

j+1 − φn+1
j−1 ). (6.140)

Again it is of interest to investigate the impact of rotationon the stability. As so many times
before we employ von Neumann’s method for this purpose. Thuswe first replace the variables
in the scheme by their discrete Fourier components as definedin (6.122), then we eliminate two
of the amplitudes, sayVn andΦn. Finally we define the growth factor byG = Un+2/Un and get

G2 − 2λ′G+ 1 = 0, (6.141)

where
λ′ = 1− γ2c20 − f 2∆t2. (6.142)

Thus the scheme is stable provided the condition

∆t ≤ 2∆x

c0

[
1 +

(
∆x

LR

)2
]− 1

2

(6.143)

is satisfied. We note that compared to the problem without rotation the condition is less stringent
by a factor of 2.
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The semi-Lagrange scheme

Finally it is of interest to investigate the impact of rotation on the semi-Lagrange scheme. To find
the characteristics we do exactly as we did for the non-rotating case. Thus we multiply (6.24) by
an unknown functionλ and add it to (6.22). We then get

D∗
1,2R±

dt
= fv along

D∗
1,2x

dt
= ±c0, (6.144)

whereR± are the Riemann invariants displayed in (6.73) on page 104. These are exactly the
same two characteristic as in (6.71) and (6.72), that is, (6.70), while the compatibility equations
deviates from (6.71) and (6.72) by thefv term on the right-hand side. When we introduced
rotation a third unknownv was introduced and a third equation (6.23) was added to the set of
governing equations. Hence a third compatibility equationmust be added too. It actually follows
directly from (6.23), that is,

D∗
3v

dt
= −fu along

D∗
3x

dt
= 0, (6.145)

where the third operator is defined by

D∗
3

dt
= ∂t +

D∗
3x

dt
∂x. (6.146)

We note that the third characteristic equation isD∗

3
x

dt
= 0 and hence that it has an infinite slope.

To construct a finite difference scheme we follow the procedure leading to (6.74) - (6.76).
Hence we get

un+1
j +

φn+1
j

c0
= unP +

φn
P

c0
+

1

2
f∆t(vn+1

j + vnP ), (6.147)

un+1
j −

φn+1
j

c0
= unQ −

φn
Q

c0
+

1

2
f∆t(vn+1

j + vnQ), (6.148)

vn+1
j = vnj − 1

2
f∆t(un+1

j + unj ), (6.149)

that is, three equation containing the three unknownsun+1
j , vn+1

j andφn+1
j . Since the integration

is along the characteristics, we emphasize the use of1
2
f∆t(vn+1

j + vP ) in (6.147) and the similar
terms in (6.148) and (6.149). Solving with respect to each ofthe variables at the pointxj , tn+1

we get

un+1
j =

(
1 +

1

2
f 2∆t2

)−1

Fu, (6.150)

vn+1
j = vnj − 1

2
f∆t

[(
1 +

1

2
f 2∆t2

)−1

Fu + unj

]
, (6.151)

φn+1
j = Fφ (6.152)
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where

Fu =
1

2

(
unP + unQ

)
+

1

2c0

(
φn
P − φn

Q

)
+

1

4
f∆t

(
2vnj − f∆tunj + vnP + vnQ

)
, (6.153)

Fφ =
1

2
c0
(
unP − unQ

)
+

1

2

(
φn
P + φn

Q

)
+

1

2
c0f∆t

(
vnP − vnQ

)
, (6.154)

The needed values of the variables at the pointsP andQ is found exactly as in the former
case, that is, by interpolation. We emphasize that in addition tounP,Q andφn

P,Q we also need to
determinevnP,Q by interpolation. Finally we note that if we letf = 0 the above equations reduce
to (6.77) and (6.78).

6.5 Non-linear, rotating shallow water equations

Let us further expand the shallow water equations to a fully non-linear and rotating case, that is,
(6.3) - (6.4). Again assuming a one-dimensional system, that is, neglecting all terms differenti-
ated with respect toy, we get

∂tu+ u∂xu− fv = −∂xφ, (6.155)

∂tv + u∂xv + fu = 0, (6.156)

∂tφ+ u∂xφ = −φ∂xu. (6.157)

We note that we retain three equations with three unknownsu, v andφ as dependent variables.
The independent variables are timet and the horizontal directionx.

Rewriting (6.155) - (6.157) in terms of the volume fluxU = hu, V = hv, and noting that
φ = gh, we get

∂tU + ∂x

(
U2

h

)
− fV = −1

2
g∂xh

2, (6.158)

∂tV + ∂x

(
UV

h

)
+ fU = 0, (6.159)

∂th + ∂xU = 0. (6.160)

The advantage of using (6.158) - (6.160) instead of (6.155) -(6.157) is that the continuity equa-
tion (6.160) becomes linear, and that the non-linear terms in (6.158) and (6.159) are all written
in flux form. The latter gives better conservation properties of the associated numerical scheme.
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Finite difference forms

The CTCS scheme

The system is still hyperbolic so it is natural to employ a CTCS (leapfrog) scheme. Hence if we
employ an unstaggered grid and construct a CTCS scheme basedon (6.158) - (6.160) we get

Un+1
j = Un−1

j + 2f∆tV n
j + An

j + P n
j (6.161)

V n+1
j = V n−1

j − 2f∆tUn
j +Bn

j (6.162)

hn+1
j = hn−1

j − ∆t

∆x

(
Un
j+1 − Un

j−1

)
, (6.163)

where

An
j = −∆t

∆x

([
U2

h

]n

j+1

−
[
U2

h

]n

j−1

)
, (6.164)

Bn
j = −∆t

∆x

([
UV

h

]n

j+1

−
[
UV

h

]n

j−1

)
, (6.165)

P n
j = − g∆t

2∆x

([
h2
]n
j+1

−
[
h2
]n
j−1

)
. (6.166)

To avoid the use of more boundary conditions in space than allowed, we have to stagger the
grids forh andU, V as explained in Section 6.3. Using the cell structure of Figure 6.3 and using
j as the cell counter we then get

Un+1
j = Un−1

j + 2f∆tV n
j + An

j + P n
j , (6.167)

V n+1
j = V n−1

j − 2f∆tUn
j +Bn

j , (6.168)

hn+1
j = hn−1

j − 2∆t

∆x

(
Un
j − Un

j−1

)
, (6.169)

whereAn
j andBn

j are as before, whileP n
j , because of the staggering, becomes

P n
j = −g∆t

∆x

([
h2
]n
j+1

−
[
h2
]n
j

)
. (6.170)

Note that when staggered the evaluation ofAn
j andBn

j is associated with au andv-points. Hence
we must interpolate to findh at these points. Thus regarding the first term on the right-hand side
of (6.164) we get [

U2

h

]n

j+1

=
(Un

j )
2

1
2
(hnj+2 + hnj+1)

. (6.171)

The semi-Lagrangian scheme

We emphasize that in the non-linear case we cannot employ theforward-backward scheme. How-
ever, even though we invoke the non-linear terms we may stillconstruct a semi-Lagrangian
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scheme. We do this, as we have done many times already, by multiplying (6.157) by a yet un-
known functionλ and add it to the the resulting equation (6.155). Note that itis convenient to
first replaceφ by the propagation speedc =

√
φ in (6.155) - (6.157) before the manipulation. In

any case we arrive at
[
∂t + (u+

1

2
λc)∂x

]
u+ λ

[
∂t + (u+

2c

λ
)∂x

]
c = fv. (6.172)

As before we require that the operators∂t + (u + 1
2
λc)∂x and∂t + (u + 2c

λ
)∂x are the same,

which is achieved by lettingu+ 1
2
λc = u+ 2c

λ
, which givesλ1,2 = ±2. Hence the characteristic

equations are
D∗

1,2

dt
= u± c, (6.173)

while the two Riemann invariants become

R± = u± 2c. (6.174)

Finally, the compatibility equations are

D∗
1,2R±

dt
= fv along

D∗
1,2x

dt
= u± c. (6.175)

We also have a third equation, namely (6.157), which must be trnsformed into its compatibility
equation. We find this directly from (6.156) by observing that it may be written

D∗
3v

dt
= −fu along

D∗
3x

dt
= u. (6.176)

Thus we obtain three characteristics with slopesu+ c, u− c andu as depicted in Figure 6.4.
Applying a simple forward in time finite difference approximations to (6.175) and (6.176)

we get

un+1
j + 2cn+1

j = unP + 2cnP +
1

2
f∆t

(
vn+1
j + vnP

)
, (6.177)

un+1
j − 2cn+1

j = unQ − 2cnQ +
1

2
f∆t

(
vn+1
j + vnQ

)
, (6.178)

vn+1
j = vn+1

R − 1

2
f∆t

(
un+1
j + unR

)
. (6.179)

(6.180)

where the subscriptsP,Q, andR refer to the evaluation of the variable in questions at the points
P ,Q andR, at time leveln, respectively. The locations of these points in space are denotedxP ,
xQ andxR, respectively, as displayed in Figure 6.4. To find their position we just integrate the
characteristic equations using a simple forward in time finite difference approximation. Hence

xP = xj − (unj + cnj )∆t, xQ = xj − (unj − cnj )∆t, andxR = xj − unj∆t. (6.181)
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u + cu− c u

x

j − 1 j j + 1

t

n− 1

n

n+ 1

P Q
R

Figure 6.4: Sketch of the semi-Lagrangian technique for a non-linear and rotating case. The
distance between the grid points are∆t in the vertical and∆x in the horizontal direction. There
are three characteristics through the pointj, n+1. The blue solid line is the positive characteristic
with slopeu+ c, while the dashed red line is the negative characteristic with slopeu− c. These
are derived from (6.173). The last characteristic with slope u is the dotted black line derived
from (6.176). Providedu ≥ 0 the point labeledP is a distance(u+ c)∆t to the left ofxj , while
the pointQ is a distance(u − c)∆t to the right ofxj . Hence the assymetry. Finally the point
labeledR is located a distanceu∆t to the left ofxj . As long as(u+ c)∆t ≤ ∆x andu > 0 then
P,R is located betweenxj−1 andxj andQ betweenxj+1 andxj . If however(u + c)∆t > ∆x
then the pointsQ,P are located to the left and right of respectivelyxj−1 andxj+1.

To find evaluate the nine quantitiesunP,Q,R, vnP,Q,R and cnP,Q,R, we resort to interpolation. For
instance by findunP using the lowest order of Newton’s interpolation formulas (two point, linear
interpolation) we find thatunP may be approximated to

unP =
(
1− Cn

Pj

)
unj + Cn

Pju
n
j−1, (6.182)

whereCn
Pj = ∆t

∆x
(unj + cnj ). The remaining eight values are found by a similar interpolation.

We note that in order to use (6.182) we require thatxj−1 ≤ xP ≤ xj or Cn
Pj ≤ 1. If this is

not the case we have to find out where the nearest grid point is and then apply the lowest order
interpolation. A similar condition applies to the remaining eight as well. Another option is to
resort to higher order interpolation. Either way we end up with three equations to solve for the
three unknownsun+1

j , vn+1
j andcn+1

j .
We note that in the non-linear case the characteristics are no longer straight lines in thet, x

space. Thus we may view the locations ofxP , xQ andxR we get from (6.181) as a first guess
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and denoting themx(0)P , x(0)Q andx(0)R . Similarly we letu(0)P,Q,R, v(0)P,Q,R andc(0)P,Q,R denote the first

guess we get by interpolation and finallyu(0)j , v(0)j andc(0)j as the first guess of the variables at the
pointxj , tn+1. We are then in a position to compute improved approximations to the positions of
the pointsP ,Q andR,

x
(1)
P = xj −

1

2
(u

(0)
j + u

(0)
P + c

(0)
j + c

(0)
P )∆t, (6.183)

x
(1)
Q = xj −

1

2
(u

(0)
j + u

(0)
Q − c

(0)
j − c

(0)
Q )∆t, (6.184)

x
(1)
R = xj −

1

2
(u

(0)
j + u

(0)
R )∆t (6.185)

We then find updated values ofu(1)P,Q,R, v(1)P,Q,R andc(1)P,Q,R by interpolation using the improved
positions. In turn this enables us to update the values of thevariables at the pointxj , tn+1 using
the formulas,

u
(ν)
j + 2c

(ν)
j = u

(ν−1)
P + 2c

(ν−1)
P +

1

2
f∆t

(
v
(ν)
j + v

(ν−1)
P

)
, (6.186)

u
(ν)
j − 2c

(ν)
j = u

(ν−1)
Q − 2c

(ν−1)
Q +

1

2
f∆t

(
v
(ν)
j + v

(ν−1)
Q

)
, (6.187)

v
(ν)
j = v

(ν)
R − 1

2
f∆t

(
u
(ν)
j + u

(ν−1)
R

)
, (6.188)

(6.189)

whereν = 1. This is the start of an iteration procedure. Once we have calculatedu(ν)j , v(ν)j and

c
(ν)
j for anyν = 1, 2, . . . using (6.186) - (6.188), we may update the positions using the formulas

x
(ν+1)
P = xj −

1

2
(u

(ν)
j + u

(ν)
P + c

(ν)
j + c

(ν)
P )∆t, (6.190)

x
(ν+1)
Q = xj −

1

2
(u

(ν)
j + u

(ν)
Q − c

(ν)
j − c

(ν)
Q )∆t, (6.191)

x
(ν+1)
R = xj −

1

2
(u

(ν)
j + u

(ν)
R )∆t (6.192)

to find the new locations followed by an interpolation to findu(ν+1)
P,Q,R, v(ν+1)

P,Q,R andc(ν+1)
P,Q,R. We may

then proceed to findu(ν+1))
j , v(ν+1))

j andc(ν+1))
j from (6.186) - (6.188), which allows us to further

update the locations and so on. We may repeat this iteration as long as we wish, or until we have
reached a satisfactory accuracy.

Numerical stability

The semi-Lagrangian scheme is always stable, whether we study the linear or non-linear ro-
tational shallow water equations case. Regarding the CTCS scheme we know for certain that
the scheme is stable if and only if the CFL condition is satisfied. The question therefore arises
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whether the non-linear CTCS scheme is stable, and if so underwhat condition. Since the equa-
tions are non-linear the analysis is not as straightforwardas for a linear system. In fact throwing
in the non-linear terms adds to the complexity of the possibilities for an unstable solution. The
reason is, as alluded to earlier on in Section 3.3 on page 35 and Section 4.9 on page 52, that in
contrast to linear dynamics non-linear dynamics allow energy to be exchanged between waves.
Thus the non-linear terms are able to redistribute energy among the different wavelengths present
in the problem, something which is impossible in a linear system. In fact as time evolves the non-
linear terms acts to cascade the energy progressively towards smaller and smaller wavelengths in
accord with the Taylor rhyme quoted on page 35.

When we solve non-linear problems numerically using finite difference approximations to
replace the differential operators inherent in our equations, we simply do not resolve waves with
wavelengths shorter than2∆x. In the real world, however, the energy cascade continues beyond
this wavelength and progressively towards shorter and shorter waves. In our numerical solution
the grid resolution inhibits this cascading across the resolution limit, that is, across the2∆x
wavelength. The energy thus accumulates in the wavelength bands closest to our grid resolution,
that is, in the2∆x < λ < 4∆x wavelength band. Eventually this causes any scheme that works
well for a linear system to blow up. This is called non-linearinstability and is treated in more
detail in Section 10.3 on page 167.

The processes responsible for continue the energy cascade across and beyond the grid reso-
lution wavelength acts on scales that are shorter than our2∆x grid resolution. Such processes
are commonly referred to assub-grid-scale (SGS)processes. To numerically allow for a contin-
uation of the energy cascade across the the2∆x limit we have to parameterize (or mimic) the
SGS processes. Commonly we parameterize the SGS processes in terms of some kind of diffu-
sion. As we were showing in Section 4.3, diffusion acts to smooth out noise, that is, diffusion is
selective and helps to smooth out the shortest waves. We may therefore add diffusive terms to
our governing, non-linear equations to avoid the continuesaccumulation of energy in the short
wavelength band. In our relatively simple one-dimensionalcases this entails adding terms of the
form κ∂2xu, whereκ is a diffusion coefficient. As alluded to in Chapter 4 the diffusion inherent
in such a term is scale selective, that is, damps out the shortest way most efficiently since all
the Fourier components will be damped by a factore−κα2t. The results are however sensitive to
the choice of diffusion coefficient. Too high and the energy is damped too fast. This will give a
result where too much energy is absorbed by diffusion and thesolution will too smooth. Too low
and the energy contained in low wave number band increases with time. The results is that the
non-linear instability sooner or later kicks in and the solution becomes unstable.

6.6 Semi-implicit and time-splitting methods

From the analysis above we notice that by introducing a pressure force (in addition to advection)
the CFL criterion becomes much more stringent (shorter time-step). It is therefore tempting to
treat terms responsible for this behavior implicitly whilewe treat other terms explicitly. Such a
method is commonly referred to as asemi-implicit method.

120



THE SHALLOW WATER PROBLEM 6.6 Semi-implicit and time-splitting methods

For clarity we start with a one dimensional shallow water problem, that is,

∂tu = Au − ∂xφ, (6.193)

∂tv = Av, (6.194)

∂tφ = Aφ − Φ∂xu, (6.195)

whereAu,Av andAΦ include the non-linear as well as the Coriolis terms. We learned previously
that the terms responsible for this behavior was the pressure terms. From Section 4.8 we learned
that treating any term implicitly avoid this restriction onthe time step. It is therefore tempting
to treat the pressure terms, that is, the∂xφ andΦ∂xu terms implicitly while integrating the re-
maining terms explicitly. The finite difference approximation form of the equations above on an
unstaggered grid then becomes,

un+1 − un−1

2∆t
= [Au]

n − [∂xφ]
n+1 , (6.196)

vn+1 − vn−1

2∆t
= [Av]

n, (6.197)

φn+1 − φn−1

2∆t
= [Aφ]

n − Φ [∂xu]
n+1 , (6.198)

To proceed, the first two equations are solved with respect toun+1
j and vn+1

j respectively
giving,

un+1 = un−1 + 2∆t[Au]
n − 2∆t [∂xφ]

n+1 (6.199)

vn+1 = vn−1 + 2∆t[Av]
n (6.200)

derivation with respect tox and insertion into the equation forφ gives a Helmholtz equation,

Φ∆t2[∂2xφ]
n+1 − φn+1 = B (6.201)

whereB contains known quantities at time levelsn, n− 1, . . .
With proper boundary conditions (φ or its normal derivative at lateral boundaries), these

equations may easily be solved by standard numerical methods called elliptic solvers. One such
elliptic solver, is the direct elliptic solver treated in Section 4.11 (Gauss elimination), but there
are also a host of iterative (non-direct) solvers to choose.The most commonly in use is called the
successive over-relaxation (SOR) method. Having obtainedφn+1, we easily findun+1 andvn+1.
This method is widely used in atmospheric models as we do not have to take the gravity mode
speedc0 =

√
Φ =

√
gH into account when estimating an upper bound for the time step. Thus

we avoid the restrictive CFL condition and thus makes it is possible to use longer time-steps.
We emphasize that we cannot employ this method in the ocean. Treating the fast barotropic

waves implicitly would then ruin the inertia-gravity waveswhich carries information about such
important signals as tides and storm surges. To speed up the computations of ocean models it is
common to resort to so called time-splitting. The idea is to treat the barotropic and baroclinic
parts of the motion separately. The procedure is to first integrate the slow baroclinic modes
forward from timet using a time step∆tbc. Then the barotropic mode, which is influenced by
the baroclinic modes, is integrated forward for the time span t+∆tbc using a much smaller time
step, say∆tbt. Commonly∆tbc = N∆tbt whereN is of order 50.
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Chapter 7

OPEN BOUNDARY CONDITIONS AND
NESTING TECHNIQUES

As is well known, computers, however large, can only hold a finite amount of numbers in their so
calledrandom access memory(RAM). Thus even the biggest computers has a limited capacity,
which put a constraint on how large a Numerical Weather Prediction (NWP) and/or a Numerical
Ocean Weather Prediction (NOWP) model can be. For a given geographical area (or compu-
tational domain) the size of a numerical model is mostly determined by the model’s horizontal
grid size and number of vertical levels. Since there is a limitation to how many grid points we
can store in the computer’s RAM, there is a lower limit on the grid size we can use for a given
computational domain. Implied is that if we would like to decrease the grid size for a given
computer, the computational domain covered has to be shrinked. Likewise, if we would like
to increase the computational domain the grid size has to be increased as well. Recall that the
grid size puts a lower limit on the wavelengths a numerical model is able to represent. Hence
the limited computer capacity puts a constraint on the scales a model possibly can resolve for a
given geographical domain. In this respect the steady growth in computer capacity experienced
since the birth of computers back in the 1940s has resulted inan ever increasing resolution to
an extent that today’s global atmospheric models more than adequately resolves lows and high.
In fact the global atmospheric model run at the ECMWF (European Center for Medium range
Weather Forecast), which produces a global weather forecast twice a day with a lead time of 15
days, features a grid size of about 16 km in the horizontal, a resolution one could only dream of
in the 1970s.

The question therefore arises if there is a lower limit to thegrid size needed? To guide us
is the fact that the dynamical scales of the weather systems in the oceans and the atmosphere
are mostly given by what is known as Rossby’s deformation radius (cf. Section 6.4). Recall
that at sub-polar latitudes the deformation radius in the atmosphere is about 500 - 1000 km and
the typical time scale a few days. In contrast the deformation radius in the ocean at the same
latitude is about 10 - 50 km, while the time scales are a few weeks to months. This is perhaps the
main reason why NOWP models are less mature than NWP models. To illustrate this point let us
consider a global model with a grid size of about 2 degrees (Figure 7.1 upper panel). A mesh size
of 2 degrees, or about 200 km, entails that the grid size is about one fifth of the the atmospheric
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Figure 7.1: Upper panel shows the Earth’s surface covered bya 2 degree mesh. Lower panel
shows a similar mesh of 30 degrees mesh size. The figure conveniently illustrates how a 2 degree
mesh in the ocean would look like in the atmosphere scaled by the Rossby radius of deformation.
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Rossby radius. This is a tolerable grid size for a numerical atmosphere model. If we scale this
to the Rossby radius of deformation in the ocean, the grid forthe atmosphere model would look
like the one displayed in the lower panel of Figure 7.1. As is evident the grid size of the latter
is about 3-4 times the Rossby radius of deformation. No meteorologist in his right mind would
consider it to be an adequate grid for a NWP model. To obtain a similar tolerable resolution in
the ocean we have to employ grids of mesh sizes∼2-4 km, or∼1/200th of a degree. Hence for a
given geographical region the amount of RAM required by an ocean model is much higher than
an atmosphere model. In addition comes the fact that in orderto satisfy the CFL criterion the
time step is much smaller for an ocean model since the grid size is so much smaller. In practice it
is a much greater computational effort to provide say a 24 hour “weather” forecast for the ocean
for a given area on a given computer than to provide a similar weather prediction. To enable
computers to provide numerical ocean weather forecasts as fast as today’s NWP models for the
same area we simply need faster computers. To make things even worse recall that the time
scale in the ocean is much longer than in the atmosphere. A weather prediction of say ten days
corresponds to an ocean forecasts of at least one month.

7.1 Open boundaries

In the infancy of NWP in the 1950s and 1960s the capacity of thecomputers were too limited to
allow global atmospheric forecasts that resolved the Rossby radius to be run, that is to resolve the
large scale weather systems (synoptic scales). Hence most national meteorological institutes at
that time ran limited area NWP models. The boundaries af these models were therefore “open”
in the sense that there was no natural boundary like for instance an impermable wall to help you
specify a boundary condition. Fluid were therefore free to pass trough these boundaries, and
hence they were denotedopen boundaries. Nevertheless, in a mathematical sense, it still consti-
tuted a boundary at which a boundary condition had to be specified. Such boundary condition
are denotedopen boundary conditionsor OBCs for short.

As alluded to in the in the introduction to this chapter, today’s situation is quite different re-
garding atmospheric models. Global NWP models with more than adequate resolution to resolve
the atmospheric weather systems or Rossby’s deformation radius, also referred to as the synoptic
scale, are in fact common today. These models therefore resolve Rossby’s deformation radius
everywhere including the poles. Nevertheless there are still processes on a scale much smaller
than the synoptic scale that have a decisive impact on the local weather, notably processes asso-
ciated with cloud formation (showers) and irregular topography, that is not yet resolved properly
by the global models. Processes accociated with these scales not only impact the local weather,
but equally important they also impact the large scale weather. Their effect is therefore parame-
terized in the global models.

Regarding ocean models the situation is somewhat similar. In fact running global NOWP
models resolving the oceanic deformation radius at high latitudes are not yet feasible even on
today’s supercomputers. Thus oceanographers even today have to revert to limited area models
to resolve the scale associated with the oceanic weather systems. In this light it appears that there
is no lower limit in the quest for higher and higher resolution.
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As a consequence both ocean and atmosphere models early on had to handle open bound-
aries. In particular they had to develop proper or correct OBCs, that is, OBCs that ensures, in a
mathematical sense, that a solution of the child model’s governing equations exists and is unique.
Recall that at the open boundaries the governing equations are still valid. Nevertheless, since the
computational domain of the child model ends at the open boundary the governing equations
must be replaced by some kind of OBC there. From a physical point of view we would like the
solution to be as close to the “correct” solution as possible. The correct solution refers to the one
we would have obtained if the model was global with natural boundary conditions applied along
its boundaries. It should be emphasized that this is a dilemma since the solution to the governing
equations is determined not only by the equations themselves, but also by the boundary condi-
tions as mentioned in Section 2.5. Thus when applying OBCs todetermine the solution we are
not ensured that the solution we obtain is the correct one. Infact it is impossible in general to
prove that a solution even exists and is unique. The latter isonly possible in special cases, for
instance for very simplified linear systems.

To help in the development of a proper OBC the following definition of an open boundary, as
formulated byRøed and Cooper(1986), is useful

An open boundary is a computational boundary at which disturbances originating
in the interior of the computational domain are allowed to leave it without disturb-
ing or deteriorating the interior solution.

7.2 Nesting techniques

Although the global models do not resolve the weather systems they do provide information
on the scales larger than the weather systems. It was therefore early on recognized that the
information inherent in these coarser mesh models should beexploited by the higher resolution,
finer mesh limited area models. The answer isdynamic downscalingin which the results from
a coarser mesh model is used to provide OBCs for the fine mesh models. These techniques
are referred to asnesting techniques. Common today is to refer to the coarse mesh model as
the “parent” model and to refer to the fine mesh model as the “child” model. If the parent is a
“stand-alone” model, that is, there is no feedback from the child model, we refer to the nesting
as aone-way nestingtechnique. This is in contrast totwo-way nesting techniquesin which the
child is allowed to impact the parent. The latter is treated in Section 10.5 (page 172), while we
in this section concentrate on the one-way nesting techniques.

The parent-child situation is vizualized in Figure 7.2 in which the parent covers the domain
denotedΩ and the child covers the domain denotedω. The open boundary or interface between
them is denotedΓ. The task is then to provide an OBC onΓ so that results from the parent model
somehow is transferred to the child model. This then becomesthe condition on the boundary
Γ that must be obeyed by child model. This is denoted dynamicaldownscaling since the child
model provides a solution that is a consistent downscaling of the parent model dynamics down
to scales that take into account the finer scales present in the child model for instance through a
refinement of the topography. We emphasize that early on there was no parent models, but due
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Parent

Child

Ω

ω

Γ

Figure 7.2: Sketch showing the confiduration of a Child modelcovering a domainω embedded
in a Parent model covering the domainΩ. Commonly the Child has a higher resolution than the
Parent with a refinement factor of 3 to 5. The interface, denotedΓ, is then an open boundary at
which an open boundary condition must be imposed.

to the limited computer capacity the boundaryΓ was still an open boundary at which an OBC
had to be specified.

