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PREFACE

Solving problems in Meteorology and Oceanography on coerpuising numerical methods
consist of five phases:

1. Develop a numerical analogue of the continuous mathenhgtioblem

2. Write, compile and run a computer code (usually writterFartran 90/95 or 2003) on a given
computer based on the numerical analogue constructedgdahiase 1 and file the results

3. Visualize the results derived in Phase 2
4. Verify that the results you get are what you instructedctbraputer to provide

5. Perform an evaluation of the results to satisfy yoursedf ethers that the numerical solution make
sense in terms of the inherent physics of the problem

Phases 3, 4, and 5 are part of what is referred to as Qualityr&sse procedureSESAMR
1991;Lynch and Daviesl995;Rg@ed 2014). These procedures have four steps:

1. Debugging to check that the code has no formal errors, and that theisaitue replica
of the numerical analogue

2. Calibration - to specify appropriate numbers for parameters and caafticiappearing in
the parameterizations, also referred to as tuning

3. Verification- to check the results against whatever is known about tleesolution. This
may be an analytic solutions, solutions to simplified equrej specified benchmark solu-
tions, or your own feeling about what the results should Ik

4. Validation- to check the results against observations, for instanaive the forecast had
any skill

These exercises are a companion to the GEF4510 Lecture Mdategspheres and Oceans
on Computers: Fundamentals”. Students following the céassrequired to submit at least
four of these exercises for evaluation and approval. Thedatany problems replace the mid
term exam. Moreover, the problems must be approved befersttiient is allowed to take the
(oral) exam. The number of problems are continuously antade changed to adjust to the
GEF4510 Lectures. Although only four problems are requioedtudents following the lectures
in GEF4510, | strongly encourage to solve as many of the problas possible in order to get
the necessary hands-on experience and insight into thelfageg of numerical modeling listed
above. While the lectures in GEF4510 gives detailed insigothow to develop and construct
finite difference analogues to the continuous mathemaficedulation of the governing equa-
tions, that is, Phase 1, experience and training in the famaining phases can only be achieved
by getting your fingers dirty.

Finally, | would like to thank the many colleagues who hastdboted to the development
of these exercises over the years, and to the many studerisifding out misprints and other
mistakes.



This version is for the fall 2016. Good luck!

Blindern, November 28, 2016
Lars Petter Rged (sign.)
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1 PROBLEM SET: TRUNCATION ERRORS

1 Problem set:
Truncation error in arecursion formulawith two terms

All student are strongly recommended to do this problemjtbatnot mandatory. The rationale
is that

1. it is simple enough to enable you to refresh your knowleafgeortran and your Fortran
skills without having to write lengthy codes, and

2. itdemonstrates the dramatic consequences of the peestimsignificant truncation errors
always present in numerical computations.

a.
Let
m = 4arctan(1l), Z; = w, andS; = 7. Q)
Compute
Ziyn=31Z; =217, andS; 4, = (g—) S; — (;l—) Si (2)

for j = 1(1) N. Compute also theelativeerror, that is,

A
€ = JHZ- J (3)

J

for eachj. Write 7, Z;, S; and the relative errog; in percent. The output should be readable
and self explanatory, e.g., should have headings for eddmeo Do the problem on different
platforms (from handhelds to portables, PCs and superctarg)lavailable to you. Experiment
by using 1) different constants in the recursion formuldgj@ible and single precision, and 3)
different numbers of iterations (use at ledst= 1000). Does it impact the results?

b.

Show analytically why the recursion formulas 6y and.S; actually should diverge from. If
one or both of the recursion recursion formulas does norge/eumerically explain why.



2 PROBLEM SET: VERTICAL DIFFUSIVE MIXING

2 Problem set: Vertical Diffusive Mixing

In the ocean and atmosphere the vertical (and horizontal)d»ehange is dominantly a turbu-
lent process, commonly commonly parameterized as a diffusiocess. Hence the governing
equation in its simplest form is

op + 0, F =0, (4)

wherey = ¢(z,t) is the potential temperaturejs the vertical coordinate,is time andF’ is the
vertical component of the diffusive flux vector.
In its simplest formF’ is parameterized as a down-the-gradient diffusion, thatsis

F=—k0.v, (5)
wherex is the diffusion coefficiedt From (4) we then get

Note that since the exchange is due to turbulent mixingecomes a function of space and
time. In this exercise we assume that the diffusion coefficieis a constant. Under these
circumstances (6) reduces to

Oh = KOZP. (7)

We underscore that can be any active tracer like temperature, humidity andisglor a passive
tracer like CQ.