We demand that the conditions we impose at open boundaries satisfy certain requirements.
One obvious requirement, which follows directly from the definition above, is that disturbances
originating in the interior of our domain propagating toward the open boundary should be allowed
to pass through to the exterior without distorting or disturbing the interior solution. Equally ob-
vious is that disturbances originating in the exterior domain is free to enter our domain without
distortions. The latter is sometimes hard to achieve since we do not always have sufficient knowl-
edge about the exterior solution.

To illustrate this let us consider a wave created in the childdomain which propagates towards
the open boundary. The condition we impose at the open boundary should then be able to let that
wave pass through and not be reflected, that is, none of the energy contained in the wave should
be allowed to be radiated back into the child domain. Likewise if a parent model exists a wave
created in the parent domain should be free to enter the childwithout being distorted or damped.
Next we require that the chosen OBC leads to a stable solution(numerically). Finally, from a
mathematical point of view we require that the OBC together with the governing equations leads
to a mathematical problem that is well posed or at least well-posed enough so that a solution
exists and is unique.

7.3 Some historical notes

The very first attempt of making a numerical weather forecastwas made by the Meteorological
Research Group at the Institute for Advanced Study lead by John von Neumann at the Princeton
University in the late 1940s. Their attempt is published in the now famous paper byCharney
et al. (1950). Recall that just after the second world war the digital computers were in their
infancy. They therefore employed a very simple atmosphericmodel compared to today’s stan-
dards, and the domain was very limited. In fact they solved a finite difference approximation of
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the barotropic, quasi-geostrophic vorticity equation on arectangular domain basically covering
the North American continent. Thus the model featured four open boundaries to the north, south
east and west where they had to apply OBCs. They opted for a setof OBCs which was to specify
the potential vorticity at the inflowing boundaries and to apply a radiation condition (see Sec-
tion 7.4 below) at outflowing boundaries. LaterPlatzman(1954) showed that their solution was
unstable when applying the OBC they had chosen. Thus the problem of specifying OBCs that
renders the solution unique without detoriating it is not new.

Since this first application, where the OBC was shown to play acrucial part, there has been a
lot of research on OBCs, e.g., (e.g.,Davies, 1976, 1985;Orlanski, 1976;Sundström and Elvius,
1979;Hedstrøm, 1979;Røed and Smedstad, 1984). Regarding ocean models reviews are offered
by Chapman(1985),Røed and Cooper(1986, 1987),Palma and Matano(2000) andBlayo and
Debreu(2005, 2006). For the one-way nesting techniques applied toocean modeling the recent
paper byMason et al.(2010) is enlightning, while regarding two-way nesting techniquesDebreu
and Blayo(2008) and most recentlyDebreu et al.(2012) is worth reading. As a consequence
most national meteorological institutes today runs limited area weather forecast models nested
into a global model1. The global model is then the parent model and the limited area model the
child model, the latter covering the area of interest to thatparticular nation with a much higher
resolution (smaller grid size). The nesting technique usedis mostly one-way, simply because
most nations use forecasts from a global model which is not run inhouse, for instance by the
ECMWF. This is also the case regarding ocean forecasting. For instance, recently the European
Community established the Copernicus Marine Core Service in which several European institu-
tions collaborate to provide regional ocean weather forecasts for European Seas2 which include
a global ocean model into which the regional models are nested.

In the following we will give some details regarding some of the common OBCs developed
over the years. Towards the end we give details about two of the most promising OBCs that
are useful as nesting techniques as well as OBCs (Sections 7.7 and 7.8). These are the Flow
Relaxation Scheme (e.g.,Davies, 1976, 1985) and the weakly reflective approach (e.g.,Navon
et al., 2004;Blayo and Debreu, 2006). While the former OBC was developed in the meteorolog-
ical community (Davies, 1976, 1985), the latter comes from the electromagnetic field (Berenger,
1994). In Chapter 10 Section 10.5 we in addition give a glimpse of the two-way nesting technique
(cf. Debreu et al., 2012) that we mentioned in Section 7.2 above.

7.4 Radiation conditions

Many of the processes in the ocean and atmosphere are processes involving wave propagation
in one way or another. The early attempts at developing OBCs were therefore based their OBC

1At the Norwegian Meteorological Institute the limited areamodel at the time of writing is AROME-MetCoOp,
a 2.5 km mesh size, non-hydrostatic (convective-scale) weather prediction model nested into the ECMWF model.
Forecast provided by this model is what you get when looking at yr (http://www.yr.no/) for the Norwegian forecast
area.

2Daily updated forecasts are available at http://marine.copernicus.eu/
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formulations on simple wave equation. In its simplest form the wave equation reads,

∂tφ+ cφ∂nφ = 0 (7.1)

Hereφ represents the dependent variable,cφ is the component of the phase velocity normal
the boundary associated with the variableφ, while ∂n denotes the derivative normal to the open
boundary. Imposing (7.1) as an OBC it becomes what is known astheradiation condition. When
use is made of (7.1) as an OBC we fundamentally assume that thedisturbances passing through
the open boundary consists of waves. Note that the disturbances passing through the boundary
may consist of several waves of different wavelengths, and hence that (7.1), strictly speaking, is
only valid for one Fourier component only. It is thus only suitable for linear problems in which
there is no energy exchange between wave numbers.

One of the first obstacles in employing (7.1) as our OBC is thatwe do not know the phase
velocity cφ. From Section 5.14 we recall thatcφ is the slope of the characteristics. Thus if the
choice ofcφ perfectly matches the slope of the characteristics then (7.1) is a perfect open bound-
ary condition. However, it is only for very simple, physicalproblems, e.g., for a monochromatic
wave problem, that we are able to determine the characteristicsa priori, and hencecφ is generally
unknown.

We immediately recognize that (7.1) contains two special cases. The first case iscφ = 0,
while the second is the opposite, namely when the phase velocity cφ → ∞. In the former case
we notice that the characteristics are straight vertical lines inx, t space, and that we may integrate
(7.1) in time to give,

φ = const. (7.2)

Thus under these circumstances the dependent variable is known for all times at the OBC, and
we recall from Section 2.5 that the OBC is a Dirichlet condition. Commonly this is referred to
as aclamped conditionsince the dependent variableφ does not change in time at the OB.

In the latter case whencφ → ∞ we notice that characteristics are horizontal straight lines
in thex, t space. We notice from (7.1) that if∂tφ should remain finite we must require that the
gradient∂nφ must be zero, and hence that

∂nφ = 0. (7.3)

Usually the condition (7.3) is referred to simply as agradient condition. We recall from Section
2.5 that such a condition was referred to as a Neumann condition.

If the phase velocity is finite and differs from zero, then we have a true radiation condition.
The problem is then reduced to determine the phase velocitycφ. If the solution is in the form of
known waves, say a barotropic Kelvin wave3. Under these circumstances the phase velocity is
known, and in the case of a Kelvin wave it is,

cφ = c0 =
√
gH (7.4)

whereg is the gravitational acceleration, andH is the equilibrium depth of a fluid column.

3A barotropic Kelvin wave is common phenomena in oceanography. It belongs to the class of planetary gravity
waves. Kelvin waves are commonly filtered out in meteorologymodels.
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Let us consider a problem of a fluid contained in a channel of equilibrium depthH. Further-
more, let us consider a frictionless motion and leth denote the total depth or layer thickness of a
fluid column andu the speed of the fluid column4. Moreover, let us consider that the motion is on
a non-rotational Earth, and that the fluid has constant and uniform density. Then the governing
equations may be written (cf. Section 6.2)

∂tu = −g∂xh (7.5)

∂th = −H∂xu (7.6)

The classic method to solve the above set is to first differentiate (7.5) with respect tox and (7.6)
with respect tot and then add the results. The result is

∂2t h− c20∂
2
xh = 0, (7.7)

that is, a wave equation with a phase speed equal toc0 as given in (7.4). The set (7.5) and (7.6)
thus requires two boundary conditions in space. Let us assume that the channel has two open
boundaries atx = 0 andx = L. The natural boundary condition at these two boundaries is then
the radiation condition (7.1) with a phase speed of±c0, respectively.

Recalling that the phase velocity is determined by the slopeof the characteristics, we may
also use the semi-Lagrange technique or method of characteristics to find a useful boundary
condition. In fact, as we show, we end up by imposing the radiation condition at the two open
boundaries. We start by recalling that the compatibility equations and the characteristic equations
for the simple system (7.5) and (7.6) are given by (6.71) and (6.72). Revalling thatφ = gh we
get

∂t

(
u+ c0

h

H

)
+
D∗

1x

dt
∂x

(
u+ c0

h

H

)
= 0 along

D∗
1x

dt
= c0, (7.8)

∂t

(
u− c0

h

H

)
+
D∗

2x

dt
∂x

(
u− c0

h

H

)
= 0 along

D∗
2x

dt
= −c0. (7.9)

While (7.8) describes a wave propagating in the positivex-direction with phase velocityc0, we
observe that (7.9) describes a wave propagating in the opposite direction, but with the same phase
velocity. In particular we notice that (7.8) and (7.9) express that the specific combinations of the
dependent variablesu andh, namely the Riemann invariantsu± c0

h
H

, are conserved along their
respective characteristics.

Let us assume that our problem is to solve (7.5) for0 < x < L and that the two boundaries
x = 0 andx = L are open. Let us in addition assume that a motion is generatedin the interior of
the domain, e.g., in the form of an initial deviation of the layer thicknessh locally. The question
then arises: what is the correct boundary condition to impose on the two open boundaries?
We know from the two compatibility equations (7.8) and (7.9)that the information about the
deviation will propagate along the two characteristics. Towards the right-hand boundary atx = L
the information will propagate alongD

∗

1x

dt
= c0 characteristic, and towards the left-hand boundary

4Since we consider a frictionless motion we may safely assumethatu is independent of depth.
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x = 0 along D∗

2
x

dt
= −c0 characteristic. To avoid reflection we must impose a condition that

ensures that information cannot propagate back into our interior domain from the boundary point.
Since information propagates along the characteristics, we must ensure that no characteristics at
x = 0 or x = L slopes towards the interior. Consequently we require that

D∗
2x

dt
= 0 at x = L, (7.10)

and
D∗

1x

dt
= 0 at x = 0. (7.11)

Substituting this into the left-hand sides of (7.8) and (7.9), respectively, we get

∂t

(
u− c0

h

H

)
= 0 at x = L (7.12)

and

∂t

(
u+ c0

h

H

)
= 0 at x = 0. (7.13)

We now integrate (7.12) and (7.13) in time and get

u = c0
h

H
+ const., at x = L (7.14)

and

u = −c0
h

H
+ const. at x = 0. (7.15)

This is in fact the radiation condition. Indeed if we substitute the expression (7.6) for∂th into
(7.12) we get (7.1) withφ = u andcφ = c0.

The advantage of using the method of characteristics to derive the non-reflective boundary
condition is that it gives us insight into how to construct open boundary conditions in general.
This was for instance exploited byRøed and Cooper(1987) to construct a weakly reflective
boundary condition for a more general problem including theeffect of Earth’s rotation based on
earlier work byHedstrøm(1979) (cf. Section 7.8).

7.5 Implementation of the radiation condition

We now consider the numerical implementation of the one-dimensional version of the radiation
condition (7.1), and that the space variable isx. In this we essentially follow the implementation
given inRøed and Cooper(1987). Recall that the radiation condition then reads

∂tφ+ cφ∂xφ = 0. (7.16)

To get started let us assume that the computational domain isx ∈< 0, L > andt ∈< 0, T >.
The boundaries are then atx = 0, L, where we assume thatx = L is an open boundary, while
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t
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Figure 7.3: Sketch of the mesh in thet, x plane close to the right-hand open boundary. The
computational domain is then to the left ofx = L. The lettersJ , J − 1, andJ − 2 denote grid
points respectively at the open boundary, the first and second points inside the computational
domain, whilen, n− 1, andn + 1 denote the time levels.

x = 0 is a natural boundary. Furthermore we construct a grid in thex, t coordinates where
xj = (j − 1)∆x andtn = n∆t (cf. Fig. 7.3).

Since (7.16) is an advection equation it is natural that we use one of the stable schemes
developed in Section 5.2. We emphasize that it is important that the interior scheme and the
scheme we use to solve the radiation equation has the same accuracy. Thus if the interior scheme
is of second order accuracy in time and space then it is natural that we choose the leapfrog
scheme. If the interior scheme is first order in time and spacethen it is natural that we choose a
similar scheme for the radiation condition (7.16), say the upwind scheme. In the following we
assume that the latter is true.

We then proceed using the upwind scheme for the radiation condition atx = L, that is for
j = J . Assuming thatcφ ≥ 0, and following the notation of Figure 7.3, we get

φn+1
J − φn

J

∆t
+ cφ

φn
J − φn

J−1

∆x
= 0 (7.17)

or
φn+1
J = (1− rφ)φ

n
J + rφφ

n
J−1 (7.18)

where

rφ = cφ
∆t

∆x
. (7.19)

Equation (7.18) says that the radiation condition in essence is an interpolation of values from
the interior and at previous times. The problem is that we don’t know the weighting function, that
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is, the phase velocitycφ? As suggested byOrlanski(1976) we might solve (7.12) with respect to
the phase velocity (orrφ) and get

rφ = −φ
n+1
J − φn

J

φn
J − φn

J−1

. (7.20)

However, since we do not know the solution at the boundary at time leveln+1 this expression
is useless. Our only way of determiningcφ (or rφ) is to use our knowledge about the solution
at previous times. We then have several options. One is to useinterior points at the same time
level, in which case

rφ = −φ
n+1
J−1 − φn

J−1

φn
J−1 − φn

J−2

. (7.21)

A second is to use information at previous times at same points in space,

rφ = − φn
J − φn−1

J

φn−1
J − φn−1

J−1

. (7.22)

Both of these expressions provides an expression for the phase velocity. But which is the cor-
rect one? If we interpret (7.21) and (7.22) in terms of characteristics as in the previous section
(see also Section 5.12), we notice that (7.21) assumes that the slope of the characteristic through
the (xJ , tn+1) point to a first approximation equals the slope through the (xJ−1, t

n+1) point, while
(7.22) assumes that it to a first approximation equals the slope through the point (xJ , tn). Follow-
ing this argument a third option is to assume that the characteristic through (xJ , tn+1) continues
backward in times and crosses the time leveln − 1 betweenxJ−1 andxJ−2. This is tantamount
to assume that to a first approximation the slope through (xJ , t

n+1) equals the slope through
(xJ−1, t

n). We then get the following expression for the phase velocity

r′φ = −φ
n
J−1 − φn−1

J−1

φn−1
J−1 − φn−1

J−2

(7.23)

On purpose we have used a prime for this expression, since it is a predictor for the phase velocity.
We must require that the number returned is not negative. Hence we correct the result by defining
rφ (no prime attached) as

rφ =

{
r′φ ; 0 ≤ r′φ
0 ; r′φ < 0

. (7.24)

As argued byRøed and Cooper(1987) we think (7.24) is a better approximation. Conse-
quently, we use the expression (7.24) to substitute forrφ in (7.18) when determining the new
boundary valueφn+1

J at time leveln + 1. If our open boundary was atx = 0 the inequality sign
in (7.24) must be reversed to ensure that the phase velocity then is negative.

As alluded to it is only pure wave problems where processes like non-linear interactions, fric-
tion, wind forcing and the Coriolis acceleration are neglected that satisfies the radiation condition
(7.1). All realistic models employed today within oceanography or meteorology are much more
complex, and includes at least the processes just mentioned, and in most cases many more. The
radiation condition is therefore far from being a perfect open boundary condition5.

5In fact it may be shown that there is no such thing as a perfect boundary condition mathematically speaking,
since the problem in a geophysical context is ill posed.
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Since the radiation condition in most cases is far from beingperfect the meteorological and
oceanographic communities has developed several other optional OBCs (e.g.,Chapman, 1985;
Røed and Cooper, 1986, 1987;Palma and Matano, 2000;Blayo and Debreu, 2006). In the
following sections we study some of the more popular ones.

7.6 The sponge

One of the most popular ones is the so calledsponge condition. In essence the method is to
extend the computational domain outside of the area of interest (interior domain) to include an
area where the energy leaving the interior domain is gradually decreased so as to avoid reflection.
This is what happens to, e.g., waves impinging on a sandy beach. In practice we achieve this by
gradually increasing the relative importance of those terms associated with energy extraction,
e.g., frictional processes, as the a disturbance is advected or propagated into the exterior or
extended domain (sometimes referred to as the sponge layer).

As an example let us study the non-rotating shallow water equations, that is,

∂tu = −g∂xh (7.25)

∂th = −H∂xu. (7.26)

Let our domain of interest bex ∈ 〈−Li, Li〉. There are however no physical boundaries at the
two boundariesx = −Li, Li. Hence these boundaries are open implying that the governing
equations (7.25) and (7.26) are valid outside of our domain of interest as well. We may therefore
extend thecomputationaldomain tox ∈ 〈−Le, Le〉 in which Le > Li so that our domain of
interest becomes a subdomain. Furthermore we may add friction to the problemoutsideof our
domain of interest, for instance in terms of Rayleigh friction6. To avoid loosing mass, and since
(7.26) is the mass conserving equation, we only add Rayleighfriction to the momentum equation,
that is, we replace (7.25) and (7.26) by the equations

∂tu = −g∂xh− γu, (7.27)

∂th = −H∂xu, (7.28)

to be solved within the extended domainx ∈ 〈−Le, Le〉. Furthermore by letting the frictional
parameterγ be zero withinx ∈ 〈−Li, Li〉 (7.27) and (7.28) reduces to (7.25) and (7.26) within
our domain of interest. However, outside of our domain of interest, that is, in the exterior domains
x ∈ 〈−Le,−Li〉 andx ∈ 〈Li, Le〉we letγ gradually and monotonically increase as we get farther
and farther away from the open boundaries. For instance we achieve this by using

γ = γ0





1− e−λ(x+Li) ; −Le ≤ x < −Li

0 ; −Li ≤ x ≤ Li

1− eλ(x−Li) ; Li < x ≤ Le

, (7.29)

6Rayleigh friction means a term proportional to the variablein question. For instance if the variable is the
velocityu the Rayleigh friction term would be−γu as, e.g., given in (7.27). We also note that the solution to the
equation∂tu = −γu is u = u0e

−γt whereu0 is the intial velocity. Thus Rayleigh friction decreases the kinetic
energy of all wavelengths equally.
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The frictional parameter thus increases exponentially from zero at the two open boundaries at
x = −Li andx = Li to γ0(1−eλ(Le−Li)) at the two boundaries of the computational or extended
domain. Any wave or disturbance created inside the interiordomain will therefore be damped
by friction as it propagates into the sponge layers, and increasingly so as it progresses farther
away from the two open boundaries. We note that, together with the width of the sponge layers,
the parametersλ andγ determine how fast or quickly the frictional effect increases within the
two sponge layersx ∈ 〈−Le,−Li〉 andx ∈ 〈Li, Le〉. To avoid reflection of disturbances that
eventually may deteriorate the interior solution it is extremely important that these parameters
are set so that the frictional effect only slowly takes effect as the disturbances progresses into the
sponge.

We can derive an analytic solution to (7.27) and (7.28). We start by differentiating (7.28)
with respect to time, and then substitute for∂tu from (7.27). We then get

∂2t h+ γ∂th = gH∂2xh. (7.30)

Searching for wave like solution we let

h = h0e
ωteiαx, (7.31)

whereα is the wavenumber andω is a complex frequency. Substituting this expression into
(7.30) we get the dispersion relation

ω2 + γω + gHα2 = 0, (7.32)

which gives the two solutions

ω1,2 = −1

2
γ ± iαc (7.33)

where

c =

√
gH −

( γ
2α

)2
. (7.34)

Thus the solution in terms of the height of a fluid column is hence

h = h0e
− 1

2
γteiα(x±ct), (7.35)

whereh0 is a constant. We observe from (7.35) that the solution consists of two waves travelling
in opposite direction. We also observe the amplitude of the waves within the sponges where
γ 6= 0 domain decreases exponentially in time. Furthermore, we notice that phase velocity
(7.34) decreases with increasingγ. Thus, as the wave propagates deeper into the sponge areas, it
slows down as well as being damped in amplitude.

Since application of the sponge condition as an open boundary condition requires that the
sponge zone is of a certain extension it adds computer time tosolve our problem. Hence adding
sponges slows down the wall clock time. Another problem withthe sponge condition is that if
the solution consists of forced waves (cf.Røed and Cooper, 1986), for instance is governed by
equations like

∂tu = −g∂xh− γu+ τ (7.36)

∂th = −H∂xu (7.37)
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whereτ represents the forcing, then the solution in the sponge layer of the former wave solution
(7.35) and a solution dominated by a balance between the forcing term and the frictional term,
that is,u = τ/γ, which implies that asγ increasesu decreases so that mass (volume) accumulates
within the sponge zone. For longer term integrations this accumulation of volume changes the
pressure forcing and sooner or later this will have an impacton the interior solution as well. It
is important to bear this fact in mind when we in the next section discuss the Flow Relaxation
Scheme (FRS).

7.7 The Flow Relaxation Scheme

We now construct an OBC that was first suggested byDavies(1976). As shown below it is some-
what similar to the sponge OBC in two respects. First it requires us to extend the computational
domain to include an exterior domain or buffer zone. Second it is in essence a sponge in which
the solution is suppressed as it progresses into the buffer zone. The method is called theFlow Re-
laxation Schemecommonly abbreviated to FRS (Davies, 1976;Martinsen and Engedahl, 1987;
Cooper and Thompson, 1989;Engedahl, 1995a;Shi et al., 1999, 2001). In particular the two
latter references are useful in that they give a detailed description of the FRS and in addition
gives a nice example of its use as an OBC.

One of the advantages of the FRS compared to for instance the sponge is that it allows us to
specify an exterior solution. The FRS can therefore be used as a one way nesting condition, in
which an exterior solution is specified by, e.g., a courser grid model covering a much larger area.
The FRS as a nesting technique is for instance used as the mainmethod whereby information
from global and semi-global models is transferred to regional models at Norwegian Meteorolog-
ical Institute. This is true for both their numerical weather prediction (NWP) models as well as
their numerical ocean weather prediction (NOWP) models7.

In essence the method, just as the sponge method, only modifies thenumericalsolution in a
buffer or relaxation zone. In this zone, commonly referred to as the FRS zone, the solution is, for
each time step, relaxed toward a specified exterior solution. The FRS zone is commonly not too
wide, but should at least contain 7 grid points. We emphasizethat the FRS zone is an extension
of the interior domain and thus extends the computational domain (cf. Figure 7.4). Within the
FRS zone the solution is relaxed towards an a priori specifiedexterior solution8. The relaxation is
performed by specifying a weighting function that for each grid point in the FRS zone computes
a weighted mean between the specified outer solution and the interior solution computed from
the governing equations.

Letφ(x, t) be the dependent variable in our problem and let the interiordomain or our domain
of interest bex ∈< −Li, Li >, wherex = −Li, Li are open boundaries. As displayed in Figure
7.4 the FRS zones extend the interior domain so that the computational domain is increased to
the left and right by adding FRS zones. The FRS zone to the leftstarts atx = −Le and ends at
x = −Li, while the the FRS zone to the right starts atx = Li and ends atx = Le. We note that
this is quite similar to the addition of sponge layers as we did in Section 7.6. As usual we define

7cf. http://met.no/
8Often also referred to as the outer solution
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Interior domain FRS
zone

FRS
zone

Computational domain

x = −Le x = −Li x = −Li x = Le

j = 1 j = Jl + 1 j = Jr + 1 j = J + 1

Figure 7.4: Sketch of the FRS zone, the interior domain and the computational domain. Also
shown are the appropriate indices.

the grid points byxj = (j − 1)∆x, where the indexj counts all grid points of the computational
domain starting withj = 1 atx = −Le at the leftmost boundary of the computational domain and
ending withj = J + 1 at the rightmost boundary. Furthermore we letj = Jl + 1 be associated
with x = −Li, the left-hand open boundary, andj = Jr + 1 be associated withx = Li, the
right-hand open boundary.

As alluded to the FRS allows us to specify an outer solution, which can be the result of
another numerical model covering a larger domain than our interior domain. We denote this ex-
terior solution byφe

n
j which emphasize that the outer solution is a function of space and time. Let

us now assume that we have computed all the our dependent variableφn
j at all points, including

the FRS zones at time leveln. Furthermore using the governing equation of our model we can
derive a solution at the next time level including the FRS zone except of course the end points
at j = 1 andj = J + 1. We denote this predictor byφ∗

j . We underscore thatφ∗
j is computed at

all pointsj = 2(1)J , that is, all points except the end points of the FRS zones. The next step
is to correct the solution by computing our dependent variable as a weighted mean between our
predicted solutionφ∗

j and the specified outer solutionφe
n
j to derive the final or corrected solution

at time leveln + 1. We do this by employing the formula

φn+1
j = (1− αj)φ

∗
j + αjφe

n+1
j ; j = 1(1)J, (7.38)

where0 ≤ αj ≤ 1 is a relaxation parameter so thatα1 = αJ+1 = 1 and so thatαj = 0 for all grid
points within the interior domain including the open boundaries, that is, forJl +1 ≤ j ≤ Jr +1.
We also require that the relaxation parameter increases monotonically in the FRS zones. Since
the relaxation parameterα1 = αJ+1 = 1, we note from (7.38) that the solution at time level
n+ 1 equals the specified outer solution at the end points of the FRS zones, e.g.,φn+1

1 = φe
n+1
1 .

Similarly we notice that at in the interior and including theopen boundary points the solution
equals the interior solution, orφn+1

j = φ∗
j for Jl + 1 ≤ j ≤ Jr + 1.

Experiments employing the FRS, e.g.,Martinsen and Engedahl(1987),Engedahl(1995a),
show that the solution is sensitive to the the distribution of the specified weighting functionα
throughout the FRS zone. They found that distributingα applying a hyperbolic tangent function,
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that is,

αj = 1− tanh
j − 1

2
; j = 1(1)JM, (7.39)

is a good choice. Furthermore, in similarity with the spongemethod, they also found that the
solution is sensitive to the width of the FRS zone. They concluded that for oceanic application
the width of the FRS zone should be at least seven grid points,that is,Jl ≥ 7.

In similarity with the sponge condition one of the disadvantages of employing FRS as an
OBC (or nesting technique) is that the computational domainis increased, and hence that the
computational burden is increased. This disadvantage is, however, somewhat suppressed by the
fact that the FRS allows us to specify an outer solution. As shown below this can be used to
effectively minimize possible errors due to reflection of disturbances. Another disadvantage is
that the solution, in similarity with the sponge method, does not conserve fundamental properties
such as volume (or mass).

As an example let us study the numerical solution of the continuous problem

∂tφ = L[φ] ; x ∈< Li, Li >, (7.40)

whereL is a spatial differential operator. Furthermore, let us assume that the open boundary is
at x = −Li and thatx = Li is a natural boundary, that is, that we are left with only one open
boundary atj = Jl + 1, while at the right-hand boundary atx = Li (or j = Jr + 1) a natural
boundary condition applies. As above we letφe

n
j ; j = 1(1)Jl denote the specified exterior

solution. If we solve (7.40) applying a forward in time finitedifference scheme we get

φ∗
j = φn

j +∆tLn
j ; j = 2(1)Jr, (7.41)

whereφ∗
j is the predictor. We then correct the predictor by applying the relaxation formula (7.38).

We then get
φn+1
j = (1− αj)φ

∗
j + αj(φe)

n+1
j ; j = 1(1)Jr. (7.42)

To ensure that we do no corrections to the predictor within the interior domain we let the relax-
ation parameter be given by

αj =

{
1− tanh

(
j−1
2

)
; j = 1(1)Jl

0 ; j = Jl(1)Jr
(7.43)

We may now use the expression on the right-hand side of (7.41)to substitute forφ∗
j in (7.42).

If we in addition add the zero(αjφ
n+1
j − αjφ

n+1
j ) to the left-hand side of (7.42) we get

φn+1
j − φn

j

∆t
= Ln

j + γj
(
φe

n+1
j − φn+1

j

)
; j = 1(1)Jl (7.44)

where the coefficientγj is defined by,

γj =
αj

1− αj

. (7.45)
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If we now let∆t and∆x tend to zero, we notice that (7.44) is a forward in time, finitedifference
approximation to the continuous equation

∂tφ = L[φ] + γ (φe − φ) ; x ∈< −Le, Li > . (7.46)

We observe that except for the additional “frictional” termγ (φe − φ) equation (7.46) equals
(7.40). We also notice that the additional term is proportional to the difference between the
interior solution and the exterior solution, and that the proportionality factor (7.45) varies from
zero at the open boundary (x = −Li) to infinity at the edge of the FRS zone. Thus the relative
importance of the frictional term increases as we progress into the FRS zone.

If we now specify an exterior solution as constant and zero, then (7.46) is turned into

∂tφ = L[φ]− γφ. (7.47)

Under these circumstances the FRS acts like a sponge with a frictional parameterγ which grad-
ually and monotonically increases towards infinity as we progress into the FRS zone, not unlike
the exponential function specified in Section 7.6.

To illustrate the non-conservative properties of the FRS weagain use the example problem
governed by (7.5) and (7.6), that is, the non-rotating shallow water equations,

∂tu = −g∂xh (7.48)

∂th = −H∂xu. (7.49)

To get started we notice first that as∆x and∆t tend to zero (7.42) takes on the form

φ = (1− α)φ∗ + αφe. (7.50)

We now have two dependent variables, namelyh andu, hence

h = (1− α)h∗ + αhe, (7.51)

u = (1− α)u∗ + αue. (7.52)

Substituting foru from (7.52) into (7.49) we get

∂th = −H∂xu = −H∂xu∗ + (ue − u∗)∂xα (7.53)

The first term on the right hand-side of (7.53) is the term we would have obtained if we make
no relaxation (α = 0). However, since the relaxation parameter is a function ofx also a term
appears that contains the divergence of the relaxation parameterα. Thus, unlessu∗ = ue, the
volume (or mass) conservation, as expressed by (7.49), is violated. Thus the varying relaxation
paramater builds up volume, which in turn build up a artificial pressure for in the FRS zone that
may eventually lead to currents deteriorating the interiorsolution. To avoid this violation of the
mass conservation to impact our interior solution we must ensure that the relaxation parameterα
is a very slowly varying function close to the open boundary.In turn this implies that the width
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of the FRS zone must be long enough for this to be realized. Again this is in similarity to the
sponge.

Finally we notice that if the exterior solution is equal to orclose to the true solution, then the
friction term in (7.47) disappear as do the false divergencein (7.53). Under these circumstances
the FRS is close to being a perfect open boundary or nesting condition. Thus the usefulness of
the FRS depends to a certain extent on how good we are to “guess” the exterior solution. This
is the reason why the FRS is mostly used as a one way nesting condition. When specifying the
exterior solution to be the solution of the same governing equation, albeit for a coarser mesh, we
ensure that the exterior solution is indeed close to the interior solution of the fine mesh model
embedded in the coarser grid.

7.8 A weakly reflective OBC

As alluded to in Section 7.4 we may use the method of characteristics to construct a weakly
reflective OBC also for problems including non-linearities, Coriolis effects and forcing (cf.Røed
and Cooper, 1987).

As an example let us study the full shallow water equation. Thus we start with the equations

∂tu+ u∂xu− fv = −g∂xh+ F x, (7.54)

∂tv + u∂xv + fu = F y, (7.55)

∂th+ ∂x(hu) = 0, (7.56)

whereF x, F y are the forcing terms, andf is the Coriolis parameter. We immediately recognize
the system (7.54) - (7.56) as the non-linear, rotating shallow water equations for a barotropic fluid
as given in Section 6.4 page 115 with the addition of the forcing terms. Hence the compatibility
and characteristic equations are

D∗
1,2

dt
(u± 2c) = fv + F x along

D∗
1,2x

dt
= u± c. (7.57)

To avoid reflections at, sayx = L, we require

D∗
2x

dt
= 0 atx = L. (7.58)

By substitution of this expression in (7.57) the weakly reflective open boundary condition be-
comes,

D∗
1

dt
(u+ 2c) = fv + F x, along

D∗
1x

dt
= u+ c, (7.59)

∂t(u− 2c) = fv + F x, at x = L. (7.60)

To find u andh at the boundaryx = L numerically, that is, forj = J + 1, we make finite
difference approximations of (7.59) and (7.60). Thus

un+1
J+1 + 2cn+1

J+1 = unQ + 2cnQ + (fv + F x)nQ ∆t, (7.61)
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and
un+1
J+1 − 2cn+1

J+1 = unJ+1 − 2cnJ+1 + (fv + F x)nJ+1∆t. (7.62)

As before we find the position of the pointxQ (j = jQ) by utilizing the characteristic equation
(7.59), that is,

xQ = xj − (unJ+1 + cnJ+1)∆t, (7.63)

Solving (7.61) and (7.62) with respect toun+1
J+1 andcn+1

J+1 we get

un+1
J+1 =

1

2

{
unQ + unJ+1 + 2

(
cnQ − cnJ+1

)
+
[
(fv + F x)nQ + (fv + F x)nJ+1

]
∆t
}

(7.64)

cn+1
J+1 =

1

4

{
unQ − unJ+1 + 2

(
cnQ + cnJ+1

)
+
[
(fv + F x)nQ − (fv + F x)nJ+1

]
∆t
}

(7.65)

It remains to findunQ and cnQ. As explained in Section 5.12 we find these by a interpolation
using the adjacent grid points, for instance by using Newton’s two point interpolation formulae
or higher order interpolation. It should be noted that sincewe make use of finite difference
approximations, we do not solve (7.59) and (7.60) to perfection, and thus some weak reflections
is unavoidable. These may, however, be somewhat supressed by making an iteration along the
lines described in Section 6.5.

Exercises

1. Show that a one-sided, finite difference scheme in time andspace of the radiation condition
(7.1) can be written

φn+1
B =

{
φn
B ; cφ > 0(
1 + cφ

∆t
∆x

)
φn
B − cφ

∆t
∆x
φn
B+1 ; cφ ≤ 0

(7.66)

The open boundary is to the left so that subscriptB denotes the values of the variables
on the open boundary while subscriptB + 1 indicates the values to the right of the open
boundary.

2. Show by use of (7.66) that the radiation condition is “simply” an interpolation of values
on the inside of the computational domain.
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Chapter 8

GENERAL VERTICAL COORDINATES

Most modern models employed in the meteorological and oceanographic community replace the
natural geopotential vertical coordinate (z-coordinate) with a new vertical coordinate. The reason
for this is that the geopotential coordinate is quite cumbersome to work with in the presence of
steep topography such as mountains in the atmosphere and shelf breaks and sea mountains in the
ocean.

As early as in the late 1940sSutcliffe(1947) andEliassen(1949), at the dawn of numerical
weather prediction, suggested to use pressure surfaces to replace surfaces of geopotential height
as the vertical coordinate in atmospheric models, a method successfully tested byCharney and
Phillips (1953) using a quasi-geostrophic model (cf. Section 1.6 on page 9). The pressure
coordinate has several advantages over ordinary geopotential height models. For instance it
reduces the mass conservation equation to a diagnostic equation, which in turn eases the analysis
of the large scale (hydrostatic) motions.

The pressure coordinate, however, has certain computational disadvantages, in particular in
the vicinity of mountains since the ground is not a pressure surface. To remedy thisPhillips
(1957) suggested to use terrain-following surfaces as the vertical coordinate. Such a coordinate
system is now commonly referred to as theσ-coordinates, a coordinate system that has become
quite popular in ocean models (Blumberg and Mellor, 1987;Haidvogel et al., 2008).

Also other vertical coordinate systems are suggested. For instance it was early on suggested
to use surfaces of potential temperature as the vertical coordinate. This was successfully tested
by Eliassen and Raustein(1968, 1970) employing a simplified primitive equation models and by
Bleck(1973) using the potential vorticiy equation, and was extended with success to full three-
dimensional, dynamic-thermodynamic atmospheric models by Shapiro(1974). In the ocean so
called isopycnic models in which surfaces of potential density are used as vertical coordinates
was explored in primitive equation models byBleck and Smith(1990). In the recent decade it
has also become quite common to explore the use of so called hybrid coordinate models in which
the vertical coordinate changes from one to another throughout the height both in the atmosphere
and in the ocean (e.g.,Bleck, 2002). Finally it should be emphasized that the various vertical
coordinate systems all have their advantages and disadvantages (cf.Griffies, 2004, Chapter 6).

In the following we will first show how we in general transformequations formulated in
geopotential coordinates to a new general vertical coordinate, says = s(x, y, z, t). To this
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end we follow the derivation made byKasahara(1974). We then show how the governing
equations of a hydrostatic, non-Boussinesq fluid (cf. Section 1.3 on page 4) is affected by such a
transformation. We end this chapter by showing an explicit example using theσ-coordinates as
our example.

8.1 Transformation to a general vertical coordinate

In general we transform from one coordinate system of independent variables, say(x, y, z, t), to
another system, say(x′, y′, s, t′), by specifying how the independent variables in the transformed
system depend on the independent variables of the original system. Here we will only replace
the vertical height coordinatez. Accordingly we define the transformation simply by

x′ = x, y′ = y, z′ = s = s(x, y, z, t), and t′ = t. (8.1)

Note that we have only replaced the normal geopotential height coordinatez with a general
vertical coordinates, while the horizontal coordinates are left unchanged. To ensure that the
transformation is unique we must require thats is a monotone function of heightz. Mathemat-
ically this means that the gradient ofs with respect toz does not change sign within a fluid
column, or

∂zs ≷ 0, and∂zs 6= 0. (8.2)

This is also a necessary condition to ensure that the inversetransformationz = z(x′, y′, s, t′)
exists as well.

From (8.1) we immediately get

∂zx
′ = ∂zy

′ = ∂zt
′ = 0, ∂tx

′ = ∂ty
′ = 0, ∂yx

′ = ∂xy
′ = 0, and ∂xt

′ = ∂yt
′ = 0, (8.3)

while
∂xx

′ = ∂yy
′ = ∂tt

′ = 1. (8.4)

Similarly follows

∂sx = ∂sy = ∂st = 0, ∂t′x = ∂t′y = 0, ∂y′x = ∂x′y = 0, and ∂x′t = ∂y′t = 0, (8.5)

while
∂x′x = ∂y′y = ∂t′t = 1. (8.6)

We emphasize thats is monotonic with respect toz, which implies that∂zs 6= 0 and∂sz 6= 0.
We also observe that if we transformz to z, that is, lets = z then∂zs = ∂sz = 1.

Let ψ = ψ(x, y, z, t) = ψ(x′, y′, s, t′) denote any scalar. Then the first property of the
transformation is

∂zψ = ∂zs∂sψ. (8.7)

If we take the derivative ofψ with respect to one of the independent variables in the coordinate
system we transform to, sayt′, then we get

∂t′ψ = ∂tψ∂t′t + ∂xψ∂t′x+ ∂yψ∂t′y + ∂zψ∂t′z = ∂tψ + ∂zs∂sψ∂t′z, (8.8)
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where the last equal sign follows by utilizing (8.3) - (8.7).If we solve (8.8) with respect to∂tψ
we further get

∂tψ = ∂t′ψ − ∂zs∂sψ∂t′z. (8.9)

Similarly follows that

∂xψ = ∂x′ψ − ∂zs∂sψ∂x′z, and ∂yψ = ∂y′ψ − ∂zs∂sψ∂y′z. (8.10)

Let us define the horizontal gradient ofψ in the new coordinate system by

∇sψ = i∂x′ψ + j∂y′ψ. (8.11)

Then making use of (8.9) and (8.10) we obtain

∇Hψ = ∇sψ − ∂zs∂sψ∇sz. (8.12)

Furthermore we find that the horizontal divergence of any vector, sayA, transforms as

∇H ·A = ∇s ·A− ∂zs∂sA · ∇sz. (8.13)

We note that all vectors project onto the horizontal geopotential surface. This is also true for the
gradient (8.12). Thus the metric term associated with the vertical gradient of the surfaces in the
geopotential coordinate system is eliminated.

We note that since the individual derivative1 is independent of coordinate transformation we
get

Dψ

dt
= ∂tψ + u · ∇Hψ + w∂zψ = ∂t′ψ + u · ∇sψ + ṡ∂sψ, (8.14)

where

ṡ =
Ds

dt
= ∂ts+ u · ∇Hs + w∂zs (8.15)

is the speed of the surfaces in the direction of the three-dimensional velocity. Note that the first
equality in (8.14) is the common expression of the individual deriviative in the geopotential co-
ordinate system, while the second equality expresses the individual derivative in the transformed
system or the new general vertical coordinate system. We nowmake use of (8.9) - (8.12) to
replace the appropriate terms in the first equality in (8.14). Then we get

Dψ

dt
= ∂t′ψ + u · ∇sψ + (w − ∂t′z − u · ∇sz)∂zs∂sψ. (8.16)

Equating this by the individual derivative expressed in thenew general vertical coordinate system
as visulized in the second equality in (8.14) we get

ṡ = (w − ∂t′z − u · ∇sz)∂zs ≡ ω∂zs, (8.17)

where the identity in (8.17) defines the velocityω by

ω = w − (∂t′z + u · ∇sz). (8.18)

1Also by many authors referred to as the material derivative
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As revealed by (8.18) the difference betweenω andw is associated with the speed of the surface
z in the transformed coordinate system. We observe that ifs = ρ, that is, ifs is a material surface
then the kinematic boundary condition requiresw = ∂t′z + u · ∇sz, and hence thatω = 0. This
is to be expected since a material surface is a surface that consists of the same fluid particles for
all times, that is, no particles are transported through thesurface. Thusω is interpreted as that
part of the vertical movement of particles observed when moving with the surfaces, or if we
prefer the speed of the fluid particles through the surfaces. This is corroborated by the fact that
if we let s = z then (8.18) givesω = w, in which case it equals the vertical velocity in the fixed
geopotential coordinate system.

8.2 Transformation of the governing equations

To give insight into how the transformation is applied, we apply it to a non-Boussinesq, hydro-
static fluid.

The hydrostatic equation

We start by transforming the hydrostatic equation

∂zp+ ρg = 0. (8.19)

Using the transformation formulas of the previous section we get

∂sp+ ρg∂sz = 0. (8.20)

We may use this equation to determine the metric factors∂sz and∂zs as follows

∂sz = −∂sp
ρg

, and∂zs = − ρg

∂sp
. (8.21)

We note in passing that ifs = p then (8.20) reduces to

1 + ρg∂pz = 0, or ∂pz = − 1

ρg
. (8.22)

Mass conservation

Next, we transform the continuity equation

∂tρ+∇ · (vρ) = 0. (8.23)

We first rewrite this equation to yield

1

ρ

Dρ

dt
+∇H · u+ ∂zw = 0. (8.24)
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We then make use of the transformation formulas to obtain

1

ρ

Dρ

dt
+∇H · u+ ∂zw = − ρ (∂t′α+ u · ∇sα + ṡ∂sα)

+ ∂zs[∂t′(∂sz) +∇s · (u∂sz) + ∂s(ṡ∂sz)], (8.25)

whereα = 1/ρ. To arrive at this result we have also solved (8.18) with respect tow to replace
∂sw. We may further develop (8.25) by making use of (8.21) to replace the metric term∂sz.
Thus we get

1

ρ

Dρ

dt
+∇H · u+ ∂zw = (∂sp)

−1 [∂t′(∂sp) +∇s · (u∂sp) + ∂s(ṡ∂sp)] , (8.26)

and hence the transformed continuity equation reads

∂t′(∂sp) +∇s · (u∂sp) + ∂s(ṡ∂sp) = 0. (8.27)

We note that ifs = p then (8.27) reduced to

∇p · u = ∂p(ρgω), (8.28)

that is, a diagnostic equation.

Energy equation

If we apply a similar procedure to the tracer equation (1.13)we get

∂t′C + u · ∇sC + ṡ∂sC = FC + SC (8.29)

where the right-hand side represents the transformed fluxesand source terms.

The momentum equation

We finally transform the horizontal component of the momentum equation for a non-Boussinesq,
hydrostatic fluid (1.12) by first rewriting it to read

Du

dt
+ fk× u = −α∇Hp+ α∂zτ +∇H ·FH

M (8.30)

whereτ is the vertical mixing or flux vector, sometimes referred to as the the vertical shear
stress. To transform this equation is a bit more complicatedso we treat it term by term.

We first consider the pressure term, which is special. For a non-Boussinesq fluid we get

α∇Hp = α∇sp+ g∇sz = ∇sM − p∇sα (8.31)

where
M = αp+ gz (8.32)
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is the Montgomery potential(or stream function). In the cases = ρ the last term in (8.32)
vanishes since then∇sα = 0. Under these circumstances the Montgomery potential becomes
a true potential and is a streamfunction for the geostrophicvelocity. For any other choice ofs,
however, the last term in (8.32) must be retained. We finally note that the Montgomery potential
appears because all vectors are projected onto the horizontal surface (with respect to gravity),
even though all gradients are evaluated in the transformedx′, y′, s, t′ system.

Next we consider the vertical shear stress term. In this we apply (8.7) and (8.21) to get

α∂zτ = α∂zs∂sτ = −g∂sτ
∂sp

= ∂pτ . (8.33)

Recalling that
Du

dt
= ∂t′u+ u · ∇su+ ṡ∂su (8.34)

and that

u · ∇su = ∇s

(
1

2
u2

)
+ ζk× u (8.35)

whereζ = k·∇s×u is the relative vorticity relative to the new coordinate system the momentum
equation finally becomes

∂t′u+∇s

(
1

2
u2

)
+ (ζ + f)k× u+ ṡ∂su = −∇sM + p∇sα− g∂pτ +∇s ·FH

M . (8.36)

We may also write this equation in flux form. We then first recombine the second and third term
on the left-hand side of (8.36) using (8.35). Next we multiply (8.36) by∂sp and then finally make
use of the continuity equation in the form (8.27). We then get

∂t′(u∂sp) +∇s · (uu∂sp) + fk× u∂sp+ ∂s(ṡu∂sp)

= −∂sp (∇sM + p∇sα)− g∂sτ + ∂sp∇s ·FH
M . (8.37)

If s = p then (8.37) becomes

∂t′u+∇s · (uu) + fk× u+ ∂s(ṡu)

= −∇sM + p∇sα− g∂sτ +∇s ·FH
M . (8.38)

As alluded to earlier when treating the diffusion problem, we emphasize at this point that the
mixing term or “diffusion” term is mostly added to prevent our numerical model from blowing
up. Hence its exact transformation is of secondary importance.

8.3 Terrain following coordinates

As an example we apply these transformation to transform themass conservation equation to the
so calledσ-coordinate models. This particular coordinate system is defined by

s = σ =
z − η

D
or z = σD + η, (8.39)
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whereD = H+η is the total depth,η being the deviation of the upper surface from its equilibrium
position andH is the equilibrium depth of the fluid columns. The terrain following coordinate
models are very popular in the oceanographic community, e.g., ROMS (Haidvogel et al., 2008),
and various versions of POM (Blumberg and Mellor, 1987;Engedahl, 1995a). It is also to some
extent applied in numerical weather predictions models (Phillips, 1957;Kasahara, 1974).

First we note that the metric factor∂zs and∂sz using (8.21) becomes

∂zs = ∂zσ =
1

D
and ∂sz = ∂σz = D, (8.40)

which allows us to rewrite the hydrostatic equation to

∂σp = −ρgD. (8.41)

Furthermore we need to know the speedω trough theσ surfaces. Applying (8.39) we get

ω = w − σ∂t′D − ∂t′η − σu · ∇sD − u · ∇sη. (8.42)

Thus the mass conservation equation in the form (8.27) becomes

∂t′(ρD) +∇σ · (ρDu) + ∂σ(σ̇ρD) = 0, (8.43)

Separating the effect of the density we get

Dρ

dt
+
ρ

D
[∂t′D +∇σ · (Du) + ∂σ(σ̇D)] = 0, (8.44)

We observe using (8.17) thatσ̇ = ω∂zσ = ωD−1. Furthermore we note that∂t′D = ∂t′η.
Substitution of these expressions into (8.44), and invoking the Boussinesq approximation (1.16)
or Dρ

dt
= 0, the continuity equation for a Boussinesq fluid in terrain-following coordinates is

∂t′η +∇σ · (Du) + ∂σω = 0. (8.45)

We note that the remaining equations may be derived from their general expressions in a similar
fashion. For instance using (8.41) the momentum equation inthe flux form (8.37) becomes

∂t′(Du) +∇s · (Duu) + fk×Du+ ∂σ(ωu)

= −D (∇sM + p∇sα)−
1

ρ0
∂στ +D∇s ·FH

M . (8.46)
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Chapter 9

TWO-DIMENSIONAL PROBLEMS

Below we investigate the effect of including more than one-dimension in space. In particular we
study its impact on the numerical stability criterion. Further expansion into three dimensions is
then straightforward.

9.1 Diffusion equation

We start by expanding the diffusion equation to two dimensions in space. Thus we consider the
continuous equation

∂tθ = κ(∂2xθ + ∂2yθ). (9.1)

Note that since we expand to two dimensions we use the notation θ(xj , yk, tn) = θnjk as outlined
in Section 2.9 page 24. As in the one-dimensional case (cf. Chapter 4) we employ the forward in
time, centered in space (FTCS) scheme. Thus we replace the two second order derivatives with

[
∂2xθ
]n
jk

=
θnj+1k − 2θnjk + θnj−1k

∆x2
, and

[
∂2yθ
]n
jk

=
θnjk+1 − 2θnjk + θnjk−1

∆y2
, (9.2)

while we replace the first order derivative with respect to totime with

[∂tθ]
n
jk =

θn+1
jk − θnjk

∆t
, (9.3)

where∆x,∆y are the space increments along thex, y axis, respectively, and∆t is the time step.
Thus we arrive at the scheme

θn+1
jk = θnjk + κ

∆t

∆x2
(
θnj−1k − 2θnjk + θnj+1k

)
+ κ

∆t

∆y2
(
θnjk−1 − 2θnjk + θnjk+1

)
, (9.4)

To investigate the numerical stability of the scheme (9.4) we use as before von Neumann’s
method. As in the one-dimensional case we first substituteθnjk by its individual Fourier compo-
nents. Since we now must allow for waves propagating in a random direction in thex, y-space,
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the Fourier component must include waves propagating in thex direction as well as in they
direction, that is,

θnjk = Θne
αj∆xeβk∆y, (9.5)

whereα andβ are wavenumbers in thex and y directions, respectively. Next we insert the
discrete Fourier component into (9.4) and solve for the growth factor. We then get

G = 1− 2κ
∆t

∆x2
(1− cosα∆x)− 2κ

∆t

∆y2
(1− cos β∆y) . (9.6)

We observe that this expression is comparable to the one derived for the one-dimensional case,
that is (4.33) on page 45, except that we have an additional term due to the two-dimensionality
of (9.1). Applying von Neumann’s criterion for numerical stability (4.30) we require|G| ≤ 1.
Hence

−1 ≤ 1− 2κ
∆t

∆x2
(1− cosα∆x)− 2κ

∆t

∆y2
(1− cos β∆y) ≤ 1. (9.7)

As in the one-dimensional case we note that the right-hand inequality is trivially satisfied. To
satisfy the left-hand inequality we require

κ
∆t

∆x2
(1− cosα∆x) + κ

∆t

∆y2
(1− cos β∆y) ≤ 1. (9.8)

Since the left-hand side of (9.8) is maximum whencosα∆x = cos β∆y = −1 we note that if

κ
∆t

∆x2
+ κ

∆t

∆y2
≤ 1

2
(9.9)

then the stability criterion is satisfied for all possible values of the wavenumbersα andβ. Thus
the time step limit is

∆t ≤ 1

2κ

∆x2∆y2

∆x2 +∆y2
. (9.10)

In the special case when the grid is regular (a square grid), that is,∆x = ∆y = ∆s, we get

∆t ≤ ∆s2

4κ
. (9.11)

If we compare (9.11) with the one dimensional case (eq. 4.36 on page 46) we notice that the
allowed time step is reduced by a factor of two. Thus the inclusion of more than one dimension
implies that the criterion for numerical stability becomesmore stringent. In fact, as we will
acknowledge as we proceed, this is a general result which applies to all problems.