We will solve (7) numerically for two applications. The fiistassociated with mixing in the
atmosphere, while the second is associated with mixingerottean. The mixing or diffusion
coefficient in the two spheres are dramatically differerglavely speaking all oceanic motion
is slow compared to the atmosphere. This is also true ragamixing. In fact the mixing
coefficient in the ocean is a factop—* less than in the atmosphe®ill, 1982).

We assume that the two spheres are contained between two:fiesdls. At these levels
(7) is replaced by relevant boundary conditions. Regarthiegatmosphere we assume that the
bottom level is located at = 0, while the top levelz: = H is at the top of the planetary
mixed layer. For the ocean application the top level is th#ase atz = 0, while the bottom
level, = = —D, is at the base of the oceanic mixed layer. Thus the atmaspplanetary
boundary layer is contained me< 0, H >, while the oceanic mixed layer is contained within
z €< —D,0 >. We will assume that height of the atmospheric boundaryrlesy& = 270m,
and that the oceanic boundary layeris= 30m deep.

In both cases we will seek the numerical solution for titme [0, NA¢] with N = 1201.
Here At is the time step andV is the total number of time steps. Furthermore weHelD =
(Jmaz —1)Az whereAz is the space incrememnd.J,,,., = 27 is the total number of grid points
including the two boundary points at the bottom and top vel

LIn three dimensional spadé becomes a vector and (4) becondgs + V - F = 0 in which case the diffusive
flux vector is parameterized &= —D - Vi, whereD is a tensor, that isD = k,pini, form =n=1,2,3.
2Also commonly referred to as the mesh or grid size.
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2 PROBLEM SET: VERTICAL DIFFUSIVE MIXING

a.

Develop a numerical scheme (or finite difference approxmntthat is forward in time and
centered in space for (7). Show that the derived schemebtestader the conditiodX < 1,

where At
K
K=7xrz (8)

b.

Next develop a finite difference approximation for (7) tretentered in both time and space,
and show that this algorithm is unconditionally unstabla mumerical sense.

C.

Let K = 0.45, k4 = 30 m?*s!, andkp = k4 - 107, respectively. Compute the time steps you
will have to use for the atmospheric and oceanic applicatioespectively. The time steps are
vastly different. Discuss why this is so, and its possiblessguences.

d.

Consider first an atmospheric application. We assume thatlipthe temperature distribution
is sinusoidal in height as shown in the left-hand panel otiFedL, that is,

¥(2,0) = dosin(F), =€ [0, H] ©)

wherey, = 10°C. Furthermore we let the temperature at the bottom levedydace): = 0 and
the top levelk: = D be fixed at the freezing point for all times, that is,

0(0,8) = ¥(D,t) = 0°C V4. (10)

Use the stable forward in time, centered in space schemdopeeunder itena. to find
the numerical solution to (7) for two cases; one with= 0.45 and a second witli = 0.55.
Plot the results fon. = 0, 100, 200, 600, and1200 in which the height and temperature are made
dimensionless by dividing through by andv), respectively.

Derive the analytic solution to (7) given the initial condit (9) and the boundary condi-
tions (10). Assess and discuss the solutions by comparagumerical and analytic solutions.
Explain in particular why the solution fak = 0.55 develops a “saw tooth” pattern.

e.

Consider next an oceanographic application. In this casasseme that the initial condition is

¥(2,0)=0°C, ze€[-D,0], (11)



2 PROBLEM SET: VERTICAL DIFFUSIVE MIXING

Initial temperature distribution Surface boundary condition
th0=10 degrees Celsius, D=100 m tc = 6 days, th0=10 degree Celsius
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Figure 1. Left-hand panel displays the initial temperatlistribution according to (9), while the
right-hand panel shows the time evolution of the surfaceperature according to (12) and (13),
respectively.

throughout the water column. Thus the initial conditionhs trivial solution to (7). In contrast
to the atmospheric application the diffusion process iegaed by letting the ocean surface be
heated from above. Specifically, we let the boundary coowliéitz = 0 increase from zero to
a fixed temperaturé, = 10°C after some finite time. This can be achieved either by Igtie
boundary condition be specified according to

Lo 0<t<t
o te ) c
vo=un{ P IS (12
wheret. = 6 days determines how fast the surface temperature reash@saittemperature,
(cf. the right-hand panel of Figure 1), or by using a hypeari@ngent (a good function), that is,

t
(0, ) = g tanh(Z—) (13)
wherey = 1.5 together witht. determines how fast the temperature approaches its fingetem
ature (cf. the right-hand panel of Figure 1). At the bottonthef ocean mixed layer = — D the
temperature is fixed at the freezing point. Thus

(=D, t) = 0°C (14)

Again choose the time step so thiat= 0.45. Plot the results fon = 0, n = 100, n = 200 and
n = 400. Use either (12) or (13) as your surface boundary condition.