9.2 Advection equation

The two-dimensional version of the advection equation is

∂tθ + u0∂xθ + v0∂yθ = 0, (9.12)
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whereu0, v0 are the velocity components in thex, y direction respectively (here treated as con-
stants, hence the subscript 0). To solve (9.12) numericallylet us employ the well known second
order accurate CTCS (leapfrog) scheme that worked well for the one-dimensional case. Thus
we replace the forst order derivatives with their respective finite difference approximations as
outlined in Section 2.7. Thus we get

θn+1
jk − θn−1

jk

2∆t
+ u0

θnj+1k − θnj−1k

2∆x
+ v0

θnjk+1 − θnjk−1

2∆y
= 0. (9.13)

or

θn+1
jk = θn−1

jk + u0
∆t

∆x

(
θnj+1k − θnj−1k

)
+ v0

∆t

∆y

(
θnjk+1 − θnjk−1

)
. (9.14)

To investigate the numerical stability we again employ von Neumann’s method. Hence we
insert the discrete Fourier component (9.5) into 9.14. We then get

Θn+1 = Θn−1 − 2iΘn

(
u0

∆t

∆x
sinα∆x+ v0

∆t

∆y
sin β∆y

)
(9.15)

Thus the equation for the growth factor is as in the one dimensional case, that is,

G2 + 2iλG− 1 = 0, (9.16)

where

λ = u0
∆t

∆x
sinα∆x+ v0

∆t

∆y
sin β∆y. (9.17)

Thus, as before, we get the two solutions

G1,2 = iλ±
√
1− λ2, (9.18)

and hence that|G1,2| = 1 resulting in a neutral stable scheme (no energy dissipation). The only
difference from the one-dimensional problem isλ. As we have done earlier we require that the
radical is a positive definite quantity and hence that

|u0
∆t

∆x
sinα∆x+ v0

∆t

∆y
sin β∆y| ≤ 1. (9.19)

For this to be valid for all possible choice of wavenumbersα andβ we must require

|u0|
∆t

∆x
+ |v0|

∆t

∆y
≤ 1 or ∆t ≤ ∆x∆y

|u0|∆y + |v0|∆x
. (9.20)

If we let the grid be regular, that is, let∆x = ∆y = ∆s andu0 = v0 = c0 we get

∆t ≤ ∆s

2|c0|
. (9.21)

Thus we observe, as in the diffusion problem, that increasing the dimension from one to two leads
to a more stringent stability condition. This is to be expected since the physical interpretation
of the CFL condition says that the characteristic must be within the cone of influence from time
leveln.
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9.3 Shallow water equations

Analytic solutions

As we did for the one-dimensional case it is worthwhile to first analyze the various wave motions
supported by the two-dimensional problem. The two dimensional, linear rotating shallow water
equation are given by (6.14) and (6.15). For convenience we repeat them her in scalar form.
Thus in two dimensions we get

∂tu+ ū∂xu+ v̄∂yu− fv + ∂xφ = 0, (9.22)

∂tv + ū∂xv + v̄∂yv + fu+ ∂yφ = 0, (9.23)

∂tφ+ φ̄(∂xu+ ∂yv) = 0. (9.24)

To analyze the possible wave motions we assume that all the variables are two dimensional
waves of frequencyω. Thus we assume that the solution is

x = x0e
−iωtei(αx+βy), (9.25)

whereα andβ are wave numbers in thex- andy-direction, respectively. We note that the fre-
quency an the two wave numbers are all assumed to be real quantities. The dependent variable
are contained in the vectorx, that is,

x =



u
v
φ


 and x0 =



u0
v0
φ0


 , (9.26)

wherex0 is the amplitude.
Inserting (9.25) into the linearized equations (9.22) - (9.24) we get

(αū+ βv̄ − ω)u0 − ifv0 + αφ0 = 0, (9.27)

−ifu0 + i(αū+ βv̄ − ω)v0 − βφ0 = 0, (9.28)

φ̄αu0 + φ̄βv0 + (αū+ βv̄ − ω)φ0 = 0, (9.29)

which in turn may be formulated as the homogeneous linear equation,

A · x = 0, (9.30)

where the tensorA is

A =




(αū+ βv̄ − ω) −f iα
f i(αū+ βv̄ − ω) iβ
iαφ̄ iβφ̄ i(αū+ βv̄ − ω)


 . (9.31)

For non-trivial solutions to exists, the determinant of thetensorA must be zero, which gives

(αū+ βv̄ − ω)
[
(αū+ βv̄ − ω)2 − φ̄(α2 + β2)− f 2

]
= 0. (9.32)
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As in the one-dimensional case we find that we get three solutions for the frequencyω, namely

ω1 = ūα+ v̄β, (9.33)

ω2 = ūα+ v̄β +
√
c20(α

2 + β2) + f 2, (9.34)

ω3 = ūα+ v̄β −
√
c20(α

2 + β2) + f 2, (9.35)

where

c0 =

√
φ̄ =

√
gH (9.36)

is the wave speed of gravity waves. The first solution is simply the geostrophic balance as
displayed in (1.40) on page 9 withφ = gh, that is,

u =
1

f
k×∇Hφ. (9.37)

We easily derive this interpretation by substitutingω1 from (9.33) into (9.27) and (9.28), respec-
tively, that is,

0− fv + iαφ = 0, (9.38)

fu+ 0 + iαφ = 0, (9.39)

which gives

u = −1

f
iβφ and v =

1

f
iαφ ⇒ u = −1

f
∂yφ and v =

1

f
∂xφ. (9.40)

The last implication follows by using the Fourier solution backwards and shows that the geostrophic
balance (9.37) is recovered.

The two other solutions represented by±
√
φ̄(α2 + β2) + f 2 are combined inertia and grav-

ity waves. The inertia part is associated with frequenciesω proportional tof , so called inertial
oscillation, while gravity waves are associated with frequencies±c0

√
(α2 + β2).

Note that to construct the analytic solution to (9.22) - (9.24) for any given initial and boundary
conditions we just expand the solution into a two-dimensional Fourier series, that is,

x =

∞∑

α=−∞

∞∑

β=−∞

x0(α, β)e
i(αx+βy−ωt), (9.41)

where we observe thatx0(α, β) contains the amplitudes of each Fourier component at the initial
time.
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Finite difference equation

To solve (9.22) - (9.24) by numerical means we employ the CTCS(leapfrog) scheme. Hence

un+1
jk − un−1

jk

2∆t
+ ū

unj+1k − unj−1k

2∆x
+ v̄

unjk−1 − unjk−1

2∆y
− fvnjk = −

φn
j+1k − φn

j−1k

2∆x
, (9.42)

vn+1
jk − vn−1

jk

2∆t
+ ū

vnj+1k − vnj−1k

2∆x
+ v̄

vnjk−1 − vnjk−1

2∆y
+ funjk = −

φn
jk+1 − φn

jk−1

2∆y
, (9.43)

φn+1
jk − φn−1

jk

2∆t
+ c20

unj+1k − unj−1k

2∆x
+ c20

vnjk+1 − vnjk−1

2∆y
= 0. (9.44)

To investigate the numerical stability we are only interested in that part of the solution that
contain the waves. Thus we neglect all other momentum and volume sources, as well as any
steady state solution upon which the waves may ride. Accordingly we letū = v̄ = 0 in which
case (9.42) - (9.44) reduces to

un+1
jk − un−1

jk = 2∆tfvnjk −
∆t

∆x

(
φn
j+1k − φn

j−1k

)
, (9.45)

vn+1
jk − vn−1

jk = −2∆tfunjk −
∆t

∆y

(
φn
jk+1 − φn

jk−1

)
, (9.46)

φn+1
jk − φn−1

jk = −c20
∆t

∆x

(
unj+1k − unj−1k

)
− c20

∆t

∆y

(
vnjk+1 − vnjk−1

)
. (9.47)

The question then arise whether the stability condition changes compared to the one-dimensional
case, and if so whether it is more stringent or relaxed. To investigate this we use von Neumann’s
method. Thus we start by inserting a discrete Fourier component into (9.45) - (9.47). In this case
the discrete Fourier component reads

xn
jk = Xne

i(αj∆x+βk∆y) (9.48)

where the transpose of the vectorxn
jk is xn

jk
T =

[
unjk, v

n
jk, φ

n
jk

]
and the transpose of the vector

Xn isXn
T = [Un, Vn,Φn]. Insertion into (9.45) - (9.47) then gives

Un+1 − Un−1 = 2f∆tVn − 2iΦn
∆t

∆x
sinα∆x, (9.49)

Vn+1 − Vn−1 = −2f∆tUn − 2iΦn
∆t

∆y
sin β∆y, (9.50)

Φn+1 − Φn−1 = −2ic20Un
∆t

∆x
sinα∆x− 2ic20Vn

∆t

∆y
sin β∆y. (9.51)

To find an equation for the growth factor we eliminateVn andUn. We do this by first replacingn
by n+1 in (9.49) and (9.50) followed by a replacement ofn by n− 1. By subtracting the results
we get

Un+2 − 2Un + Un+2 = 2f∆t(Vn+1 − Vn−1)− 2i(Φn+1 − Φn−1)
∆t

∆x
sinα∆x, (9.52)
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Vn+2 − 2Vn + Vn+2 = −2f∆t(Un+1 − Un−1)− 2i(Φn+1 − Φn−1)
∆t

∆y
sin β∆y. (9.53)

Substituting forVn+1 − Vn−1 from (9.50) in (9.52), andUn+1 − Un−1 from (9.49) in (9.53) we
get

Un+2 − 2(1− 2f 2∆t2)Un + Un+2 = −4ifΦn
∆t2

∆y
sin β∆y

− 2i(Φn+1 − Φn−1)
∆t

∆x
sinα∆x,

(9.54)

Vn+2 − 2(1− 2f 2∆t2)Vn + Vn+2 = 4ifΦn
∆t2

∆x
sinα∆x

− 2i(Φn+1 − Φn−1)
∆t

∆y
sin β∆y.

(9.55)

We are now in a position to eliminateUn andVn from (9.51). To this end we first replacen by
n+2 in (9.51), and then replacen byn−2. Adding the results and subtracting (9.51) multiplied
by 2(1− 2f 2∆t2) we get

Φn+3 − Φn+1 − 2(1− 2f 2∆t2)(Φn+1 − Φn−1) + Φn−1 − Φn−3 =

− 2ic20
[
Un+2 − 2(1− 2f 2∆t2)Un + Un−2

] ∆t
∆x

sinα∆x

− 2ic20
[
Vn+2 − 2(1− 2f 2∆t2)Vn + Vn−2

] ∆t
∆y

sin β∆y.

(9.56)

Thus substituting from (9.54) and (9.55) we finally get

Φn+3 − (1 + 2λ)Φn+1 + (1 + 2λ)Φn−1 − Φn−3 = 0 (9.57)

where

λ = 1− 2f 2∆t2 − 2

(
c0

∆t

∆x

)2

sin2 α∆x− 2

(
c0
∆t

∆y

)2

sin2 β∆y (9.58)

Defining the growth factor byΦn+2 = GΦn we get a third order equation for the growth factor,
that is,

G3 − (1 + 2λ)G2 + (1 + 2λ)G− 1 = 0. (9.59)

We observe (9.59) may be written

(G− 1)(G2 − 2λG+ 1) = 0. (9.60)

Hence the three solutions are

G1 = 1 and G2,3 = λ± i
√
1− λ2. (9.61)

As so many times before we have to require that the radical is real in which case|G1,2,3| = 1 and
the scheme is neutrally stable (energy conserving). The condition for this to be true is hence that

|λ| ≤ 1 (9.62)
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or

−1 ≤ 1− 2f 2∆t2 − 2

(
c0

∆t

∆x

)2

sin2 α∆x− 2

(
c0
∆t

∆y

)2

sin2 β∆y ≤ 1. (9.63)

The right-hand inequality is no problem, but the left-hand inequality requires

(
c0

∆t

∆x

)2

sin2 α∆x+

(
c0
∆t

∆y

)2

sin2 β∆y ≤ 1− f 2∆t2 (9.64)

and hence that

∆t ≤ ∆x

c0

√
sin2 α∆x+

(
∆x
∆y

)2
sin2 β∆y +

(
∆x
LR

)2 , (9.65)

whereLR = c0/f is Rossby’s deformation readius. For the inequality to holdfor all possible
wave numbersα andβ we must require

∆t ≤ ∆x

c0

√
1 +

(
∆x
∆y

)2
+
(

∆x
LR

)2 . (9.66)

If we in addition require that the Rossby radius of deformation is well resolved in the grid, as is

the case in most applications, then
(

∆x
LR

)
≪ 1 and the last term in the radical may be neglected.

For all practical purposes the stability condition then is

∆t <
∆x

c0

√
1 +

(
∆x
∆y

)2 . (9.67)

If we let ∆x = ∆y = ∆s then we get

∆t <
∆s

c0
√
2
. (9.68)

Comparing (9.68) with the similar conditions for the one-dimensional case, as displayed in
(6.52), we observe that the condition becomes more stringent so that we have to apply a some-
what smaller time step. Since we arrived at the same conclusion regarding the diffusion and the
advection problem this result appears to be general, and indeed it is.
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Chapter 10

ADVANCED TOPICS

The purpose is to indicate how to expand our knowledge acquired through the previous chapters.
For one how do we construct schemes of higher order accuracy,and does it change the properties
of the schemes? Secondly, how do we solve problems when advection and diffusion are equally
important? Furthermore, what about non-linearities. How do we treat them numerically, and do
they harbour implications regarding the instability? Finally we also provide an introduction to
smoothing and filtering and the spectral method.

10.1 Higher order advection schemes

As alluded to in Section 2.6 we may construct schemes with higher order accuracy using Taylor
series expansion.

A fourth order in space CTCS scheme

As an example let us consider how to construct a fourth order in space accurate scheme for the
advection equation

∂tθ + u∂xθ = 0. (10.1)

First we recall that we use Taylor expansions to derive finitedifference approximations (FDAs)
to the derivatives in (10.1). From Section 2.6 and in particular (2.27) and (2.29) (cf. page 19) we
note that

θnj±1 = θnj ± ∂xθ
n
j ∆x+

1

2
∂2xθ

n
j ∆x

2 ± 1

6
∂3xθ

n
j ∆x

3 +O(∆x4). (10.2)

Subtracting and solving with respect to∂xθnj we get

∂xθ
n
j =

θnj+1 − θnj−1

2∆x
− 1

6
∂3xθ

n
j ∆x

2 +O(∆x4), (10.3)

Truncating (10.3) by neglecting terms of orderO(∆x2) and higher we get

[∂xθ]
n
j =

θnj+1 − θnj−1

2∆x
, (10.4)
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which then is a viable FDA of the second term in (10.1). Note that in (10.3) only the points
adjacent to the pointxj , that is, the points±∆x away fromxj are used. Suppose now that we
use points located±2∆x away instead. Then using Taylor series we get

θnj±2 = θnj ± 2∂xθ
n
j ∆x+ 2∂2xθ

n
j ∆x

2 ± 4

3
∂3xθ

n
j ∆x

3 +O(∆x4), (10.5)

which is the same as (10.3) only that∆x is replaced by2∆x. Hence subtracting and solving with
respect to∂xθnj we get

∂xθ
n
j =

θnj+2 − θnj−2

4∆x
− 2

3
∂3xθ|∆x2 +O(∆x4). (10.6)

Truncating (10.6) by neglecting all terms on the right-handside of orderO(∆x2) and higher we
get an equally valid expansion from which a centered, secondorder FDA may be constructed. In
the limit ∆x → 0 they both tend to∂xθ, that is, they are both numerically consistent FDAs. To
arrive at an higher order FDA we now combine (10.3) and (10.6)linearly, while retaining terms
of orderO(∆x2). To this end we first multiply (10.3) by an as yet unknown coefficient a and
(10.6) by an unknown coefficientb. Adding the results we get

a
θnj+1 − θnj−1

2∆x
+ b

θnj+2 − θnj−2

4∆x
= (a+ b)∂xθ

n
j +

1

6
(a+ 4b)∂3xθ

n
j ∆x

2 +O(∆x4). (10.7)

The unknown coefficientsa andb are linear weights yet to be found. Solving (10.7) with respect
to (a + b)∂xθ

n
j we get

(a+ b)∂xθ
n
j = a

θnj+1 − θnj−1

2∆x
+ b

θnj+2 − θnj−2

4∆x
− 1

6
(a + 4b)∂3xθ

n
j ∆x

2 +O(∆x4) (10.8)

We observe that by requiringa + 4b = 0 the second order term actually vanishes. Furthermore
if we in addition requirea+ b = 1, which givesa = 4

3
andb = −1

3
, we finally get

∂xθ
n
j =

4

3

θnj+1 − θnj−1

2∆x
− 1

3

θnj+2 − θnj−2

4∆x
+O(∆x4). (10.9)

Thus (10.9) constitutes a fourth order accurate FDA of the first second term on the left-hand side
of (10.1). Consequently a centered fourth order in space andsecond order in time scheme for the
advection equation (10.1) is

θn+1
j − θn−1

j

2∆t
+ u

{
4

3

θnj+1 − θnj−1

2∆x
− 1

3

θnj+2 − θnj−2

4∆x

}
= 0. (10.10)

or

θn+1
j = θn−1

j − 4

3
u
∆t

∆x

[
θnj+1 − θnj−1 −

1

8
(θnj+2 − θnj−2)

]
. (10.11)

Since the fourth order scheme (10.11) is based on Taylor series we know that it is consistent.
We also suspect it to be conditionally stable, but what aboutthe condition? Will it be more
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restrictive or more tolerant? To consider the stability of (10.11) we use von Neumann’s method.
Thus lettingθnj = Θne

αj∆x we get

θnj+1 − θnj−1 = 2iΘne
αj∆x sinα∆x (10.12)

and
θnj+2 − θnj−2 = 2iΘne

αj∆x sin 2α∆x = 4iΘne
αj∆x sinα∆x cosα∆x. (10.13)

Thus defining the growth factor asG = Θn+1/Θn we get

G2 + 2iλG− 1 = 0 ; λ =
u∆t

3∆x
sinα∆x(4− cosα∆x), (10.14)

and hence that
G1,2 = −iλ±

√
1− λ2. (10.15)

As expected the CTCS schemes for the fourth order scheme returns a growth factor whose ab-
solute value equals one. As expected the fourth order schemeis therefore neutrally stable under
the condition that the radical in (10.15) is a positive definite quantity, that is,

1

3
C| sinα∆x|(4− cosα∆x) ≤ 1 (10.16)

whereC = |u|∆t/∆x as before is the Courant number. To ensure that the inequality is valid for
all possible wave numbers we note that the maximum value of(4− cosα∆x) is five and that the
maximum value of| sinα∆x| is one. Thus we get that if

C ≤ 3

5
or ∆t ≤ 3∆x

5|u| , (10.17)

which is indeed more stringent than the conditionC ≤ 1, or∆t ≤ ∆x/|u|, that we obtained for
the CTCS leapfrog scheme.

Recalling that the CTCS scheme is dispersive we may study whether employing a higher
order scheme has an effect on the numerical dispersion. To this end we follow the procedure
given in Section 5.5 on page 67. Thus we start by decomposingθnj into its Fourier components
in time and space,

θnj = Θ0e
iα(j∆x−cn∆t). (10.18)

We then substitute (10.18) into (10.10) and solve with respect to the phase speedc to get

c =
1

α∆t
arcsin

{
uα∆t

[
4

3

(
sinα∆x

α∆x

)
− 1

3

(
sin 2α∆x

2α∆x

)]}
. (10.19)

To leading order inα∆x we then obtain1

c ≈ u

{
1− 4

5!
(α∆x)4 + · · ·

}
. (10.20)

1Note thatsin z/z = 1− z2/6 + · · · while arcsin z = 1 + z2/6 + · · · for |z| < 1.
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which may be compare with the second order CTCS scheme as displayed in Section 5.5 on page
67). To leading order the latter is

c2nd ≈ u

{
1− 1

3!
(α∆x)2 + · · ·

}
, (10.21)

and thus the fourth order scheme is actually less dispersiveas long as0 ≤ α∆x ≤ π. To conclude
the fourth order scheme is superior to the second order scheme both with regard to accuracy and
dispersivity.

Finally we recall that the CTCS scheme contained an unphysical mode. To investigate how
this is affected using a higher order scheme we note that the growth factor as given by (10.15)
has exactly the same two solutions as in (5.22) on page 66, only that the expression forλ has
changed to that listed in (10.14). Following the procedure outlined in Section 5.7 we in fact get
exactly the same result, that is,

G1 = e−iαc∆t and G2 = (−1)eiαc∆t (10.22)

wherec = c(α) now is the dispersive phase speed defined in (10.19). Thus even for well resolved
wave lengths the application of higher order schemes has no effect on the unphysical mode.

This process of constructing higher order finite differenceapproximations may be continued.
For example we note that the scheme

θn+1
j − θn−1

j

2∆t
+ u

{
3

2

θnj+1 − θnj−1

2∆x
− 3

5

θnj+2 − θnj−2

4∆x
+

1

10

θnj+3 − θnj−3

4∆x

}
= 0. (10.23)

is good toO(∆x6). The associated numerical dispersion relation becomes

c =
1

α∆t
arcsin

{
uα∆t

[
4

3

sinα∆x

α∆x
− 3

5

sin 2α∆x

2α∆x
+

1

10

sin 3α∆x

3α∆x

]}
. (10.24)

which to leading order gives

c ≈ u

{
1− 36

7!
(α∆x)6 + · · ·

}
. (10.25)

Comparing (10.25) with (10.20) and (10.21) shows that the sixth order scheme is superior to the
fourth order scheme and so on.

Higher order upwind schemes

It is also possible to construct upwind schemes that are of higher order. We first recall that the
Taylor expansion ofθnj−1, assuming a positive advection velocity, gives

∂xθ
n
j =

θnj − θnj−1

∆x
− 1

2
∂2xθ

n
j ∆x+O(∆x2). (10.26)
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Similarly expandingθnj−2 using Taylor series we get

∂xθ
n
j =

θnj − θnj−2

2∆x
− ∂2xθ

n
j ∆x+O(∆x2). (10.27)

Multiplying (10.26) bya and (10.27) byb and adding we get

(a+ b)∂xθ
n
j = a

θnj − θnj−1

∆x
+ b

θnj − θnj−2

2∆x
+

1

2
(a+ 2b)∂2xθ

n
j ∆x+O(∆x2). (10.28)

Thus by choosinga + b = 1 anda+ 2b = 0, that is,a = 2 andb = −1, we get

∂xθ
n
j =

1

2∆x
(3θnj − 4θnj−1 + θnj−2) +O(∆x2), (10.29)

and hence that a second order in space, first order in time upwind scheme reads

θn+1
j = θnj + u0

∆t

2∆x
(3θnj − 4θnj−1 + θnj−2). (10.30)

We may also construct a 3rd order upwind scheme by noting thatTaylor expansions ofθnj+1,
θnj−1 andθnj−2 retaining terms of second order gives, respectively,

∂xθ
n
j =

θnj+1 − θnj
∆x

− 1

2
∂2xθ

n
j ∆x−

1

6
∂3xθ

n
j ∆x

2 +O(∆x3), (10.31)

∂xθ
n
j =

θnj − θnj−1

∆x
+

1

2
∂2xθ

n
j ∆x−

1

6
∂3xθ

n
j ∆x

2 +O(∆x3), (10.32)

∂xθ
n
j =

θnj − θnj−2

2∆x
+

2

2
∂2xθ

n
j ∆x−

4

6
∂3xθ

n
j ∆x

2 +O(∆x3). (10.33)

Consequently multiplying (10.31) bya, (10.32) byb and (10.33) byc and adding, in which we
let a = 1/3, b = 1 andc = −1/3, we get

∂xθ
n
j =

1

6∆x
(2θnj+1 + 3θnj − 6θnj−1 + θnj−2) +O(∆x3), (10.34)

and finally that a 3rd order upwind scheme for the advection equation is

θn+1
j = θnj + u

∆t

6∆x
(2θnj+1 + 3θnj − 6θnj−1 + θnj−2). (10.35)

Note that we have assumedu ≥ 0. Expanding to include negative velocities is trivial, and is
hence left to the reader.

Final comments regarding higher order schemes

Potential complications, however, can arise from these higher-order spatial treatments. For one
the stability condition becomes more restrictive as shown by (10.17). A second complication is
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associated with the boundaries. Since we need to invoke points further and further away from
the xj-point when constructing our higher order schemes, additional boundary conditions are
required. When using a higher order scheme to solve the simple advection equation (10.1) we
observe that we are only allowed to specify one single boundary condition forθ in x, while the
higher order schemes require us to specify more. One way to avoid this problem is to use a lower
order CTCS scheme close to the boundary, but then we lessen the accuracy there. Finally we
note with regard to the upwind scheme that the higher order schemes are less diffusive than the
lowest order scheme.

10.2 Combined advection-diffusion

In Chapter 4 we learned that the diffusion equation was unstable when applying a centered in
time, centered in space scheme, while we in Chapter 5 learnedthat a forward in time, centered
in space scheme (Euler scheme) was unstable for the advection equation. As underscored in
Chapter 3 most of the problems encountered regarding evolution of tracers in the atmosphere
and oceans contain both advection and diffusion in one and the same equation. The question is
therefore what scheme should we employ when solving equations which is a combination of the
two processes, that is, when solving the so called advection-diffusion equation?

We investigate this by seeking finite difference approximations (FDA) to the continuous com-
bined advection-diffusion equation (3.1). We start by using the parameterization given by (3.3)
for the advective flux and (3.4) for the diffusive flux (cf. page 33). Moreover, we simplify
the problem by assuming that the problem is one-dimensionalin space and that the velocity is
constant, that is,v = u0i whereu0 is a constant. Thus the advection-diffusion equation becomes

∂tθ + u0∂xθ = κ∂2xθ. (10.36)

To obtain a stable scheme we must ensure that the diffusive part is forward in time and the
advective part is centered in time. We may for instance make use of the FDA

θn+1
j − θn−1

j

2∆t
= −u0

θnj+1 − θnj−1

2∆x
+ κ

θn−1
j+1 − 2θn−1

j + θn−1
j−1

∆x2
. (10.37)

We notice that the diffusive part is taken at time leveln − 1 and thus becomes forward in time
with a time step of2∆t. In contrast the advective part is evaluated at time stepn and is thus
centered in time with a time step of∆t. Hence each part is stable in itself. Ifκ = 0 then the
advective part is stable if the Courant numberC ≡ |u0|∆t/∆x ≤ 1. If u0 = 0 the diffusive part
is stable under the conditionK ≡ 2κ∆t/∆x2 ≤ 1/2. The factor1/2 arises because of the2∆t
time step used for the diffusive part, and thus replaces the1/2 factor in (4.36) on page 46.

In the general case withu0 6= 0 andκ 6= 0 we therefore expect a condition which is a
combination of the two pure condtions above to prevail. To find this condtion we employ von
Neumann’s stability analysis method. Hence we substitute asingle, discrete Fourier component
into (10.37) to get an equation for the growth factor. The algebra is left to the reader (cf. Exercise
1 at the end of this Chapter) and gives

G2 + 2iλG− λ2 = 0 (10.38)
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where

λ =
u0∆t

∆x
sinα∆x and λ2 = 1− 2K(1− cosα∆x) (10.39)

are two real numbers and whereC is the Courant number as defined in (5.26) on page 67, and K
is defined as in (4.6) on page 40. We note that since1− cosα∆x ≥ 0 it follows thatλ2 ≤ 1. In
accord with (10.38) the growth factor has two solutions given by

G1,2 = −iλ±
√
λ2 − λ2. (10.40)

To ensure that the two complex solutions have a real part we require that the radical is positive,
that is,λ2 ≤ λ2. As a corollary we note that this also implies thatλ2 ≥ 0. The two roots are then
complex conjugates and hence

|G| =
√
GG∗ =

√
λ2 + λ2 − λ2 =

√
λ2. (10.41)

The solution is thus conditionally stable because0 ≤ λ2 ≤ 1. Moreover the conditionλ2 ≤ λ2
gives

C2 sin2 α∆x ≤ 1− 2K(1− cosα∆x) (10.42)

whereC = |u0|∆t/∆x is the Courant number andK = 2κ∆t/∆x2. The condition (10.42) may
be rewritten to give

(C2 + 2K) sin2 α∆x = 1 + 2K cosα∆x(1 − cosα∆x) (10.43)

We therefore conclude that the sufficient condition for stability of the combined advection-
diffusion scheme (10.37) is

C2 + 2K ≤ 1, or
(u0∆t)

2 + 2κ∆t

∆x2
≤ 1. (10.44)

We note that that for eitheru0 = 0 or κ = 0, the stability condition for the individual advec-
tive and diffusive schemes are recovered. We also note that imposing each condition is not a
sufficient condition. We therefore obtain the somewhat surprising results that adding explicit dif-
fusion in the advection equation actually reduces the maximum time step allowed for advection.
What (10.44) says is that by adding diffusion we arrive at a more restrictive condition. This is
visualized in Fig. (10.1) . For most cases in oceanography and meteorology this is not a serious
problem since commonly

K ≪ C2. (10.45)

We mentioned earlier (cf. Section 4.9) that it is common to add a diffusion term to avoid non-
linear problems to become numerically unstable by so callednonlinear instabilities as discussed
in the next section (Section 10.3). The diffusion term is therefore not part of the physics we are
solving for, but rather an artificial term added to make the numerical solution stable. Under these
circumstances we may use Dufort-Frankel scheme (cf. Section 4.9 on page 51) to approximate
the diffusion term, even though it is inconsistent. This is fine as long as the remaining terms
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u∆t
∆x

4κ∆t
∆x2

-1 +1

+1

inside of the rectangle is
where both individual
conditions are met

region of numerical
stability is inside
parabola and is smaller

Figure 10.1: The diagram illustrates the region of stability for the combined advection-diffusion
equation approximated in (10.37). This corresponds to the area inside of the parabola (hatched
area). The area inside the rectangular is where both the advection and the diffusion are stable
individually. We notice that we a obtain a more stringent stability condition to the advection
equation when we are adding diffusion.

in our governing equations are treated by consistent schemes. Thus we proceed by making the
following FDA of (10.36),

θn+1
j = θn−1

j − u0∆t

∆x
(θnj+1 − θnj−1) + 2K(θnj+1 − θn+1

j − θn−1
j + θnj−1), (10.46)

in which we have combined a consistent conditionally stablescheme for advection with an un-
conditionally stable, inconsistent scheme for diffusion.The growth factor then follows the equa-
tion

(1 + 2K)G2 − 2λG− (1− 2K) = 0 (10.47)

where

λ = 2K cosα∆x− i
u0∆t

∆x
sinα∆x (10.48)

and thus the growth factor has two solutions given by

G1,2 =
1

1 + 2K

(
λ±

√
4K2 + λ2 − 1

)
(10.49)

It can be shown that for the one-dimensional case it is sufficient to satisfy the CFL condition
C ≤ 1. In the more general case for instance for a two-dimensionalcase a more stringent
condition has to be applied (Cushman-Roisin, 1984).
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Many authors (e.g.Clancy, 1981) suggest to use the unstable forward in time, centeredin
space (FTCS) scheme when combining advection and diffusion. The approximation to (10.36)
then becomes

θn+1
j = θnj − u0∆t

2∆x
(θnj+1 − θnj−1) +

κ∆t

∆x2
(θnj+1 − 2θnj + θnj−1). (10.50)

The amplification or growth factor then follows the equation

G = 1− i
u0∆t

2∆x
sinα∆x− 2

κ∆t

∆x2
(1− cosα∆x). (10.51)

As shown byClancy(1981) the scheme is stable provided the two conditions

κ∆t

∆x2
≤ 1

2
, and

|u0|∆t
κ

≤ 1 (10.52)

are both satisfied at the same time. Despite the enthusiasm ofseveral authors we do not recom-
mend the use of the FTCS scheme. Rather we advocate to use the more conservative schemes
(10.37) and (10.46).

10.3 Non-linear instability

Towards the end of Section 3.3 we mentioned that every non-linear solution of a problem of
hyperbolic nature in which friction is neglected will eventually become numerically unstable.
This is independent of the time step chosen and is associatedwith the energy cascade towards
smaller and smaller scales that is the nature of non-linear problems. Hence it is not sufficient, for
instance in the case of solving the non-linear advection equation (3.18), to satisfy the linear CFL
criterion.

To satisfy ourselves that this is indeed true it is enough to solve a simple non-linear advection
problem like (3.18). Sooner or later disturbances of wavelengths in the range2∆x to 4∆x
crops up. These disturbances are at first small in amplitude but growing. At some stage into
the calculation the solution falls short of satisfying the linear CFL condition and the solution
blows up, that is, becomes linearly, numerically unstable.The solution is then useless. It is
common to creditPhillips (1959) to be the first to demonstrate this phenomenon by analytic
means.Richtmyer(1963) provided another example which is reproduced below.Robert et al.
(1970) generalized the previous example.

Before entering into details we notice:

1. All good functions may be expanded in terms of a discrete set of waves or exponentials

2. In a linear system waves of different wavelengths exist independent from each other

3. In a non-linear system the latter is no longer true and waves of different wave numbers will
interact and sometime generate waves of new periods
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4. Given a finite grid of size∆x we have a band-limited wavenumber space, that is, only a
finite number of discrete waves can exist

The first point is well known. It simply tells us that all good functionsΨ(x) of period2L
may be formulated into a Fourier series, that is, forx ∈ [−L, L] the functionΨ(x) is written as

Ψ(x) = a0 +

∞∑

m=1

am sin(αmx) + bm cos(αmx) (10.53)

whereαm = mπ/L is the discrete wavenumber,am andbm is the amplitude or energy associated
with the wavenumberαm anda0 is the mean or average value ofΨ for x ∈ [−L, L].

The second point tells us that if the system is linear there isno exchange of energy between
them. Thus two wave trains of different amplitude, wavelength and direction will pass each other
without changing neither of them.

The third point emphasizes the fact that it is the non-linearity that causes exchange to happen.
To illustrate this suppose we have a solution, say wind or currentu(x, t), given by

u(x, t) =
∑

n

un(t) sin(αnx). (10.54)

Then nonlinear products will give rise to terms having wavenumbers which are the sum of and
difference of the two original wavenumbers, e.g.,

sin(α1x) sin(α2x) =
1

2
[cos(α1 − α2)x− cos(α1 + α2)x] (10.55)

Thus in a non-linear case the two wave trains will be different after the passage, that is, they will
experience a change in either wavelength, as illustrated by(10.55), amplitude or direction.

The fourth and last point tells us that when we formulate the functionΨ(x) as a sum of
discrete waves on a grid of size∆x we have a band-limited wavenumber space in which the
shortest wave that can possibly be resolved is2∆x. Thus our wavenumber space is limited to
wavenumbersπ/L ≤ αm ≤ π/∆x. For a non-linear problem in which the various waves interact
to produce waves of wavenumberα > π/∆x, that is waves of wavelengths shorter than2∆x,
they are unresolved by our grid. Unfortunately these unresolved waves are folded into some low
wavenumber. In fact as displayed in Figure 10.2 a wave of wavelength 4

3
∆x is indistinguishable

from a wave of wavelength4∆x. Let us arbitrarily callα < π/2∆x low wavenumbers and
π/∆x < α < π/2∆x high wavenumbers. The latter are then waves of wavelengths between
2∆x and4∆x and corresponds to the shortest waves that are resolved by our grid of size∆x.

Points three and four above make us expecta priori that even though all initial energy is low
wavenumber (long waves), non-linear interactions will eventually provide energy (or variance)
at high wavenumbers (short waves). This is easily verified byinvestigating the model problem
we use below, which is a simple non-linear advection equation in one dimension, that is,2

∂tu+ u∂xu = 0. (10.56)

2Note that (6.155) is the acceleration term in the momentum equation for a one-dimensional problem. Hence
non-linearity is ubiquitous in all realistic atmospheric and oceanographic models.
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x

u

∆x 3∆x
b

b

b

b

b

Figure 10.2: Displayed are the two waves of wavelength4∆x (solid curve) and4
3
∆x (dashed

curve), in a grid of grid size∆x. Note that our grid cannot distinguish between the unresolved
wave of wavelength4

3
∆x and the resolved wave of wavelength4∆x. Thus the energy contained

in the unresolved wave will be folded into the low wavenumberspace represented by the4∆x
wave.

The difference between (6.155) and the earlier advection equation we studied in Chapter 5, e.g.,
(5.2) on page 61, is the appearance of the nonlinear termu∂xu. Suppose we have a solution
at a particular time leveln that is a monochromatic wave of wavelength2π/α whereα is the
wavenumber, that is,un(x) = u0 sinαx. Then from (6.155), using a scheme that is centered in
time, we get

un+1 − un−1 = −u20 sinαx∂x sinαx = −u20 sinαx cosαx = −1

2
u20 sin 2αx. (10.57)

Hence the solution at the next time level is a wave of wavelength 2π/2α, that is, a wavelength
half of that of the original wavelength at time leveln. Thus, we observe, as expected, that all
the energy originally contained at low wavenumbers (long waves) end up at high wavenumbers
unresolved by our grid. Due to the folding of the energy contained in the unresolved waves, the
energy contained in the shortest wave resolved by our grid, that is, waves of wavelength4∆x,
accumulates. Thus after a sufficient time period the numerical model blows up due to ordinary
numerical, linear instability, even though the linear problem is numerically stable.

To inspect the non-linear instability in some more detail weuse the example ofRichtmyer
(1963). We start with the assumption the problem has variance at wavelengths∞ (zero wavenum-
ber), 4∆x and2∆x, and that the model problem is the simple non-linear advection equation
in one dimension (6.155). Let us asRichtmyer(1963) approximate (6.155) using the classic
leapfrog (CTCS) scheme, that is

un+1
j = un−1

j − λ

2

[
(unj+1)

2 − (unj−1)
2
]

(10.58)

whereλ = ∆t/∆x. We will not concern ourselves with boundary conditions, but as in the
von Neumann analysis of Section 4.4 on page 44 perform a localanalysis. Then making use of
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(10.53) withΨ = u anda0 = V we can show that an exact, formal solution to (10.58) is

unj = Cn cos(
πj

2
) + Sn sin(

πj

2
) + Un cos(πj) + V. (10.59)

We can identify the amplitudesCn, Sn as the amplitudes of a wave with length4∆x, Un as the
amplitude of a wave of length2∆x, andV as a wave of low wavenumber (α < π/2∆x) with
zero wavenumber (infinite wavelength). When we substitute (10.59) into (10.58) and notice that
(unj+1)

2 − (unj−1)
2 = (unj+1 − unj−1)(u

n
j+1 + unj−1) we obtain relationships among the amplitudes,

Cn+1 − Cn−1 = 2λSn(Un − V )

Sn+1 − Sn−1 = 2λCn(Un + V )

Un+1 = Un−1. (10.60)

The last equation in (10.60) says thatUn may take on different values for the odd and even time
steps, sayA for odd time steps (n = 1, 3, 5, . . .) andB for the even time steps (n = 2, 4, 6, . . .),
that is,U2m = A andU2m−1 = B for m = 1, 2, 3, . . .. By eliminatingSn from the first equation
in (10.60), we obtain

Cn+2 − 2Cn + Cn−2 = 4λ2(A+ V )(B − V )Cn. (10.61)

The question then arise. Is this solution stable in the von Neumann sense? As in the simple linear
case, using the von Neumann method, we define a growth factor associated with the4∆x wave.
For the4∆x wave to be stable the growth factor has to be less than or equalto one. Thus we first
define the growth factor by lettingG ≡ Cn+2/Cn. Substituting this into (10.61) we derive

G2 − 2γG+ 1 = 0, (10.62)

whereγ is a real number given by

γ = 1 + 2λ2(A+ V )(B − V ). (10.63)

The roots of (10.62) are
G1,2 = γ ± i

√
1− γ2. (10.64)

We notice that as long as the radical is real then

|G1,2| =
√
γ2 + 1− γ2 ≡ 1 (10.65)

The4∆x wave is therefore neutrally stable provided

1− γ2 ≥ 0 or − 1 ≤ γ ≤ 1. (10.66)

As is obvious it is only possible to satisfy (10.63) if the amplitude of the2∆x wave is such
that |A| < V and/or|B| < V . This is violated when the amplitude of the2∆x wave is large in
comparison with the energy contained in the longer waves (low wavenumbers). In this case the
4∆x will grow exponentially and the scheme is unstable.
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10.4 Smoothing and filtering

In numerical models of the atmosphere or ocean, we have learned that it is important to damp out
the smallest space scales to control for instance non-linear instability. We also notice that this
may be done by adding explicit eddy viscosity of momentum diffusion as described in Section
3.3 and Section 4.9. Here we focus on another method, namely employing filtering techniques
to control spurious growth of short waves due to numerical errors and computational instabilities
that would otherwise obscure a good forecast. In fact even ifa catastrophic instability does
not occur we still may want to remove the noise in the shortestwavenumber band for aesthetic
reasons. Sometimes we apply such smoothing to the final product only.

The simplest form of smoothing is to apply a so called one-dimensional three-point operator
or filter often referred to as the Shapiro filter (Shapiro, 1970, 1975). The filter is defined by

ūnj = (1− µ)unj +
1

2
µ
(
unj+1 + unj−1

)
, (10.67)

whereµ is a constant. If the solution is a monochromatic wave, sayuj = Une
iαj∆x, then the

filtered solution is
ūnj = Runj (10.68)

where

R = 1− µ(1− cosα∆x) = 1− 2µ sin2
(
α∆x

2

)
(10.69)

is theresponse functionassociated with the filter. Thus the filter does not affect thewave length
nor the phase speed (providedR ≥ 0). Furthermore ifR < 1 then the wave is damped. Moreover,
for the particular wave numberα = 2π/2∆x, that is, for the shortest wave resolved in our grid,
we get

R = 1− 2µ. (10.70)

For the particular choiceµ = 1/2 we then getR = 0, and hence the waves of wavelength2∆x,
the two gridlength waves, are completely removed by the filter.

We furthermore observe that the filter may rewritten to yield

ūnj = unj +
1

2
µ
(
unj+1 − 2unj + unj−1

)
. (10.71)

Making use of Taylor series we recognize the last term on the right-hand side of (10.71) as the
finite difference approximation of the second order derivative in space with a truncation error of
O(∆x2). Thus we get

ūnj = unj +
1

2
µ∆x2

[
∂2xu
]n
j
, (10.72)

which shows that the filter acts similar to diffusion with a mixing coefficient given byκ =
1
2
µ∆x2. For more in depth details the reader is referred to (Haltiner and Williams, 1980, Chapter

11-8, page 392 and onward).
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10.5 Two-way nesting

Nesting techniques of meshes generally consists of a local high resolution grid (child grid) em-
bedded in a coarse resolution grid (parent grid) that provides the boundary conditions for the
child grid (cf. Section 7.2 and Figure 7.2 on page 127). If this is the only transfer of information
between the two grids, the method is said to be aone-way nestingtechnique, e.g., Sections 7.7
and 7.8. If there is also a transfer of information from the child back to the parent grid, the method
is said to be atwo-way nestingtechnique. A general review of two-way nesting algorithms may
be found inDebreu and Blayo(2008) andDebreu et al.(2012), along with applications focusing
on upscaling impact (Biastoch et al., 2008), fine-scale dynamics (Marchesiello et al., 2011), and
topographic refinement (Sannino et al., 2009).

Let us assume that the governing equations of our model, to besolved for both the parent and
child grid domains, are

∂tq = L[q] (10.73)

in which q represent an array containing the variables andL is a spatial operator. The model we
consider may for instance be one of the three equations treated in Chapters 4 - 6. ThusL = κ∂2x
andL = −u0∂x if the model is the diffusion equation (4.1) respectively the advection equation
(5.2). Finally, if our model is the non-linear, rotating shallow water equations (6.22) - (6.24) then

q =



u
v
h


 and L =




−u∂x f −g∂x
−f −u∂x 0
−h∂x 0 −u∂x


 . (10.74)

Equation (10.73) is discretized on the parent (subscriptp) and child (subscriptc) domains by

[∂tq]p = Lp[qp] and [∂tq]c = Lc[qc], (10.75)

whereLp andLc are the same discretizations of the same continuous operator L, but at different
resolutions3. The problem is to solve (10.75) within the parent and child domains (Figure 7.2)
so that the parent domain solution impacts the child domain solution while at the same time the
child domain solution is allowed to impact the parent domainsolution.

Let us assume that the discretization we use to solve (10.75)results in an explicit scheme.
Moreover, let the time step and space increments we use be denoted∆tp,c and∆xp,c, respectively.
Due to the refinement of the grid employed for the child domainboth the time step and space
increments are smaller. Letir denote the spatial refinement factor. Then we get∆xp = ir∆xc.
Conveniently we also let the time refinement factor beir so that∆tp = ir∆tc. For interface
continuity reasons the refinement factor cannot be too large. A number between 1 and 5 is
common. We note that if (10.73) are the advection equation orthe shallow water equations then
the parent and child grids have the the same Courant numberC, and thus obey the same stability
criterionC ≤ 1.

With this in mind the steps whereby the two-way nesting is performed are

3In principle, a different choice of numerical schemes and parameterizations may be adopted in the refined grid.
However, this would complicate the issue of interface continuity already posed by the grid refinement itself.
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1. Forward the parent from time leveln to time leveln+ 1 for all interior parent grid points,

qn+1
p = qnp +∆tpL

n
p [q]; rp ∈ Ω, (10.76)

and update the solution at its outer boundary by taking into account the boundary condi-
tions of the parent domain4.

2. Update the child at the interfaceΓ form = 1, 2, . . . , ir by interpolating parent values using
a time interpolatorP

q
n+m

ir
c |Γ = P [qnp , q

n+1
p ] (10.77)

3. Forward the child form = 1, 2, . . . , ir for all interior child grid points by

q
n+m

ir
c = q

n+m−1

ir
c +∆tcL

n+m−1

ir
c [q]; rc ∈ ω (10.78)

4. Finally, update the parent within the child domain by filtering the child at their common
grid points by

qn+1
p = R[qn+1

c ]p, rc ∈ ω (10.79)

whereR is the filter (sometimes referred to as the restriction operator).

Note that Steps 1 through 3 are the same as those we perform when applying the one-way
nested technique, except that in Step 2 the OBC (cf. Chapter 7) is replaced by a simple interpo-
lation scheme. The latter forcesqn+1

c to equalqn+1
p on Γ. The innovation is the fourth step in

which we let the child solution update the parent solution. This is done by replacing the parent
domain solution obtained through solving (10.76) by a filtered child domain solution at the grid
points the two domains have in common, hence the subscriptp on the right-hand side of (10.79).
The so corrected parent domain solutions are then used when we forward the parent to the next
time level. We emphasize that this is done only within the domainω, that is, we do not update
the parent at the interfaceΓ of the two domains or outside of the child domain. Nevertheless,
since the parent solution is changed within the child, the child solution may impact the parent
even outside of its domain.

The rationale behind applying the filterR in Step 4 is to filter out those smaller scale vari-
ations in the child that is more or less unresolved by the parent, but at the same time include
as much as possible of those scales that are resolved by the parent. The filter may be a simple
avarage, that is,

[qp]
n+1
jp =

1

3

(
[qc]

n+1
jc+1 + [qc]

n+1
jc + [qc]

n+1
jc−1

)
(10.80)

a Shapiro filter (cf. Section 10.4 above),

[qp]
n+1
jp = [qc]

n+1
j +

1

2
µ([qc]

n+1
jc+1 − 2[qc]

n+1
jc + [qc]

n+1
jc−1), (10.81)

4Note that any time discretization may be used to solve (10.76) as long as an appropriate spatial dicretization is
used that renders the scheme stable and consistent.
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ω Ω
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m = 0 n

m = 1
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m = 3 n+ 1

∆tp∆tc

Jc + 1Jc

Jpr Jpr + 1Jpr − 1

Figure 10.3: Close up of the parent (solid lines) and child (dashed) grid points locations in time
and space in the vicinity of the right-hand interface. The refinement factor isir = 3.

which forµ = 1
2

becomes a simple 1-2-1 filter, or a more sophisticated filter like a full weighted
filter

[qp]
n+1
jp =

1

9
([qc]

n+1
jc+2 + 2[qc]

n+1
jc+1 + 3[qc]

n+1
jc + 2[qc]

n+1
jc−1 + [qc]

n+1
jc−2). (10.82)

Here jp, jc are the grid point counters for the parent and child, respectively. Note that it is
assumed that in these filter formulae the mid pointjc is a grid point which the child and the parent
has in common. Like the Shapiro filter the filters have different response function. Nevertheless
they all damp the amplitudes of small scale variations in thechild solution before applying them
to the parent.

10.5.1 A simple example: Advection of a bell function

As an example let us consider the one-dimensional, advection equation (5.2). Then letq = ψ,
whereψ is the concentration of a solluble in percent,L[q] = u0∂xψ, whereu0 is the advection
speed (assumed positive), and for which the initial concentration is a bell shaped distribution
given by

ψ(x, 0) = ψ0e
−(x/σ)2 , (10.83)

whereσ is a measure of the width of the bell, andψ0 the initial maximum concentration.
Let the parent domain spanning the domain−L < xp < L, whereL is the halfwidth of the

domain, and letjp = 1(1)Jp + 1 andjc = 1(1)Jc + 1 be the counters for the grid points of the
parent and child domains, respectively. Furthermore let the location of the common grid points
where the left-hand (jc = 1) and right-hand (jc = Jc + 1) interface between the parent and grid
domains bejp = Jpl andjp = Jpr, respectively, as illustrated by Figure 10.3. Furthermore, let
the child grid occupy a portion of the parent domain, that is,−aL < xc < bL wherea andb are
positive definite constants less than or equal to one. We thenget

Jpl = 1 +
(1− a)L

∆xp
and Jpr = 1 +

(1 + b)L

∆xp
. (10.84)
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Thus fora = b = 1 we getJpl = 1 andJpr = Jp + 1 in which case the child grid covers the
entire parent domain5.

Let ψ̂jp, ψ̃jc denoteψ at parent and child grid points, respectively. Employing the convergent,
stable and consistent upstream scheme to discretize (5.2) Step 1 above becomes

ψ̂n+1
jp

= ψ̂n
jp − C(ψ̂n

jp − ψ̂n
jp−1); jp = 2(1)Jp + 1, (10.85)

whereψ̂jp is used to denoteψ at the parent grid points andC = u0
∆tp
∆xp

is the Courant number.
Imposing cyclic boundary conditions at the left-hand and right-hand boundaries of the domain
we get

ψ̂n+1
1 = ψ̂n+1

Jp+1. (10.86)

Step 2 involves updating the child at the boundaries form = 1, 2, . . . , ir. Using a two-point,
linear interpolator we get

ψ̃
n+m

ir

1 = (1− m

ir
)ψ̂n

Jpl
+
m

ir
ψ̂n+1
Jpl

, (10.87)

ψ̃
n+m

ir

Jc+1 = (1− m

ir
)ψ̂n

Jpr +
m

ir
ψ̂n+1
Jpr

. (10.88)

Having updated the interface values we may proceed to Step 3 above, which is to solve (5.2)
numerically on the child grid. Note that the Courant number is the same since∆tp

∆xp
= ∆tc

∆xc
.

Employing the same scheme as used for the parent grid we therefore get

ψ̃
n+m

ir

jc = ψ̃
n+m−1

ir

jc − C(ψ̃
n+m−1

ir

jc − ψ̃
n+m−1

ir

jc−1 ); jc = 2(1)Jc (10.89)

for m = 1, 2, . . . , ir.
The remaning fourth step is to update the concentration using the child solution at the parent

grid points in the interior of the child grid, that is, at those locations where the child and the
parent grid points coincide. To this end we may for instance use the Shapiro filter (10.81) with
µ = 1

2
(a 1-2-1 filter). Step 4 then becomes

ψ̂n+1
jp

=
1

4

(
ψ̃n+1
j∗c+1 + 2ψ̃n+1

j∗c
+ ψ̃n+1

j∗c−1

)
; jp = Jpl + 1(1)Jpr − 1, (10.90)

wherej∗c denotes a child grid point that coincides with the parent grid point. The solution is
displayed in Figure 10.4 whereL = 50 km,σ = L/5 and the refinement factor is set toir = 5.

Recall that the upstrean scheme is numerically diffusive with a diffusion coefficient given by
(5.105), that is,

κ∗p =
1

2
(1− C)|u0|∆xp, and κ∗c =

1

2
(1− C)|u0|∆xc, (10.91)

respectively. Sinceκ∗p = irκ
∗
c we therefore expect the child solution to be less diffusive than

the parent solution whenir > 1. This is illustrated by the solutions to (10.85) and (10.89)

5Recall that2L = (Jp + 1)∆xp in accord with (2.48) on page 24, and henceJpr = Jp + 1 whenb = 1.
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Figure 10.4: a) Initial distribution. b), c) and d) are distributions after 6 cycles with respectively
no, one-way, and two-way nesting applied. In b) the child grid covers the entire domain of
the parent grid (a = b = 1 in eq. 10.84), and applies a cyclic boundary condition on the
boundaries. The vertical, dashed lines in c) and d) indicatethe interface between the parent and
child domains. In b), c) and d) the solid thick, blue line is the child solution while the black, thin
line is the parent solution. Dashed line is the analytic solution after 6 cycles and corresponds to
the intital distribution shown in a).

displayed by the upper, right-hand panel of Figure 10.4. In this case we apply no nesting and
let a = b = 1 in (10.84). Under these circumstances the child domain covers the entire parent
domain. Consequently there is no interaction between the parent and child solutions and thus we
have applied a cyclic boundary condition similar to (10.86)at the common boundaries atx = ±L
when solving (10.85) and (10.89). We note that neither of thetwo solutions are perfect. In fact
the correct, analytic solution is the dashed curve replicating the initial distribution for each cycle.
We also note that the parent solution is more diffusive than the child solution as expected since
ir = 5 > 1.

Two questions arise. One is the impact on the child solution applying a one-way nesting
procedure as described in Chapter 7. A second is the impact onthe parent and child solutions
applying a two-way nesting procedure as described in this section. The answer to these ques-
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tions is depicted by the two lower panels of Figure 10.4. In deriving the depicted solutions we
have followed the two-way nesting procedure with the child domain embedded within the parent
domain by lettinga = b = 1

2
in (10.84). We observe that when applying a one-way nesting (look

at the lower, left hand panel of Figure 10.4) nothing happensto the parent solution, while the
child solution is severely degraded. This is to be expected since a one-way nesting has no impact
on the parent solution outside or inside of the child domain.Applying two-way nesting changes
this picture as shown by the lower, right-hand panel of Figure 10.4. Both the parent and the
child solutions are improved compared to the one-way nesting. Moreover, the parent solution is
improved outside of as well as inside of the child grid domain. Although the child solution is still
degraded compared to the no nesting case it is nevertheless improved compared to the one-way
nesting case.

A third question that arises is how large the ratioir may be. The simple case above is not

10.6 The spectral method

When we applied the various approximation to the advection equation above, we only consider
grid-point values of the dependent variables. We did not make any assumption about how the
variables behaved between grid points other than assuming that they are good functions.

An alternative approach is to expand the dependent variables in terms of finite series of or-
thogonal functions (cf. Section 2.10 on page 25). The problem is then reduced to solving a set
of ordinary differential equations which determine the behavior in time of the expansion coeffi-
cients. Following this approach is known as thespectral method.

The spectral method is particularly suitable for global atmospheric models where the depen-
dent variables are zonally cyclic function and hence easy toexpand. The method is therefore
commonly applied in modern global atmospheric models, for instance in the global model used
at the European Centre for Medium range Weather Forecast (ECMWF). We note that the method
is a bit more cumbersome to apply in non-global models, and also in global oceanographic mod-
els since the latter has to deal with the continental land boundaries.

10.6.1 Application to the one-dimensional linear advection equation

We will demonstrate the spectral method for the one-dimensional advection equation on the
globe, i.e., along a latitude. Under these circumstances the natural boundary condition is the
periodic or cyclic boundary condition (cf. Section 2.5 on page 16).

We recall from Section 5.2 on page 63 that the one-dimensional advection equation is

∂tφ = −u0∂xφ, for x ∈ [0, L] and t > 0 (10.92)

whereL is the length of the circumference at a particular latitude.We recall from Section 2.10
that (10.92) is just a special case of the general equation (2.66) on page 26. Hence the linear
operator of Section 2.10 isH = −u0∂x. Since we will solve (10.92) along a latitude we first
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conveniently transform to a coordinate system in which

2πx = ξL or ξ =
2πx

L
(10.93)

whereξ ∈< 0, 2π > is the new (dimensionless) zonal coordinate. Since

∂xφ = ∂ξφ∂xξ (10.94)

(10.92) then transforms to
∂tφ = −γ∂ξφ (10.95)

where

γ =
2πu0
L

(10.96)

is the angular velocity (in units one per second). The cyclicboundary condition is written

φ(ξ, t) = φ(ξ + 2πm) m = 1, 2, 3, . . . (10.97)

wherem describes the number of times you have traveled around the world at that latitude. We
further let the initial condition be described by the good functionf(ξ), and hence

φ(ξ, 0) = f(ξ). (10.98)

As outlined at the beginning of Section 5.2 on page 62 the truesolution to (10.95) is then

φ = f(ξ − γt). (10.99)

Solving (10.95) using expansions in terms of orthogonal functions requires us to choose a suitable
set of expansion functions. The obvious choice in our case following (10.53) on page 168 above
is to choose complex exponentials (sine and cosine functions), since these are eigenfunctions of
the differential operatorH = −u0∂x. For a continuous function we get

φ =
∑

α

φα(t)e
iαξ, (10.100)

whereα is the wave number and the summation is for all possible wavenumbers from−∞ to
+∞. Solving (10.95) using numerical methods implies that we are band-limited in wavenumber
space and hence we must use a truncated version of (10.100), that is,

φ(ξ, t) =
l=lmax∑

l=−lmax

φl(t)e
iαlξ. (10.101)

wherel = lmax gives the maximum wave numberαlmax
resolved on the grid, that is the shortest

wavelength resolved by our choice of grid size (here2∆ξ). Sinceφ−l = φ∗
l , we need only be

concerned with0 ≤ l ≤ lmax, rather than the full set of expansion coefficients.
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We now substitute (10.101) into (10.95) and equate coefficients of the expansion functions.
Thus

∂tφl = −iαlγφl for l = 0(1)lmax (10.102)

giving 2lmax + 1 equations for the expansion coefficientsφl’s. For this particular case (10.102)
can be integrated exactly for each wavenumberαl separately to give

φl(t, αl) = φl(0, αl)e
−iαlγt (10.103)

whereφl(0, αl) is the initial condition associated with the wavenumberαl. If we expand the good
functionf(ξ) in terms of a truncated Fourier series, that is,

f(ξ) =
∑

l

ale
iαlξ =

∑

l

φl(0, αl)e
iαlξ, (10.104)

we get thatφl(0, αl) = al, and hence that the complete solution to (10.95) is

φ(ξ, t) =

lmax∑

l=0

ale
iαl(ξ−γt), (10.105)

which is the same as the true solution. Hence there is no dispersion due to the space discretiza-
tion, unlike in the finite difference approximation above. This fact is due to the space derivatives
being computed analytically while they were approximated in the finite difference method. We
recall due to the orthogonality property of the expansion functions, in our caseeiαlξ, that

φl =

∫ 2π

0

∑

m

φme
iαmξe−iαlξdξ. (10.106)

Thus by multiplying (10.101) by the complex conjugate of theexpansion functions and integrat-
ing in space we get

φl(t;αl) = Al

∫ 2π

0

φ(ξ, t)e−iαlξdξ, (10.107)

whereAl are the normalization factors. Note that (10.107) is the so called direct Fourier trans-
form. The normalization coefficients are determined from the initial condition, or by use of
(10.107), that

Al =
al∫ 2π

0
φ(ξ, 0)e−iαlξdξ

. (10.108)

In practice we have at our disposal the grid points values ofξ rather than a continuous function
in space. Thus we knowξ atJ+1 points∆ξ apart such thatξj = j∆ξ wherej = 0, 1, 2, · · · , J−
1, J and whereξJ = 2π. In this case we think of the truncated Fourier series ofφ as given in
(10.101) as representing an interpolating function which exactly fits the values ofφ at theJ + 1
grid points. We then write (10.107) as a discrete direct Fourier transform,

φl(t, αl) = A′
l

J∑

j=1

φ(ξj, t)e
−iαlξj , (10.109)
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where the normalization coefficients are found by discretization (10.108),

A′
l =

al∑J
j=1 φ(ξj, 0)e

−iαlξj
. (10.110)

The corresponding discrete inverse Fourier transform is then

φ(ξj, t) =

lmax∑

l=−lmax

φl(t, αl)e
iαlξj . (10.111)

Both (10.109) and (10.111) can be computed with the Fast Fourier Transform (FFT) al-
gorithm. It can be shown that starting from the setφl(t, αl) going to the setφ(ξj, t) with
j = 0, 1, 2, · · · , J − 1, J and returning to the setφl(t, αl) we recover exactly the original values
provided the number of grid pointsJ are such thatJ > 2lmax+1. Recall thatlmax is the number
of waves used to compute the direct Fourier transform in (10.111). In addition we must require
that the pointsξj are equally spaced or that∆ξ is a constant.

It remains to find the expansion coefficientsφl(t, αl) at an arbitrary time given their initial
valuesφ0l. We do this by a time stepping procedure, for instance applying a centered in time
scheme to (10.102),

φn+1
l = φn−1

l + 2iαlγ∆tφ
n
l l = 1, 2, 3, · · · , LM (10.112)

for each wavenumberαl. Using von Neumann’s method we show that numerical stability is
ensured provided

|αlγ∆t| ≤ 1; ∀l. (10.113)

Since the maximum wavenumber isαLM we require|αLMγ∆t| ≤ 1. Moreover, since the max-
imum dimensionless wavenumber6 is αLM = L/2∆x it follows that the stability condition in
terms of the Courant numberC = u0∆t/∆x is

C ≤ 1

π
, (10.114)

which is actually more stringent than the one derived for thefinite difference approximation.
Although being more restrictive the spectral method and scheme has the great advantage that it
is nearly non-dispersive, and that the dispersiveness is very small even for the shortest waves of
two grid lengths.

Exercises

1. Use von Neumann’s method (Chapter 4.4) to show that the expression (10.38) is indeed
the correct expression for the growth factor when using the scheme given in (10.37).

2. Show that the condition (10.44) is a sufficient condition for numerical stability.

6The maximum dimensional wavenumber is2π/2∆x.
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Appendix A

Introduction to Fortran 2003 via examples

by Gunnar Wollan1 and Lars Petter Røed

The following gives a quick insight into the Fortran 2003 programming language via specific
examples. Through this you learn how to solve a computational problem and how to handle
reading and writing of data to files. For more details, in particular regarding Fortran 90/95
we recommend to download Fortran texts from the net. Specifically we recommend the site:
http://www.nsc.liu.se/∼boein/f90/. Here you find versions both in English and
in Swedish.

A.1 Why use Fortran?

But first the obvious question.Why do I have to learn to program in Fortran? In the field of
Meteorology and Oceanography you will probably come acrossatmospheric models like WRF
and CAM and ocean models like ROMS, NEMO, or other models likethem. Depending on
your project, you will sometimes have to make changes or additions to an already exsisting
model written in Fortran. This task is decidedly much easierif you acquire some knowledge
of programming in Fortran. Moreover, valuable time may be lost if you have to aquire that
knowledge later on, when you need to make changes to the model.

Next we remark that in the last 15 to 20 years or so Fortran is looked upon as an old-fashioned
unstructured programming language by researchers and students alike in the field of Informat-
ics. The reason is that earlier versions of Fortran lacked most of the features found in modern
programming languages like C++, Java, etc. Especially the lack of object orientation has been
the main drawback of Fortran. This is no longer true. Fortran2003 and Fortran 2008 has all the
modern features including Object Oriented Programming (OOP).

The most important reason why we still favor Fortran as a programming language in solving
atmospheric and oceanographic problems on the computer, however, is the execution speed of
the compiled program. In number crunching speed Fortran is much faster than C and C++. Tests

1Former scientific programmer at Department of Geosciences
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show that an optimized Fortran program in some cases may run up to 30 percent faster than the
equivalent C or C++ program. Thus for large and complex programs and codes with a runtime
of weeks even a small increase in speed will reduce the overall time it takes to solve a problem.
This is an important fact in the field of meteorology and oceanography since speed is everything
when you are going to produce a forecast.

In addition we remark that laboratory experiments and field work are sometimes costly to
perform. Computer simulations are less costly, and are therefore becoming increasingly more
important as an addition to laboratory and field work.

A.2 Historical background

Fortran is an old programming language. Already in 1954 JohnW. Backus2 and his team at
IBM began developing the scientific programming language Fortran. It was first introduced in
1957 for a limited set of computer architectures. In a short time the language spread to other
architectures. Since then it has been the most widely used programming language for solving
numerical problems within natural sciences in general and in atmosphere and ocean science in
particular.

The name Fortran is derived fromFormula Translation, and as already alluded to is still
the language of choice for fast numerical computations. In 1959 a new version, Fortran II, was
introduced. This version was more advanced and among the newfeatures was the ability to use
complex numbers and splitting a program into subroutines. In the years to follow Fortran was
further developed to become a programming language that wasfairly easy to understand and well
adapted to solve numerical problems.

In 1962 a new version, Fortran IV, emerged. Among its new features was the ability to read
and write direct access files. In addition it introduced a newdata type calledLOGICAL. This
was a Boolean data type with two statestrue or false. At the end of the seventies Fortran 77 was
introduced. This version contained better loop and test structures. In 1992 Fortran 90, and shortly
thereafter Fortan 953, was formally introduced as an ANSI/ISO standard. These versions turned
Fortran into a modern programming language. Fortran 90/95 includes many of the features we
expect from a modern programming languages. Finally Fortran 2003 is released that incorporates
OOP with type extension and inheritance, polymorphism, dynamic type allocation and type-
bound procedures.

2John Warner Backus (December 3, 1924 - March 17, 2007) was an American computer scientist. He directed
the team that invented the first widely used high-level programming language (FORTRAN) and was the inventor of
the Backus-Naur form, a widely used notation to define formallanguage syntax. He also did research in function-
level programming and helped to popularize it. The IEEE awarded Backus the W.W. McDowell Award in 1967 for
the development of FORTRAN. He received the National Medal of Science in 1975 (Source: Wikipedia).

3Fortran 95 is but a small extension of Fortran 90
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Figure A.1: The punched card

A.3 The Fortran syntax

We start by noticing that as all programming languages Fortran has its own syntax. Hence to start
programming in Fortran a knowledge of its syntax is required. Fortran has, as other programming
languages, a division of the code into variable declarations and instructions for manipulating
the contents of the variables. An important difference between earlier Fortran 77 and Fortran
90/95/2003 is the way the code is written. In Fortran 77 the code is written in fixed form where
each line of code is divided into 80 columns and each column has its own meaning.

This division has an historically background. In the 1960s and part of the 1970s the stan-
dard media for data input was the punched cards as displayed in Figure A.1. The cards were
divided into 80 columns and it was therefore naturally to setthe length of each line of code to
80 characters. In Table A.1 we provide an overview of the subdivision of the line of code. We
emphasize that Fortran 77 is a subset of Fortran 2003 and all programs written in Fortran 77 can
be compiled using a Fortran 2003 compiler.

In addition to the fixed code format from Fortran 77, Fortran 2003 also supports free format
coding. This means that the division into columns are no longer necessary and the program code
can be written in a more structured way which makes it more readable and easier to maintain.
Todaythe free format is the defaultsettings for the Fortran 90/95 and Fortran 2003 compilers.

Column number Meaning

1 A character here means the line is a comment
2 - 5 Jump address and format number

6 A character here is a continuation from previous line
7 - 72 Program code
73 - 80 Comment

Table A.1: The Fortran 77 (F77) fixed format
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A.3.1 Data types in Fortran

In earlier versions of Fortran four basic data types was included. These wereINTEGER and
REAL numbers,LOGICALwhich is a boolean type andCHARACTERwhich represent the alpha-
bet and other special non-numeric types. In Fortran 90/95 the REAL data type is split into the
REAL andCOMPLEX data types. In addition to this a derived data type can be usedin Fortran
2003. A derived data type may contain one or more of the basic data types, other derived data
types, and in addition procedures which is a part of the new OOP features in Fortran 2003.

INTEGER

An INTEGER datatype is identified with the reserved wordINTEGER. It has a valid range which
varies with the way it is declared and the architecture of thecomputer it is compiled on. When
nothing else is given anINTEGER has a length of 32 bits on a typical workstation and can have a
value from−231 to 230 and a 64 bitINTEGER with a minimum value from−263 to a maximum
value of262.

REAL and COMPLEX

In the same manner aREAL number can be specified with various ranges and accuracies. Areal
number is identified with the reserved wordREAL and can be declared with single or double
precision. In Table A.2 the number of bits and minimum and maximum values are given.

Precision Sign Exponent Significand Max. value Min. value

Single 1 8 23 2128 2−126

Double 1 11 52 21024 2−1022

Table A.2:REAL numbers datatype in Fortran

A double precision real number are declared using the reserved wordsDOUBLE PRECISION
or REAL(KIND=8). The latter is the preferred declaration of a double precision real number.

An extension ofREAL numbers areCOMPLEX numbers with their real and imaginary parts. A
COMPLEX number is identified with the reserved wordCOMPLEX. The real part can be extracted
by the functionREAL() and the imaginary part with the functionAIMAG(). There is no need
for writing explicit calculation functions forCOMPLEX numbers like one has to do in C / C++
which lacks theCOMPLEX data type.

LOGICAL

The Boolean datatype is identified by the reserved wordLOGICAL and has only two values true
or false. These values are identified with.TRUE. or .FALSE.. We note that the dot (period
mark) at the beginning and end of the declaration is a necessary part of the syntax. To omit one
or more dots will give a compilation error.
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CHARACTER

TheCHARACTER datatype is identified by the reserved wordCHARACTER and contains letters
and characters in order to represent data in a readable form.Legal characters are among others a
to z, A to Z and some special characters +, -, *, / and =.

Derived data types

These are data types which are defined for special purposes. Aderived data type is put together
of components from one or more of the four basic data types, and also of other derived data
types. A derived data type is always identified by the reserved wordTYPE name as prefix and
END TYPE name as postfix.

A.4 The structure of Fortran

A.4.1 Declaration of variables

In Fortran there are two ways to declare a variable. The first is calledimplicit declaration, and is
inherited from the earliest versions of Fortran. The secondis calledexplicitdeclaration, and is in
accordance with other programming languages. Explicit declaration means that all variables has
to be declaredbeforeany instructions occurs.

Implicit declaration on the other hand means that a variableis declared when needed by
giving it a value anywhere in the source code, that is, even within the instructions. The data type
is determined by the first letter in the variable name. AnINTEGER is recognized by starting with
the lettersI to N and aREAL variable by the rest of the alphabet. We emphasize that no special
characters are allowed in a variable name only the lettersA - Z, the numbers0 - 9 and the
underscore character_. A variable cannot start with a number. In addition aLOGICAL variable
is, in most compilers, identified by the letterL.

We underscore that as a general rule an implicit declarationis not a good way to program. For
one it renders a code that is not easy to read. Secondly it easily introduces errors in a program
due to typing errors. We therefore strongly recommend toalways use explicit declarationof
variables. To ensure that all variables must be declared is to include in the second line of all
programs, functions and subroutines the keywordsIMPLICIT NONE. This tells the compiler to
check that all variables are declared. Finally we add that there are some variables which always
have to be declared. These are arrays in one or more dimensions and character strings.

INTEGER numbers

We start by showing an example of how to declare anINTEGER in Fortran 95.
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INTEGER :: i ! Declaration of an INTEGER
! length(32 bit)

INTEGER(KIND=2) :: j ! Declaration of an INTEGER (16bit)
INTEGER(KIND=4) :: k ! Declaration of an INTEGER (32bit)
INTEGER(KIND=8) :: m ! Declaration of an INTEGER (64bit)
INTEGER,DIMENSION(100):: n ! Declaration of an INTEGER array

! (100 elements)

We note that there are certain differences in the Fortran 77 and the Fortran 95 way of declaring
variables. In Fortran 95 there is more to write, but this is offset by greater readability. Note that
in Fortran 95 a comment can start anywhere on the code line, but must always be preceded by an
exclamation (!) point.

REAL numbers

The REAL datatype in most compilers now conforms to the IEEE standardfor floating point
numbers. Declarations of single and double precision is declared as in the next example.

REAL :: x ! Declaration of REAL
! defaultlength (32bit)

REAL(KIND=8) :: y ! Declaration of REAL
! double precision (64 bit)

REAL,DIMENSION(200) :: z ! Declaration of REAL array
! (200 elements)

COMPLEX numbers

Fortran has, unlike C/C++, an intrinsic datatype of complexnumbers. Declaration of aCOMPLEX
variable in Fortran is as follows.

COMPLEX :: a ! Complex number
COMPLEX,DIMENSION(100) :: b ! Array of complex numbers

! (100 elements)

LOGICAL variables

Unlike INTEGER andREAL numbers aLOGICAL variable has only two values,.TRUE. or
.FALSE., and therefore uses a minimum of space. The number of bits aLOGICAL variable is
using depends on the architecture and the compiler. It is possible to declare a singleLOGICAL
variable or an array of them. The following example shows a Fortran 90/95 declaration. In other
programming languages theLOGICAL variable is often called a Boolean variable after George
Boole the mathematician4.

4George Boole (November 2, 1815 - December 8, 1864) was an English mathematician, philosopher and logi-
cian. He worked in the fields of differential equations and algebraic logic, and is now best known as the author
of ”The Laws of Thought”, and as the inventor of the prototypeof what is now called Boolean logic (source:
Wikipedia).
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LOGICAL :: l1 ! Single LOGICAL variable
LOGICAL,DIMENSION(100) :: l2 ! Array of LOGICAL variables

! (100 elements)

CHARACTER variables

Characters can either be declared as a singleCHARACTER variable, a string of characters or an
array of single characters or character strings.

CHARACTER :: c1 ! Single character
CHARACTER(LEN=80) :: c2 ! String of characters
CHARACTER,DIMENSION(10) :: c3 ! Array of single

! characters
CHARACTER(LEN=80),DIMENSION(10) :: c4 ! Array of character

! strings (10 elements)

Derived data types

The Fortran 95 syntax for the declaration of a derived datatype can be like the one shown here.

TYPE derived
! Internal variables
INTEGER :: counter
REAL :: number
LOGICAL :: used
CHARACTER(LEN=10) :: string

END TYPE derived
! A declaration of a variable of
! the new derived datatype
TYPE (derived) :: my_type

The question arises, why use derived data types? The answer is is that sometimes it is desireable
to group variables together to be able to refer to them under acommon name. It is usually a good
practice to select a name of the abstract data type to indicate the contents and area of use.

A.4.2 Instructions

There are two main types of instructions. One is for program control and the other is for assigning
a value to a variable.

Instructions for program control

Instructions for program control can be split into three groups, one for loops, a second for tests
(even though a loop usually have an implicit test), and a third for assigning values to variables
and perform mathematical operations on the variables.
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In Fortran all loops starts with the reserved wordDO. The following piece of code shows a
short example of a simple loop.

DO i = 1, 100
!// Here instructions are performed 100 times
!// before the loop is finished

END DO

The next example shows a loop with instructions. This loop isa non-terminating loop, where
anIF-test inside the loop is used to exit the loop when the result of the test is true.
....
do

a = a * sqrt(b) + c
if (a > z) then
!// Jump out of the loop
exit

end if
end do

This piece of code instructs the computer to give the variable a a value equal the sum of the
square root of the variableb multiplied bya’s prior value and a third variablec. When the value
of a becomes greater then the value of the variablez the program transfers control to the next
instruction following the loop. Note that we have assumed that all the variables are declared
and initialized somewhere in the programbeforethe loop as indicated by the code line....
appearing before the loop. The various Fortran instructions will be described in the example in
Section A.5 below.

A.5 Sample programs

A.5.1 A daynumber converter

We start with a very simple program where the task is to calculate the daynumber of a specific
date in the year. In this we assume that the year is a non-leapyear. We first write the program
skeleton and then we fill in the necessary code to solve the problem.

PROGRAM daynumber
implicit none
....

END PROGRAM daynumber

All Fortran programs begins with the reserved wordPROGRAM and then the program name. In
our case the program name isdaynumber. The code lineimplicit none is, as alluded to
above, almost mandatory or at least good programming practise. It appears to prevent the use of
implicit declarations, which else is the default behavior of the Fortran compiler.
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Next we declare some variables and constants which we will use to calculate the daynumber.
PROGRAM daynumber

implicit none
integer :: counter
integer,dimension(12) :: months
integer :: day, month
integer :: daynr
....

END PROGRAM daynumber

We have declared four integer variables, namelycounter, day, month anddaynr, and one
integer arraymonths with 12 elements. The variablecounter is used to traverse the array to
select the number of days in the months before the given month. The variablesday andmonth
hold the day and month. The variabledaynr contains the result of the calculations.

Then we specify numbers for the constant integersday andmonth, and initialize the vari-
abledaynr and the arraymonths,

PROGRAM daynumber
implicit none
....
day = 16
month = 9
daynr = 0
months(:) = 31
....

END PROGRAM daynumber

Initializing scalar arrays are not difficult, but usually wewould have to initialize each element of
the array separately. Fortunately Fortran 95 and 2003 has a built in functionality which allow us
to initialize a whole array with one value.

However, not all months contain 31 days. Thus the next step isto change the number of
days in the months that differ from 31, that is,months(2) (February),months(4)(April) ,
months(6) (June) ,months(9) (September), andmonths(11) (November).

PROGRAM daynumber
implicit none
....
months(2) = 28
months(4) = 30
months(6) = 30
months(9) = 30
months(11) = 30
....

END PROGRAM daynumber

The next step is to loop through all the elements in the arraymonths up to the month minus one
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summing up the number of days in each month into thedaynr variable. To arrive at our result
we just further add the value from the variable day to thedaynr. To display the result we use
the commandPRINT *, daynr that writes the result on the terminal.

PROGRAM daynumber
implicit none
....
DO counter = 1, month - 1
daynr = daynr + months(counter)

END DO
daynr = daynr + day
PRINT*, daynr

END PROGRAM daynumber

Compiling a program

In order to have an executable program we have to compile it. This requires that our sample
program (or source code) resides in a file on the computer, saydaynr.f90, where the extension
indicates that the file contains a Fortran program written inFortran 90. The compilation process
takes the file with the source code and creates a binary file linked in with the necessary system
libraries so we may run the program on the computer. The binary file contains our program in
machine specific assembley language, that is, instructionswritten in machine language. We use
an open source5 compiler calledgfortran. The command line for compiling our program is
simply

gfortran -o daynr daynr.f90

wheregfortran is the name of the compiler6. The argument-o means that the next argument
to the compiler is the name of the executable program. The last argument is the name of the file
containing our source code. You may also simply write

gfortran daynr.f90

In this case the executable program by default is given the namea.out. To run the compiled
program we may use the command./daynr (or ./a.out) in the terminal window.

The resulting output from our sample program with themonth = 9 and theday = 16 is259.
You can use a calculator and perform the calculations by handto check that the result is correct.

Doing this simple program we have learned tonever use implicit declarations of variables
which is very important. There is a story from the seventies about 10 implicit declarations where
a typing error created an uninitialized variable causing a NASA rocket launch to fail and the
rocket had to be destroyed before it could cause sever damage.

5Open source means that the compiler may be downloaded and used free of charge
6Note that there are other compilers.

190



Introduction to Fortran 2003 via examples A.5 Sample programs

Exercises

1. Use the code in this section, fill in what is missing and savethe source code in a file.
Compile the code and run it to check that daynumber in a non-leapyear for September 16
is indeed 259.

2. Given the radius of a circle write a program calculating the length of the circumference of
the circle, compile and run the program and check that the result is correct.

3. Given a radius of a circle write a program calculating the area inside of the circle, compile
and run the program and check that the result is correct.

4. Given a radius of a sphere write a program calculating the volume of the sphere, compile
and run the program and check that the result is correct.

A.5.2 A temperature converter

We now develop a program that converts a temperature given indegreees Fahrenheit to degrees
Celsius (or centigrades). To see the results we must print the two temperatures in the terminal
window. The formulae for the conversions are

C =
5

9
(F − 32) or vice versa F =

9

5
C + 32, (A.1)

whereF represents the temperature in Fahrenheit andC the temperature in Celsius or centi-
grades.

To proceed we need two floating point variables, one to hold the temperature in Fahrenheit,
sayF, and a second to hold the temperature in Celsius, sayC. To declare them as floating point
variables we use theREAL keyword7. Thus we must include the following piece of code

....
!// The Fahrenheit variable
REAL :: F
!// The Centigrade variable
REAL :: C
....

Note that, in contrast to most other languages, the Fortran language is case insensitive. That
means that a variable or function name is the same whether it is written with uppercase or low-
ercase letters. Moreover, beginning with the Fortran 90 version we separate the variable type
from the variable name with a double colon. Furthermore, an exclamation sign is used to signal
the compiler that the rest of the line is a comment. In order tomake the code more readable we
recommend to include an additional double slash before writing the comment as shown in the
above example. As we shall see later a program that is easy to read is also easy to understand
and makes it easier to find and correct errors.

7In other languages the keywordfloat is used to declare a floating point variable.
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The next step is to initialize the Fahrenheit variable and perform the conversion according to
the formula. The whole program may be something like,

PROGRAM f2c_simple
IMPLICIT NONE
!// Declare variables
REAL :: F ! Fahrenheit variable (floating point)
REAL :: C ! Centigrade variable C (floating point)
!// Assigne a value to F as a constant number
!// Note the decimal point
F = 75.
!// Perform the calculations
C = (F - 32.)*5./9.
!// Write the result to the terminal window
PRINT *, C

END PROGRAM f2c_simple

Note that we avoid using the Fortran default of implicit declarations of variables by writing
IMPLICIT NONE in the second code line. To tell the compiler that the constant value 75 is a
real number we use a decimal point as part of the number. If we omit the dot the compiler will
assume that it is an integer and in some cases the calculations will be wrong. Finally note the use
of parenthesis to perform the calculations in the proper sequence. The statement or command
PRINT *, C writes the temperature in degrees Celsius to the terminal window.

As in the former example we have to compile the program to get abinary executable program
file. There are several commercial Fortran compilers, but wewill use the open source GNU
Fortran compiler calledgfortran to compile our program. Let us assume that we have written
our program into a file namedf2c_simple.f90. We may then compile it using

gfortran -o f2c f2c_simple.f90

where again the-o option signals to the compiler that the next argument is the name of the
executable program and the last argument is the name of the file with the source code. In this
case the binary program file calledf2c is created, which may be run by typing./f2c in the
terminal window. This is exactly as we did for the former sample progran (Section A.5.1). All
Fortran programs are compiled and run this way.

A.5.3 A more user friendly version of the converter program

The above program is note very user friendly. Everytime we would like to convert a new temper-
ature in degrees Fahrenheit to degress Celsius we have to change the source code, that is, specify
a newF, recompile and rerun the program. To avoid this we may add to our program a user
interface asking us to give a temperature in degrees Fahrenheit.

To accomplish this we must add some code lines for communication in the form of text
strings. In the example below we first declare and assign two text stringsprompt1 andprompt2.
The first text string, declared asprompt1, asks us whether our input is in Fahrenheit or Celsius,
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while the second,prompt2, asks us to enter the temperature we like to convert. To declare the
text strings we use the data typeCHARACTER. Thus our program begins the following code lines

!///////////////////////////////////////////////////////
!//
!// f2c.f90
!//
!// Program to convert from Fahrenheit to
!// Celsius or vice versa
!///////////////////////////////////////////////////////
PROGRAM f2c

IMPLICIT NONE
REAL :: F !// Temperature in Fahrenheit
REAL :: C !// Temperature in degree Celsius
!// Character strings to hold the prompts for
!// communicating with the user
CHARACTER(LEN=80) :: prompt1, prompt2
!// A single character to hold the answer
!// which is either F or C
CHARACTER :: answer
!// Assign a value to the prompt1
prompt1 = ’Enter F for Fahrenheit or C for Celsius’
!// Assign a value to the prompt2
prompt2 = ’Enter a temperature’
....

The declarationCHARACTER(LEN=80) means that we have allocated a space for a text string
up to 80 characters long. The characteranswer is unassigned, but is used to hold a single char-
acter variable which is the answer to the questionprompt1, that is,answer is used to hold the
characters (F or C) according to our answer toprompt1.

Note also that we have added some comments above thePROGRAM line. It gives the name
of the file containing the source code, and also a brief description of the programs purpose. This
makes the code more readable and easier to understand and is recommendable even for small
programs like this one.

Then we continue
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....
!// Print the contents to the terminal window
!// without trailing blank characters
PRINT *, TRIM(prompt1)
!// Read the input from the keyboard
READ(*,*) answer
!// Print the contents to the terminal window
!// without trailing blank characters
PRINT *, TRIM(prompt2)
....

This part prints the assigned value ofprompt1 to the terminal window, then read our input and
put it in answer. Next it prints theprompt2 to the terminal window and waits for our input.
The use of the keyword TRIM tells the compiler to print out thetext without printing the trailing
space characters. Note that we use theREAD command to read in our answer toprompt1. The
constructREAD(*,*) means we read the input from the keyboard with default formatting into
the receiving variable.

The next program steps then read our input, then branches outaccording to our input regard-
inganswer, performs the conversion and prints the result before it ends the program in a proper
way. Thus

....
!// Is the temperature given in Fahrenheit?
IF(answer .EQ. ’F’) THEN
!// Yes, read input into the F variable
READ(*,*) F
!// Convert from Fahrenheit to Celsius
C = (F - 32) * (5. / 9.)
!// Print the result to the screen
PRINT *, C

ELSE
!// No, read input into the C variable
READ(*,*) C
!// convert from Celsius to Fahrenheit
F = (C * 9. / 5.) + 32
!// Print the result to the screen
PRINT *, F

END IF
END PROGRAM f2c
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A.5.4 Variable types, arrays, loops and memory allocation

Most often than not atmosphere and ocean variables are stored in large files where the variables
are stored in multiple dimensioned arrays. To illustrate wefirst study how we store data in a one
dimensional array8.

For this purpose we construct a program that calculates the Fibonacci sequence9. The se-
quence consists of a series of integers, the so called Fibonacci numbers, which require us to
store them in a one dimensional array or vector of integers. We first recall that the formula for
calculating the Fibonacci sequence is

Fj−1 = Fj−2 + Fj−3, j = 3(1)n (A.2)

where the two first numbers areF0 = 0 (j = 1) andF1 = 1 (j = 2).

First we need an array of integers to hold the numbers. We willconstruct the program so that
the user may choose the lenth of the sequence. In that case we have to include a user interface
like we used in the temperature conversion program asking for the length of the sequence. Thus
the length of this array (or vector) is not known in advance. So we will have to use a so called
allocatable array where we allocate the needed space at runtime. In addition we need an index
variable and a status variable where the first one is for accessing the various elements of the array
and a status variable to check the result of the allocation. Consequently the first part of the code
reads

8A one dimensional array is often referred to as a vector
9Leonardo Pisano Bigollo (ca. 1170 - ca. 1250) - known as Fibonacci, and also Leonardo of Pisa, Leonardo

Pisano, Leonardo Bonacci, Leonardo Fibonacci - was an Italian mathematician, considered by some ”the most
talented western mathematician of the Middle Ages”. Fibonacci is best known to the modern world for the spreading
of the Hindu-Arabic numeral system in Europe, primarily through his composition in 1202 of Liber Abaci (Book of
Calculation), and for a number sequence named the Fibonaccisequence (or numbers) after him, which he did not
discover but used as an example in the Liber Abaci.
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!////////////////////////////////////////////////////////////
!//
!// fibonacci.f90
!//
!// Program to display the Fibonacci
!// sequence from 1 to n
!//
!////////////////////////////////////////////////////////////
PROGRAM fibonacci

IMPLICIT NONE
!// Variable declarations
!// Declaring integer variables
!// first a counter variable
INTEGER :: i
!// then the length of Fibonacci sequence
INTEGER :: n
!// and finally a status variable (if errors)
INTEGER :: res
!// Declare an array to hold the Fibonacci sequence
!// with unknown length at compilation time
INTEGER, ALLOCATABLE, DIMENSION(:) :: sequence
....

To declare an array with unknown length, heresequence, we use the keywordsINTEGER,
ALLOCATABLE, DIMENSION(:) to declare it. Note that we replace the length of the array
with a colon:. If we know the length of the array in advance we simply use theconstruct
INTEGER, DIMENSION(100) for an array containing 100 elements.

This done we continue with prompting for the finite number in the infinite Fibonacci se-
quence we will calculate, a number we later use to allocate space for the Fibonacci numbers in
the sequence. Thus we have to declare a prompting character string of some length, say 80, and
then assign values to it. Note that the text string is shorterthan 80 characters long so we insert a
line of code counting the actual number of characters. Furthermore, we push the prompt to the
terminal window. Thus the program continues

196



Introduction to Fortran 2003 via examples A.5 Sample programs

....
!// Declare the length of the prompt to ask
!// for length of the Fibonacci sequence
CHARACTER(LEN=80) :: prompt
!// Assign value to the prompt
prompt = ’Enter the length of the sequence: ’
!// Get the number of non blank characters in prompt
i = LEN(TRIM(prompt))
!// Display the prompt asking for the length suppressing
!// the line feed
WRITE(*,FMT=’(A)’,ADVANCE=’NO’) prompt(1:i+1)
....

Since use of the keywordPRINT * always prints the text to the terminal window with a linefeed
as the last operation, we have replaced it with the commandWRITE(*,FMT=’(A)ADVANCE=’NO’).
Use of of theWRITE command makes it possible to avoid or supress the linefeed byadding the
formatting code in theWRITE command as shown above.

Now we are ready to read the input from the terminal window andthen perform the calcula-
tions. Hence the rest of the program reads

....
!// Read the keyboard input
READ(*,*) n
!// Allocate space for the sequence
ALLOCATE(sequence(n), STAT=res)
!// Test the value of the res variable for errors
IF(res /= 0) THEN
!// We have an error. Print a message and stop the program
PRINT *, ’Error in allocating space, status: ’, res
STOP

END IF
!// Initialize the two first elements in the sequence
sequence(1) = 0
sequence(2) = 1
!// Loop and calculate the Fibonacci numbers
DO i = 3, n
sequence(i) = sequence(i-1) + sequence(i-2)

END DO
!// Print the sequence to the screen
PRINT *, sequence

END PROGRAM fibonacci

Note that once we read in the variablen we were able to allocate space for the Fibonacci array
sequence using the construct:ALLOCATE(sequence(n), STAT=res). Then we make
an if test using the integerres to check if the allocation is OK. If it is different from zero which
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means that the allocation failed we stop the program. If not we continue by first specifying the
first two numbers in the Fibonacci sequence. Next we start a loop to calculate the next integers
in the sequence in accord with the formula given in (A.2). Note that since we have specified the
two first numbers in the sequence the loop starts with an indexvariable equal 3, in accord with
(A.2). Finally we added the code linePRINT *, sequence at the end to display the contents
of the sequence in the terminal window (unformatted).

A.5.5 File input/output or I/O

Commonly the input of data we use in our programs are stored infiles. These may be numbers
generated through the output of another program or observations produced by instruments sen-
sors in one way or another. In either case they ar usually available to us on a file stored on a
computer somewhere or residing on a memory device of some sort.

In the example to follow we learn how to read data from a file into an array, perform some
operation on the data set and write the result to a new file. In our case we assume that we know
in advance the length of the array, say 7 elements long. So we start the program like this

!////////////////////////////////////////////////////////////
!//
!// f2c_file.f90
!//
!// Program to calculate the degree Celsius from a
!// file containing seven observations of temperatures
!// in Fahrenheit
!//
!////////////////////////////////////////////////////////////
PROGRAM f2c_file

IMPLICIT NONE
!// Declare a static variable to hold the
!// length of the arrays
INTEGER, PARAMETER :: n = 7
....

Heren is declared using the keywordPARAMETER to specify that it is constant or static, that is,
unchanged at runtime. Then we continue by declaring the the arrays that will hold the tempera-
tures in Fahrenheit and Celsius, and a counter variable, that is,

....
!// Declare the arrays for the temperatures,
!// and a counter variable
REAL,DIMENSION(n) :: F !// Fahrenheit
REAL,DIMENSION(n) :: C !// Celsius
INTEGER :: j !// Counter variable
....
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In addition to this we need two character strings to hold the names of the input and output
files, that is,

....
!// Declare character strings to hold the filenames
CHARACTER(LEN=80) :: infile !// Holds the Fahrenheit

!// temperatures
CHARACTER(LEN=80) :: outfile !// Holds the results of

!// the conversion to
!// degree Celsius

....

Further we need two parameters to hold the unit numbers whichwe use to reference the input
and output files. We also need to specify the names of the inputand output files so we can recog-
nize them in our directory once the operation is completed. The reference numbers are integers.
In this regard we also need to declare a status variabel as we did in the last example above. Thus
the program continues

....
!// Declare constant values for the Logical Unit Number for
!// referencing the files for opening, reading and writing
INTEGER, PARAMETER :: ilun = 10
INTEGER, PARAMETER :: olun = 11
!// A status variable to hold the result of file
!// operations
INTEGER :: res
!// Assign an input filename for temperatures in Fahrenheit
infile = "fahrenheit.txt"
!// Assign an output filename for temperatures in Celsius
outfile = "celsius.txt"
....

Before we can access the contents of the output file we have to open it using the unit number
we declared and its filename, that is,infile. We also test whether the opening was successful.
To effectuate this we continue with the following statements
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....
!// Open the input file
OPEN(UNIT=ilun,FILE=infile,FORM="FORMATTED",IOSTAT=res)
!// Test if the operation was successful
IF(res /= 0) THEN
!// No, an error occurred, print a message to
!// the screen
PRINT *, "Error in opening file, status: ", res
!// Stop the program
STOP

END IF
....

We are now in a position to read the contents of the input file into the arrayF. This is carried
out by using a loop that runs from1 to the length of the array, in this examplen. To fulfill this
we make use of theREAD statement which is similar to theOPEN statement. Thus the program
continues

....
!// Loop and read each line of the file
DO j = 1, n
!// Read the current line
READ(UNIT=ilun,FMT=’(F4.1,X,F4.1)’,IOSTAT=res) F(j)
!// Was the read successful?
IF(res /= 0) THEN

!// No, test if we have reached End Of File (EOF)
IF(res /= -1) THEN
!// No, an error has occurred, print a message
PRINT *, "Error in reading file, status: ", res
!// Close the file
CLOSE(UNIT=ilun)
!// Stop the program
STOP

END IF
END IF

END DO
....

Note that theinfile is formatted. Thus we need to know the format of the data contained
in theinfile, that is, the filefahrenheit.txt, and make sure that the argument speci-
fied in the argumentFMT is an exact match of the format infahrenheit.txt. We use the
keyword/argument pairFMT=’(F4.1,X,F4.1)’ to tell the computer that we have a floating
point number with 4 digits including the decimal point and one decimal, a space character and
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then another floating point number like the first.

We may now proceed to convert from Fahrenheit to Celsius, andto store the result into the
second array, that is,C. To see the result in the terminal window we also add aPRINT statement.
This is accomplished by adding the code lines

....
!// Loop and convert from Fahrenheit to Celsius
DO j = 1, n
C(j) = (F(j) - 32) * 5. / 9.

END DO
!// Print the temperatures to the screen
DO j = 1, n
PRINT *, " Degrees Farenheit ", F(j), &

" Degrees Celsius ", C(j)
END DO
....

Once the conversion is completed we may proceed to write the contents of the arrayC to the
output file we namedoutfile and gave the reference numberolun = 11. To enable writing
to the output file we first have to ensure that it is open. We do this exactly as we did for the input
file. Thus we proceed

....
!// Open the output file
OPEN(UNIT=olun,FILE=outfile,FORM="FORMATTED",IOSTAT=res)
!// Test if the operation was successful
IF(res /= 0) THEN
!// No, an error occurred, print a message to
!// the screen
PRINT *, "Error in opening output file, status: ", res
!// Stop the program
STOP

END IF
....

Note that we specfically ensured that also the outfile is formatted by including the argument
FORM="FORMATTED" in theOPEN statement.

We may then write the result of the conversion to the output file, by continuing with the fol-
lowing code lines
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....
DO j = 1, n
WRITE(UNIT=olun,FMT=’(F4.1,A1,F4.1)’,IOSTAT=res) C(j)
!// Test if the operation was successful
IF(res /= 0) THEN

!// No, an error occurred, print a message to
!// the screen
PRINT *, "Error in writing file, status: ", res
!// Exit the loop
EXIT

END IF
END DO
....

Finally we close the input and output files and terminate program, that is,
....
!// Close the input file
CLOSE(UNIT=ilun)
!// Close the output file
CLOSE(UNIT=olun)

END PROGRAM f2c_file

Note that when using theOPEN function we made use of the respective unit numbersilun
= 10 andolun = 11. We also provided the filename as part of theFILE argument. Finally
note that the result of the call to theOPEN is returned in theIOSTAT=res keyword/argument
pair. We underscore that the same procedure is used in reading from files.

Note also that we in this example made use of formatted files. This entails that the file
content may be displayed in the terminal window. This is in contrast to binary files which is not
very meaningful to us. To visualize this let us first construct a formatted file containg two pairs
of seven temperatures in Fahrenheit in two columns formatted following the keyword/argument
FMT=’FMT=’(F4.1,X,F4.1)’, that is,

68.2 65.5
69.6 63.7
73.2 66.0
75.0 68.0
77.5 70.2
79.2 71.4
91.2 73.2

The binary file in contrast looks like this
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The binary file looks like this:
.....
^@H<8D><BC>$<D0>^@^@^@<BE>
^@^@^@<B9><B8>_N^@H<C7>D$0P^@^@^@<BA>^C<FF><84>
^C3<C0>H<C7>D$8<80><DC>s^@L<8D>D$0H<C7>D$@
^@^@^@H<C7>D$H<E0>’N^@H<C7>D$P^D^@^@^@<E8>O<C3>
.....
This is the end of the binary file$

As is obvious the binary format is unreadable as is unless youuse a program that translates the
binary information into a textfile written in so called ASCIIformat. ASCII is short for American
Standard Code for Information Interchange, and is the format used by formatted files in Fortran.

A.5.6 Multidimensional arrays

In the field of Meteorology and Oceanography the data sets we operate on is usually in four
dimensions, three in space space and one in time. This consequence is that we have to declare
matrices in four dimensions to be able to store the data. The next example shows how we may use
a two dimensional matrix to store a set of temperatures in degree Fahrenheit from two measuring
stations, read it in from a file, convert the temperatures into Celsius and write them to a file.

The program will be very similar of course to the previous example with the exception that
we here operate on a matrix (vector, array) with two dimensions. This is possible by use of nested
loops. The complete code is10

10We have split it into parts here to avoid open spaces
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!////////////////////////////////////////////////////////////
!//
!// f2c_advanced.f90
!//
!// A program calculating degree Celsius from Fahrenheit
!// from two measuring stations
!//
!////////////////////////////////////////////////////////////
PROGRAM f2c_advanced

IMPLICIT NONE
!// Declare a static variable to hold the
!// dimension of the vectors or arrays
INTEGER, PARAMETER :: m = 7
INTEGER, PARAMETER :: n = 2
!// Declare the arrays for the temperatures in
!// Fahrenheit and Celsius, and counter variables
REAL,DIMENSION(m,n) :: F
REAL,DIMENSION(m,n) :: C
INTEGER :: j, k
....
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....
!// Character strings to hold the filenames
CHARACTER(LEN=80) :: F_file
CHARACTER(LEN=80) :: C_file
!// Constant values for the Logical Unit Number
!// for referencing the files for opening, reading
!// and writing
INTEGER, PARAMETER :: ilun = 10
INTEGER, PARAMETER :: olun = 11
!// A status variable to hold the result of file
!// operations
INTEGER :: res
!// Assign the input filename for Fahrenheit temp.
infile = "fahrenheit.txt"
!// Assign the output filename for Centigrade temp.
outfile = "celsius.txt"
!// Open the Fahrenheit input file
OPEN(UNIT=ilun,FILE=infile,FORM="FORMATTED",IOSTAT=res)
!// Test if the operation was successful
IF(res /= 0) THEN
!// No, an error occurred, print a message to
!// the screen
PRINT *, "Error in opening file, status: ", res
!// Stop the program
STOP

END IF
!// Loop and read each line of the file
DO j = 1, m
!// Read the current line
READ(UNIT=ilun,FMT=’(F4.1,X,F4.1)’,IOSTAT=res) F(j,1), F(j,2)
!// Successfully read?
IF(res /= 0) THEN

!// No, test if we have reached End Of File (EOF)
IF(res /= -1) THEN
!// No, an error has occurred, print a message
PRINT *, "Error in reading file, status: ", res
!// Close the file
CLOSE(UNIT=ilun)
!// Stop the program
STOP

END IF
END IF

END DO
....
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....
!// Close the input file
CLOSE(UNIT=ilun)
!// Loop and convert from Fahrenheit to Centigrade
DO k = 1, n
DO j = 1, m

C(j,k) = (F(j,k) - 32.) * 5./9.
END DO

END DO
!// Open the Centigrade output file
OPEN(UNIT=olun,FILE=centigradefile,FORM="FORMATTED",IOSTAT=res)
!// Test if the operation was successful
IF(res /= 0) THEN
!// No, an error occurred, print a message to
!// the screen
PRINT *, "Error in opening output file, status: ", res
!// Stop the program
STOP

END IF
DO j = 1, m
WRITE(UNIT=olun,FMT=’(F4.1,A1,F4.1)’,IOSTAT=res) C(i,1), &
’ ’, C(i,2)
!// Test if the operation was successful
IF(res /= 0) THEN

!// No, an error occurred, print a message to
!// the terminal window
PRINT *, "Error in writing file, status: ", res
!// Exit the loop
EXIT

END IF
END DO
!// Close the output file
CLOSE(UNIT=olun)

END PROGRAM f2c_advanced

Here we have made use of nested loops, that is, a loop within the loop. It is important for
the efficiency of the program to know how Fortran accesses a matrix. Fortran accesses a matrix
columnwise11. Thus all the row elements in a column is accessed before the row elements in the
next column. Therefore as a rule of thumb wealways let the first index be the innermost loopin
Fortran.

11This is also true for Matlab
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A.5.7 Functions and Subroutines

It is not a good programming practice to write one long program that includes all the necessary
code in one single source file. First of all it makes the program hard to understand. Secondly
it is also makes it difficult to maintain. Consequently it is common to break the program into
smaller parts or subprograms that is called into action by the main program. In Fortran we call
these subprogramsFUNCTIONs orSUBROUTINEs.

In what follows we break the former program of the previous section into a main program
and a subprogram. The task of the subprogram is simply to do the conversion from Fahrenheit
to Celsius, or vice versa. This may be done either bey use a function or a subroutine.

Functions

We start with theFUNCTION. In the former program the conversion was either from Fahrenheit
to Celsius or from Celsius to Fahrenheit. We therefore need two functions, one that converts
from Fahrenheit to Celsius, which we callf2c(arg), and a second that converts from Celsius
to Fahrenheit, which we callc2f(arg). First we programf2c(arg),

FUNCTION f2c(F) RESULT(C)
IMPLICIT NONE

!// The input argument which is read only
REAL(KIND=8), INTENT(IN) :: F

!// The result from the calculations
REAL(KIND=8) :: C

!// Perform the calculation
C = (F -32) * 5./9.

!// Return the result
RETURN

END FUNCTION f2c

and thenc2f(arg),

FUNCTION c2f(C) RESULT(F)
IMPLICIT NONE

!// The input argument which is read only
REAL(KIND=8), INTENT(IN) :: C

!// The result from the calculations
REAL(KIND=8) :: F

!// Perform the calculation
F = (C * 9. / 5.) + 32

!// Return the result
RETURN

END FUNCTION c2f

In contrast to the way we write mathematical functions, Fortran 90 - 2003 adds the keyword
RESULT(arg) where the datatype of the argument states what kind of function it is. In For-
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tran 77 and older versions the syntax wasREAL FUNCTION f2c(arg). Note the use of
INTENT(IN) for the input argument to the functions. This is to prevent accidental overwriting
of the argument since Fortran function and subroutine arguments are always called by reference
and not by value. The only thing we need to do in the main program with the exception of the
user interface is to replace the formula for the conversion with a call to the respective functions.
Note that in order to use other the Fortran intrinsic functions we have to declare them as external
functions of the correct type. If we omit the external attribute the compiler will flag en error and
the compilation will be aborted. The complete main program is shown below.
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!///////////////////////////////////////////////////////////
!//
!// array2.f90
!//
!// A program converting from Fahrenheit to Celsius
!// and vice versa
!//
!///////////////////////////////////////////////////////////
PROGRAM array2

IMPLICIT NONE
!// Declare everything .....
!// 1. Arrays for the temperatures
REAL,DIMENSION(7,2) :: F ! Fahrenheit
REAL,DIMENSION(7,2) :: C ! Celsius
!// 2. Index variables
INTEGER :: i, j
!// 3. Character strings to hold the filenames
CHARACTER(LEN=80) :: fahrenheitfile
CHARACTER(LEN=80) :: centigradefile
!// 3. Constant values for the Logical Unit Number (lun)
!// for referencing the files for opening, reading
!// and writing
INTEGER, PARAMETER :: ilun = 10
INTEGER, PARAMETER :: olun = 11
!// 4. A status variable to hold the result of file
!// operations
INTEGER :: res
!// 5. External function(s)
REAL, EXTERNAL :: f2c
REAL, EXTERNAL :: c2f
!// 6. A character string for a prompt
CHARACTER(LEN=80) :: prompt
CHARACTER :: answer
!// ..... End declarations
!// Assign filenames for temperatures
fahrenheitfile = "fahrenheit.txt"
centigradefile = "centigrade.txt"
!// Ask if we are to convert from Fahrenheit to
!// Celsius or vice versa
....

The program continues
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....
prompt = ’Convert from Fahrenheit to Centigrade (F/C)?’
PRINT *, TRIM(prompt)
READ(*,*) answer
!// Check if the answer is F or f for Fahrenheit
IF(answer .EQ. ’F’ .OR. answer .EQ. ’f’) THEN
!// Yes, open the Fahrenheit input file
OPEN(UNIT=ilun,FILE=fahrenheitfile,FORM="FORMATTED", &
IOSTAT=res)
!// Test if the operation was successful
IF(res /= 0) THEN
!// No, an error occurred, print a message to
!// the screen

PRINT *, "Error in opening file, status: ", res
!// Stop the program

STOP
END IF
!// Loop and read each line of the file
DO i = 1, 7

!// Read the current line
READ(UNIT=ilun,FMT=’(F4.1,X,F4.1)’,IOSTAT=res) &
F(i,1), F(i,2)
!// Was the read successful?
IF(res /= 0) THEN
!// No, test if we have reached End Of File (EOF)
IF(res /= -1) THEN

!// No, an error has occurred, print a message
PRINT *, "Error in reading file, status: ", res
!// Close the file
CLOSE(UNIT=ilun)
!// Stop the program
STOP

END IF
END IF

END DO
ELSE
!// No, open the Celsius input file
OPEN(UNIT=ilun,FILE=centigradefile,FORM="FORMATTED", &
IOSTAT=res)
....

The program continues
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....
!// Test if the operation was successful
IF(res /= 0) THEN

!// No, an error occurred, print a message to
!// the screen
PRINT *, "Error in opening file, status: ", res
!// Stop the program
STOP

END IF
!// Loop and read each line of the file
DO i = 1, 7

!// Read the current line
READ(UNIT=ilun,FMT=’(F4.1,X,F4.1)’,IOSTAT=res) &
C(i,1), C(i,2)
!// Was the read successful?
IF(res /= 0) THEN
!// No, test if we have reached End Of File (EOF)
IF(res /= -1) THEN

!// No, an error has occurred, print a message
PRINT *, "Error in reading file, status: ", res
!// Close the file
CLOSE(UNIT=ilun)
!// Stop the program
STOP

END IF
END IF

END DO
END IF
!// Close the input file
CLOSE(UNIT=ilun)
!// Which way to convert ?
IF(answer .EQ. ’F’ .OR. answer .EQ. ’f’) THEN
!// Loop and convert from Fahrenheit to Celsius
DO j = 1, 2

DO i = 1, 7
C(i,j) = f2c(F(i,j))

END DO
END DO

ELSE
....

The program continues
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....
!// Loop and convert from Celsisus to Fahrenheit
DO j = 1, 2
DO i = 1, 7

F(i,j) = c2f(C(i,j))
END DO

END DO
END IF
!// Which file to write to ?
IF(answer .EQ. ’F’ .OR. answer .EQ. ’f’) THEN
!// Open the Centigrade output file
OPEN(UNIT=olun,FILE=centigradefile,FORM="FORMATTED", &
IOSTAT=res)
!// Test if the operation was successful
IF(res /= 0) THEN

!// No, an error occurred, print message to the screen
PRINT *, "Error in opening output file, status: ", res
!// Stop the program
STOP

END IF
DO i = 1, 7

WRITE(UNIT=olun,FMT=’(F4.1,A1,F4.1)’,IOSTAT=res) &
C(i,1), ’ ’, C(i,2)
!// Test if the operation was successful
IF(res /= 0) THEN
!// No, an error occurred, print message to the screen
PRINT *, "Error in writing file, status: ", res
!// Exit the loop
EXIT

END IF
END DO

ELSE
!// Open the Fahrenheit output file
OPEN(UNIT=olun,FILE=fahrenheitfile,FORM="FORMATTED", &
IOSTAT=res)
!// Test if the operation was successful
....

The program continues
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....
IF(res /= 0) THEN

!// No, an error occurred, print message to the screen
PRINT *, "Error in opening output file, status: ", res
!// Stop the program
STOP

END IF
DO i = 1, 7

WRITE(UNIT=olun,FMT=’(F4.1,A1,F4.1)’,IOSTAT=res) &
F(i,1), ’ ’, F(i,2)
!// Test if the operation was successful
IF(res /= 0) THEN
!// No, an error occurred, print message to the screen
PRINT *, "Error in writing file, status: ", res
!// Exit the loop
EXIT

END IF
END DO

END IF
!// Close the output file
CLOSE(UNIT=olun)

END PROGRAM array2

In contrast to the functions a subroutine does not return a value and is the same as a void
function in other languages. We may replace the functions f2c() and c2f() with corresponding
subroutines which can look like this:

!///////////////////////////////////////////////////////////
!//
!// SUBROUTINE f2c(F,C)
!//
!// Called from program array2.f90
!//
!///////////////////////////////////////////////////////////
SUBROUTINE f2c(F,C)

IMPLICIT NONE
!// The input argument which is read only
REAL(KIND=8), INTENT(IN) :: F
!// The result of the conversion which is
!// write only
REAL(KIND=8), INTENT(OUT) :: C
....

The program continues
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....
!// Perform the conversion
C = (F -32) * 5./9.
!// Return the result through the second argument
RETURN

END SUBROUTINE f2c

and

!///////////////////////////////////////////////////////////
!//
!// SUBROUTINE c2f(C,F)
!//
!// Called from program array2.f90
!//
!///////////////////////////////////////////////////////////
SUBROUTINE c2f(C,F)

IMPLICIT NONE
!// The input argument which is read only
REAL(KIND=8), INTENT(IN) :: C
!// The result of the conversion which is
REAL(KIND=8), INTENT(OUT) :: F
!// Perform the conversion
F = (C * 9. / 5.) + 32
!// Return the result through the second argument
RETURN

END SUBROUTINE c2f

The calling from the main program is like this:
......

!// Loop and perform the conversion using
!// nested loops
DO j = 1, 2
DO i = 1, 7
!// Call the subroutine with the current element
!// of the farenheit array as the first argument to
!// the soubroutine and the current element of the
!// centigrade array as the second argument.

CALL f2c(farenheit(i,j),centigrade(i,j))
END DO

END DO

and
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......
!// Loop and perform the conversion using
!// nested loops
DO j = 1, 2
DO i = 1, 7
!// Call the subroutine with the current element
!// of the farenheit array as the first argument to
!// the soubroutine and the current element of the
!// centigrade array as the second argument.

CALL c2f(centigrade(i,j).farenheit(i,j))
END DO

END DO

A subroutine shall not be declared as external, only non intrinsic functions. Also note the use of
the INTENT(OUT) which means we can only give value to the argument and trying to read the
value from the argument would flag a compilation error just like it would if we were trying to
give the argument a value when it has the attribute INTENT(IN) which means read only.

A.6 Modules

Now it is time to progress further into the world of Fortran programming. We know now how
to use functions and subroutines, but often we need to put global variables together with the
corresponding procedures working with these variables. Itis here we utilize the MODULE
which was introduced in Fortran 90. A module consists of a setof variable declarations and an
optional set of functions and subroutines working on the variables. A skeleton module can look
like this:
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Quality assurance procedures

The aim is to present asummaryof a set of sound procedures to be followed to establish what
is referred to below as agoodmodel. The text is based on earlier reports by the author on the
subject, in particularMcClimans et al.(1992) andRøed(1993). For more extensive reading on
the subject the reader is recommended the in depth analysis documented in the GESAMP report
GESAMP(1991), or the anthologyLynch and Davies(1995).

B.1 Introduction

Although many of today’s engineering models are formulatedinto mathematical equations lead-
ing to a mathematical model that can be solved reliably with almost ”canned” routines that re-
quire little understanding on the part of the user (referredto as ”expert systems for non-experts”),
atmospheric and oceanographic weather prediction models available today are not yet among
them. Today’s atmospheric and oceanographic prediction models are thus prime examples of
complex mathematical models involving coupling of intricate physical, and sometimes chemical
and biological model modules. Inherently most complex models requires a minimum of exper-
tise to be transferred with the model, so that only in exceptional circumstances is it possible to
turn a complex model developed by one group over to another. The reason is simply that all
complex model systems have their inherent limitations thatdemands an understanding of the
underlying processes, and in the case of numerical model also the numerical techniques used
to solve them. The simulation is never perfect; different models and methods preserve differ-
ent features of the original problem implying that one needsto understand what is important
for the purpose at hand. Nevertheless, in meteorology and oceanography such almost "canned"
systems are publically available for downloading on the on the web. Regarding models of the
atmosphere the Weather Research & Forecasting Model (WRF; http://www.wrf-model.org) is
a prime example, while the same is true for the Regional OceanModeling System (ROMS;
http://www.myroms.org/) regarding the ocean.

As such any mathematical model is, at best, an approximate representation of the real world.
Hence, its predictions are inherently uncertain. This uncertainty results from both a lack of
knowledge of the full set of equations and an inability to solve them; therefore approximations
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have to be made that involve the use of parameterizations of the processes in space and time.
Uncertainty also arises from errors in observational data used to derive input and parameter
values, that is, the initial state of the model and the boundary conditions. In addition there may
be problems with the accuracy of the computer code and the method and techniques used to
solve the discretized numerical analogue of the original continuous mathematical model. All
these need attention when determining the accuracy of the model predictions.

As a precursor Section B.2 therefore highlight one of the common problems in solving a
mathematical model by numerical techniques, namely the parameterizations of unresolved scales
most often referred to as sub-grid scale parameterizations, using the advection eqauiton as an
example. This paves the way for Section B.3 which describes in general terms what is meant by a
goodmodel, and defines such terms as atunedmodel, atransportablemodel, and arobustmodel.
Section B.4 then describes what is sometimes referred to as quality assurance or model validation
procedures. This is a three step process in which the first step (Section B.4.1) is to check or
verify that the mathematical equations are solved correctly (referred to as model verification).
The next step (Section B.4.2) is to perform a sensitivity analysis to uncover the models response
to changes in the input data, parameter values and parameterizations. This is suitable to uncover
the predictive skills of the model and is referred to as a model sensitivity study. The third and
final step (Section B.4.3) is to investigate the agreement between the model predictions and
observations, a task commonly referred to as model validation. Model calibration, that is, the
tuning of parameter values to make the model output fit a givendata set, is included in these
discussions. Finally a concluding Section B.5 is offered inwhich some final remarks are made.

B.2 Sub-grid scale parameterizations and spectral cutoffs

An exact numerical solution of the governing equations for the atmosphere and ocean as they
are outlined in Chapter 1 is impossible, mostly due to processes not resolved by our grid. Thus
there exists spectral cutoffs regarding processes on scales smaller than the grid resolution (cf.
Section ), that is, the sub-grid scale processes. The effectof these sub-grid scale processes on
the resolved scales must then to be parameterized, that is, be given an approximate mathematical
formulation. Commonly this is in the form of simplified formulas involving the specification of
one or several parameters that may or may not be functions of the resolved scales.

The need for such parameterizations can best be illustratedby considering the advection-
diffusion equation simplified to include one dimension in space only. LetC = C(x, t) denote
any property of the fluid, that is, any state scalar such as potential temperature or concentration
of a particular contaminant, at locationx at timet. Then mass conservation requires

∂tC + ∂x(uC) = 0, (B.1)

whereu = u(x, t) is the speed along thex-axis by which the propertyC is advected1 (or propa-
gated). The first term on the left-hand side of (B.1) then represent the time rate of change of the

1In a three-dimensional problem the speed becomes a current,that is, a vectoru, and (B.1) becomes∂tC +∇ ·
(uC) = 0 where∇ is the three-dimensional gradient vector.
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potential temperature or the contaminant in question, while the second term is the divergence of
the advective fluxFadv = uC, that is, the divergence due to the transport of propertyC.

In practice it is impossible to describe such a flow field asu changes rapidly in both space
and time. Hence an ensemble average or a space-time averaging process, the latter taken over a
certain length scaleT in time and/orL in space, must be invoked, which separates the current
into an average or mean current,u, and a random component,u′, such thatu = ū + u′ where
u′ = 0. In this u may be thought of as being the mean flow over a certain time period andu′

as the motion deviating from the mean so thatū + u′ makes up the instant flow at any time or
location.

If the same separation is used for the concentration it follows from (B.1) that

∂t(C̄ + C ′) + ∂x
[
(ū+ u′)(C̄ + C ′)

]
= 0. (B.2)

Averaging (B.2) over the averaging period (or length), noting that terms likeu′,C ′, u′C̄, andūC ′

average out, it becomes

∂tC + ∂x(ūC̄) = ∂x
(
u′C ′

)
. (B.3)

Note that the left-hand side of (B.3) is very similar to (B.1), except for the non-zero term on the
right-hand. As such it is an advection equation for a concentrationC with a speed̄u, which in
fact is the concentration and motion resolved by our ”model”. The term on the right-hand side
of (B.3) is simply a measure of the influence of the fluctuatingmotion u0 and the fluctuations in
the concentrationC ′ on the mean concentrationC. To solve (B.3) with respect tou andC, the
right-hand side, which contains the unresolved concentrations and motions, must somehow be
expressed in terms of the average or resolved quantities, that is, be parameterized. Commonly,
with regard to the advection-diffusion equation, this is done by parameterizing the influence as a
diffusive process, that is,

Fdiff = −u′C ′ = −K(x, t)∂xC, (B.4)

whereFdiff is the diffusive flux2. The parameter or coefficientK is called the eddy diffusivity or
dispersion coefficient, and is in general a function of time and space. As alluded to below (Sec-
tion B.4.1) it is important to test the sensitivity of a modelto these parameterizations. This can
give insight into the fitness of the parameterization and mayhelp to build confidence in the model
and its predictive capability. Model prognoses that are highly sensitive to a particular parame-
terization or to the value given to a particular parameter should be treated with caution. Similar
problems occur when parameterizing, e.g., biological and physical processes. The division of
species, size distribution, patchiness, algae successions, like details of turbulence, are all poorly
known and must be parameterized. Integral quantities like biomass, chlorophyll and Secci depth
represent a multitude of biological variables. These are intotal affected by the physical/chemical
environment, which effects can be calibrated into flux/transformation formulas.

2In a three-dimensional problem the diffusive flux becomes a vectorFdiff = −K · ∇C, whereK is a tensor.
The right-hand side of (B.3) is then written∇ · Fdiff .
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B.3 What is a good model

B.3.1 Tuned, transportable, and robust models

In theory an integrated model with refined descriptions of the many processes involved and the
interactions between them, and which includes complex and sophisticated parameterizations,
should provide more accurate results and be more applicableto different situations and/or geo-
graphical areas than a model invoking simpler and coarser descriptions and parameterizations.
This philosophy reflects a conviction that more detailed formulations provide a better description
of the processes than simpler ones. In practice, this concept breaks down in many cases for the
following reasons

• it is sometimes questionable whether a ”true” description exist for all relevant processes
(e.g., turbulent mixing),

• too many processes are included that have to be parameterized, or

• our knowledge and understanding of the unresolved processes upon which the parameter-
izations are based is poor.

Under these circumstances a complex model is of little value, since no more fundamental
knowledge is being incorporated into the model, only parameterizations of poorly understood
processes. This is visualized in Figure 1.

Before constructing a good model a set of criteria has to be selected in order to make the
necessary choices, that is, which processes and which interactions between processes should be
included to answer the management question. It is convenient in this respect to introduce the
terms tuned model, transportable model, and robust model.

• A tunedmodel is one in which the parameterizations and parameter selection have been
adjusted to reproduce, as accurate as possible, a given dataset in a specific region for a
specific time interval. In general the more adjustable parameters there are in a model, the
more difficult it is to tune the model, the more data is required, and the more site-specific
the model becomes.

• A model istransportableif the parameterizations within the model are sufficiently com-
prehensive and representative of all relevant processes that, once calibrated and validated
in one geographical area, the model can be used in any area containing the same generic
processes. This does not imply that the specific parameter values that have been chosen for
one area should remain invariant when the model is transported. However, a transportable
model should yield similar levels of accuracy in a differentgeographical area once it has
been properly calibrated.

• A model isrobustwhen it can provide similar degrees of accuracy over a wide range of
variations in the forcing functions. For instance, storm surge models are normally validated
against observations during major storm events. Nevertheless, they are expected to give
the same level of accuracy for even more extreme events (e.g., the hundred year storm) for
which no direct validation is usually possible.
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Figure B.1: Sketch showing the effect on the accuracy by including more and more complex and
sophisticated parameterizations of processes. Decreasing accuracy is shown along the vertical
axis, while increasing number and/or complexity of processes are shown along the horizontal
axis. Note that the accuracy first increases but then decreases (dashed curve) when more and
more poorly known processes are included. This is contrast to the case when the processes
included are well known and understood (solid curve).

B.3.2 The concept of a good model

With the definitions given in Section 4.1 in mind, one may think of a good model as one which

• retains a conceptual representation of the processes knownto be important,

• uses parameterizations consistent with our knowledge of those processes,

• does not use parameterizations that are so complex that the model needs to be highly tuned,

• can reproduce and/or predict phenomena over a wide range of geographical location (i.e.,
transportable), and

• can reproduce and/or predict phenomena over a wide range of differing conditions (i.e.,
robust).

These criteria differ somewhat from the commonly accepted definitions of a good model,
which may be drawn from many examples in the literature. There a good model is simply
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one which accurately reproduces a given set of field observations. However, if this has been
accomplished by tuning the model, so that it essentially fitsa narrow set of conditions, it is
no longer good since it may not accurately predict differentevents in the same area, the same
kind of events in another geographical area, or provide insight into the nature of the underlying
processes.

B.4 Quality assurance procedures

To ensure that a particularly model fulfills the requirements of a good model, it should be possible
somehow to assess its ”quality”. Ideally there should existdocumentation that reports results
from procedures or steps that have been followed to test the model’s behavior with regard to the
above definition of robustness, transportability and tuning. The idea is that it should be possible
for a third party to assess the procedures taken to ensure thequality of a particular model, and
to evaluate the results emanating from these procedures. Collectively such procedures, including
their documentation, are commonly referred to as quality assurance procedures. They are also
sometimes pragmatically referred to as model validation (Dee, 1995) reflecting the fact that the
ultimate goal is that the model should be able to reliably simulate what happens in nature.

Below follows a descriptions of three steps that taken together form the steps necessary to
construct a useful quality assurance procedures. These areloosely called

1. Model verification,

2. Sensitivity analysis

3. Model validation

Other examples of results where such procedures are attempted and/or reviewed are found in
the anthologyLynch and Davies(1995). Besides the steps reviewed here also model-model
comparison exercises helps to elucidate a models quality. Examples of the latter is found in
Hackett and Røed(1994),Røed et al.(1995), andHackett et al.(1995).

B.4.1 Model verification

Model verification is a particularly important first step in amodel development and in the quality
assurance procedures. The aim is to ensure that there are no errors in the computer coding or in
the numerical solution method. The first part entails that the computer program (or code) should
be rigorously checked by comparing the coding with the numerical algorithm chosen to solve the
model’s governing equations3. Obviously this part should be performed at an early stage inthe
model development. More often than not this is a very time consuming task, and in particular
in the case of a complex numerical model which frequently includes many tens of thousands of
lines of coding.

3The governing equations are the mathematical formulation of the physical and or biochemical processes that
are to be simulated. Commonly this is a set of coupled partialdifferential equations.
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The second part of the model verification is to ensure that there are no errors in the numerical
solution method chosen. Ideally, this can be performed by comparing the numerical solution with
analytical solutions or at least other accurate numerical solutions. However, for most problems
of a certain complexity no analytical solutions exist. Thisis simply because most processes of
interest are non-linear. Nevertheless, it is usually possible to test separate parts of the entire
model against either analytical solutions or accurately known numerical solutions. Only by this
means can confidence be established in the accuracy of the model. Note that by accuracy in
this context it is meant to which degree the numerical solution approximates the true solution of
the governing equations. Regrettably, this important stage in model development is frequently
omitted in the construction and application of many numerical models.

Additional complications arise because the methods used tosolve the governing equations
once the mathematical model is formulated are commonly wholly numerical. It is therefore a
major task to ensure that the numerical methods employed aresufficiently rigorous that the solu-
tion provided is accurate under a range of conditions. This can be particularly difficult since most
numerical solutions are prone to errors in regions where or during periods when the predicted
contaminant or any other variable in the model exhibits strong gradients (sometimes referred to as
fronts across which the variable in question experience a large or abrupt change). In some cases,
the occurrence of such a front can be anticipated, e.g., highvelocity gradients in shear boundary
layers and high concentrations gradients close to the source of a contaminant discharge. How-
ever, in many cases the occurrence of fronts or frontal structures cannot be anticipated. Fronts
may also evolve in time, e.g., a frontal structure may form within a certain time span (frontoge-
nesis) and may break down due to strong outflow or wind events and/or diffusion, but may later
reestablish at low outflow or wind conditions.

It is reasonable therefore to state that an integrated modelof a certain complexity that aims
at giving the correct solution for all times and at all locations (an ”all singing - all dancing”
model) is still in its infancy. It is also fair to state that the development of numerical techniques
and advanced supercomputing, which can provide an accuratesolution of the coupled partial
differential equations representing the processes in an integrated model is also currently in its
infancy, but fortunately fast growing.

Although the numerical model, once verified, is deemed a proper representation of the math-
ematical formulation, the mathematical model in itself maystill be a gross approximation of the
real system. Thus a model verification is only one step towardthe ultimate goal of establish-
ing our confidence in the validity of the results that the integrated model produce when used to
answer certain specific management questions.

B.4.2 Sensitivity analysis

The next step in the determination whether the chosen model accurately reproduces conditions in
the ”real world”, is a model sensitivity study. The aim of this step is to establish the predictability
power of the model. In essence there are two distinct components of the sensitivity analysis; the
first deals with sensitivity to input data and conditions, and the second involves sensitivity to the
chosen parameter values and to the parameterizations themselves.

In the first the sensitivity of the model output to variationsin the input data (usually based on
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variations in field observations) is tested accepting the model as formulated knowing that certain
terms in the governing equations are approximated and otherintricate processes reduced to sim-
ple parameterizations. The range of variations in the inputdata can be determined from a knowl-
edge of variations and estimated errors in the observed data. Such an exercise, often referred to
as an uncertainty analysis, is particularly revealing bothin terms of establishing the sensitivity
of the model and in identifying crucial field observations. If the sensitivity study reveals that
the model output is crucially dependent on the precision andaccuracy of certain measurements,
then effort must be made to reduce the error in these measurements. If for example the model
shows that representation of processes and boundary conditions at one geographical location has
a larger effect upon model output than others, then an observational program can be designed to
sample more intensely in that critical area.

The second component of the sensitivity analysis involves the various assumptions which are
made in developing the model. The major difficulty here is related to the problem of parameter-
izations of small scale processes, e.g., mixing processes in hydrodynamical and biogeochemical
models, that cannot be resolved explicitly within the numerical model (cf. Section 3). Consider,
for instance, the parameterization of mixing processes. Physically these processes are associ-
ated with the turbulent motions in the fluid. The mechanisms producing this turbulence and its
intensity is a prime example of a poorly understood process;however, they are clearly related
to larger scale physical phenomena. In this context bed roughness determines near-bed turbu-
lence, and larger scale obstructions in a river bed causes hydraulic jumps which is associated
with vigorous turbulent shocks downstream. The representation of such and similar processes in
the physical compartment of the model as well as similar processes in the chemical and biolog-
ical compartments of the integrated model (e.g., a water quality model), is particularly difficult.
They may sometimes be parameterized by a single coefficient,e.g., a diffusion coefficient as
exemplified in Section 3, or they can be represented in a hydrodynamical model by a complex
system of turbulence energy equations. In any true sensitivity study, a range of formulations pa-
rameterizations of these mixing processes must be considered. If such a sensitivity study shows
that the contaminant distribution are sensitive to the mixing formulation (which is normally the
case), then confidence limits can be placed upon the model based upon the accepted range of
parameterizations of the mixing process. In the unlikely event that a sensitivity analysis reveals
that the model is insensitive to the formulation of mixing then only the simplest formulation of
this process is required. (Naturally, similar conclusionshold in the bio-geochemical parts of
the model.) However, in reality, the major problem arising in a sensitivity analysis of an ”all-
encompassing model” model is that, in certain circumstances, results may be insensitive to one
part of the model. In other circumstances the formulation ofthis same part of the model may be
critical. Such a finding obviously leads to a conclusion that, in practice, a range of models are
required.

A conservative approach in developing an integrated model is therefore that each model only
needs to embody those processes that are essential for providing accurate answers to the specific
management questions raised. In most applications, this approach to modeling is to be preferred.
By contrast, an ”all singing - all dancing” model, designed to cover every conceivable situation,
is rarely constructed because of the requirements for immense computer power, a large body of
supporting field data, and the problems imposed in conducting a comprehensive sensitivity anal-
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ysis. The latter is particularly relevant, since the task ofeffectuating a comprehensive sensitivity
analysis is nearly open ended requiring large amounts of resources to be available, and hence is
rarely undertaken. In fact, it is often a relief to find out that a model does not have to be perfect,
all-encompassing or complicated to be useful.

When an integrated model is verified and a proper sensitivityanalysis has been executed,
some confidence in the model is definitely established. It is then ensured that the model code is
accurate, that the numerical methods are sound for the problem at hand, and that the numerical
solutions is able to reproduce known solutions, albeit in a reduced, simplified and idealized con-
text. A properly conducted (and documented) sensitivity study further increases our confidence
in the predictive power of the model and help to understand which parameters and parameteri-
zations are crucial to know with a proper certainty and whichare not. However, there is still no
confidence in that the model produces results that are valid in the sense that the model is able to
reproduce a given observational data set for the correct reasons. Thus there is still one final step
that is needed.

B.4.3 Model validation

The ultimate test of an integrated model’s usefulness is itsability to accurately predict the wa-
ter quality of a river bed, or if the management question is related to a particular contaminant,
the contaminants transport and distribution at appropriate interfaces with the effects models. At
first sight the ability of a model to reproduce a given data setwould appear to be a good guide
to its predictive capability. However, some care must be exercised in reaching this conclusion.
If a sensitivity analysis has revealed that the model is sensitive to variations of a poorly known
parameter, and a good fit between model output and observations is achieved by adjusting this pa-
rameter, then the model may legitimately be be regarded as a tuned or at least a highly calibrated
model. Ideally, such a model should be able to produce similarly accurate results under similar
conditions elsewhere; but in practice, a tuned model is probably neither transportable nor robust
in the sense defined in Section 4. A potential user of the modelshould then be cautioned and
the conditions under which the model may be applied with someconfidence should be clearly
stated, that is, be part of the model’s documentation.

The user must be aware of how extensively a model is validatedbefore it can be used. If
the model can reproduce various observational data obtained under a large range of physical and
bio-geochemical conditions without adjusting parameterizations, the model can be regarded as
transportable. It may therefore be applied with confidence over a wider range of situations.

In general, data are required both for model operation and model validation. Data used for
model operation include initial conditions, boundary conditions, source terms, and meteorolog-
ical forcing functions. One of the most difficult aspects of modeling in some fields, e.g., fjord
modeling, is how to provide a suitable description of conditions at an open boundary, that is,
conditions to apply at the boundary where the estuary meets the ocean. In particular data for
defining conditions of the hydrodynamics and contaminant fluxes between the far field and the
open ocean beyond are not always available. In the absence ofappropriate data, the only recourse
is to use simple assumptions, such as diffusion into an infinite field or periodic flow conditions
at the boundary, in order to keep the model operational.
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Ideally, model validation is achieved when the model outputcompares favorably with data
sets independent of those used during model calibration, that is, those used to tune the parameters
of the model. In the case of a complex deterministic model this could be an overwhelming task.
In theory, the predictions of the model should be compared atall appropriate levels with different
data obtained from real systems. However, this is rarely done in practice. In some cases, all or
part of the calibration data is used again in the validation.Such a partial validation, using data
from the same site and/or under similar conditions, is called model confirmation.

In the final analysis, it is crucial that independent data sets from many different regimes
is used to establish the model’s credibility through rigorous statistical tests. For example the
standard deviation between modeled and measured values gives a quantitative measure of how
well the model works. Very few validations provide this quantitative measure. Obviously, if the
observational data are very limited, then all of it is used inthe calibration stage and a model
validation and even a model confirmation is not possible until further and preferably wider range
of data sets become available.

It is also important to realize that a good validation performance does not necessarily guar-
antee that the model will accurately predict future conditions. Some uncertainties will always
remain in the model coefficients, the models variables, and the model structure itself. Therefore,
models should be subjected to post-audits in which their predictions are tested with data obtained
after an environmental control program is implemented. Thepurpose of this stage of validation
is to check whether the model reproduces the expected changes. Unfortunately, it is only in ex-
ceptional cases that a post-audit is feasible, and hence it rarely occurs. Only recently has there
been some activity in this phase of validation.

Model users must also be aware of the quality and relevance ofobservational data. Even the
best of models cannot make reasonable and accurate predictions if these predictions are based on
imprecise or inaccurate input data. Although the adage ”garbage in - garbage out” has become
common modeling jargon, it nonetheless provides an important cautionary note for potential
model users. In many cases, the underlying cause of such a situation is that data used for model
development were originally collected for a purpose other than modeling. If data collection
programs are more closely linked with modeling studies, then the constraints imposed by the
lack of suitable data can be substantially reduced. The bottom line is that there is always an
acute need for high quality, relevant data sets for model calibrations and validations.

A most difficult problem is proving that the model is robust (cf. Section 4), namely that it
can predict extreme conditions with some confidence. Since most validations data are collected
under normal conditions, they are of little value in assessing confidence in the model output under
extreme circumstances. A sensitivity analysis is then probably the most appropriate manner of
determining the value of the model under such circumstances. If corrected parameterizations
of the various processes are included in the model, and the confidence in our knowledge of
these processes is high, then the model should be reasonablyaccurate under extreme conditions.
Fortunately, extreme conditions are seldom a problem for most quality management issues.
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B.5 Summary and final remarks

This note provides some guidelines toward development of criteria whereby the quality of inte-
grated models can be assessed objectively. Discussed are three steps that are deemed necessary
to objectively establish confidence in any model aiming to answer specific management ques-
tions relating to problems involving hydrodynamic and biochemical processes. These guidelines
are referred to as quality assurance procedures, a task thatis rarely undertaken to its full extent,
mostly due to lack of data. Nevertheless, the guidelines arerecommended as the backbone in
the development of a set of objective criteria aiming at evaluating the usefulness of integrated
models for the WFD.

The first step in the quality assurance procedures is a model verification. It involves checking
the numerical code developed and the numerical solution methods used to solve the underlying
mathematical formulation of the model. The next step is to perform a model sensitivity anal-
ysis. The aim of such an excercise is to establish which parameters and/or parameterizations
are critical to know accurately under what conditions. Sometimes these parameters are tuned to
make the model match a certain given observational data set.However, if this involves tuning
of critical parameters, the model’s predictive skill is poor in the sense that the model probably
fails when used under different conditions. The final step isto perform a model validation which
aims at establishing a measure of how the model output compares with observational data. In
this it is important that the data set exploited consist of measured data collected under different
conditions than the data used to calibrate the model, that is, the data used to determine the mod-
els parameters and parameterizations. If not the exercise is not a true model validation, but is
classified as a model confirmation activity.

In the above the concept of a good model is introduced. A good model is one which can be
used in any area containing the same generic processes (transportable model) and one which can
provide similar degree of accuracy under a wide range of conditions (robust model). It should
be emphasized that this does not imply that all models have tobe good models to be useful.
Also highly tuned models may be useful under certain conditions. However, these underlying
conditions should be clearly stated and be transparent to potential users.

Finally, the description above is general in nature becausethere are so many processes and
interaction between processes which must be formulated andparameterized to construct a useful
integrated model for even the simplest specific management questions. Thus there is a general
feeling that to develop and apply routinely an ”all singing -all dancing” model to give answers to
specific problems would be too expensive and too complicated. This is why there exist a plethora
of models from the simplest box type models to the most expensive three-dimensional models.
Most models are in one way or another tuned to the local river basin, lake or fjord situations and
the problem at hand.

Given the above it is likely and probably sound that there exist a wide range and number of
integrated models that can potentially be used to answer management questions regarding the
WFD. Fortunately, many of the existing models use standard formulations and parameterizations
that are well proven and/or widely accepted by the international community. The important
message here is that anyone who offers a model as a tool to answer a specific management
question or problem for a potential user should also providedocumentation of the quality of
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the offered model, that is, provide documentation of the quality assurance procedures that has
been followed and the results thereof, so that the potentialuser objectively can assess the models
quality and suitability. Hence the bottom line is that any integrated model that is offered for use
as a management tool within the WFD must be able to document its quality in the sense described
above. This is the only means whereby it can be applied with some confidence.
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