Assess and discuss the solution. In particular you are askeampare the solution with the
steady state solution to (7), that is, the solutiort as oo given the above initial and boundary
conditions.



3 PROBLEM SET: VERTICAL MIXING IN A COUPLED ATMOSPHERE-OCENM

3 Problem set: Vertical Mixingin a coupled
Atmosphere-Ocean

We will investigate the evolution of the temperature, §3yin a coupled atmosphere-ocean
model in which the only active process is heat diffusion bstigal mixing, all other motion and
processes being inhibited. Thus the the temperature igigeddy the internal heat equation. In
its simplest form, neglecting radiation and all other pblessources and sinks it becomes

T + 0.F =0, (15)

whereF' is the vertical component of the diffusive heat flux due tdtlent mixing, and is the
vertical coordinate. As is common we parameterize the heatf$ Fickian diffusion, that is,

F=—k0.T, (16)

wherex is the eddy diffusivity or mixing coefficient. Since the eddyfusivity is a property
of the motion rather than the fluid, it normally varies in tiswed space. Nevertheless, we will
assume it to be constant. We note, however, that it is vagthrent in the two spheresill,
1982), the ocean being sluggish compared the atmosphefagctinegg = 10~*x4 as given in
Table 1, wherex 4 is associated with the atmosphere agdwith the ocean.

Your task is to solve (15) for the time spanc (0,7]. In this we assume that the atmo-
sphere and the ocean span the vertical spaeé— H, D], whereD and H are considered to be
constants, and €< 0, D > spans the atmospheric boundary layer (ABL) and< —H,0 >
spans the oceanic mixed layer (OML) so that 0 is the location of the interface between them.
Values forD and H are given in Table 1.

To avoid heat to accumulate at the interface between the plierss we require that the
oceanic heat flux toward’s the interface is balanced by thsgpheric heat flux away from the
interface. Any imbalance implies that ice is formed at therface. Similarly we require that the
temperature itself is continous at the interface. Thus

Fo=Fy4 and To=T4 at z=0, (17)

where subscriptl, O refers to the atmosphere and ocean respectively. Furtmerwm fix the
temperatures at the bottom of the OML and top of the ABL to lspeetivelyls andT’r, where
Ts andT’r are given in Table 1. Thus we require

To=Ts ; z=—H, (18)
TA = TT , &= D. (19)

Finally we let the temperature initially be constant andadiue temperature at the bottom of the
OBL everywhere except at the top of the ABL where (18) prevdihus

Tx(2,0) =Tp(2,0)=Tg . —H<z<D, (20)
Tu(D,0)=Tp : z=D. 1)

5



3 PROBLEM SET: VERTICAL MIXING IN A COUPLED ATMOSPHERE-OCENM

Symbol | Description Value Unit
k4 | Atmospheric diffusion/mixing coefficient 30.0 | m?s™!
Ko Oceanic diffusion/mixing coefficient 3.01073 | m?s!

D Height of ABL 270.0 m
H Depth of OML 30.0 m
Tr Temperature at the top of ABL 0.0 °C

Ty Temperature at the bottom of the OML| 10.0 °C

Table 1: Parameter values used in this Problem set

a.

Please explain why we need exactly the specified number afdsoy and initial conditions in
space and time as given by (17) -(21)7?

b.
Show that the stationary solution to (15) satisfying therimary conditions is

T:{—%A(z+H)+TB —H < z<0, (22)
—vko(z—=D)+Tr 0<z<D,
where Ty T

Y= m- (23)
C.

Develop a numerical scheme, using finite difference apprakons, that is forward in time and
centered in space (an FTCS scheme) to replace the contisqaations (15) for the two spheres.
Show that the derived scheme is stable under the conditions % andKp < % where

HAAtA
AZ?

At
and KO = % (24)
O

Ky =

Here At 4 and At are the time steps of the atmospheric and oceanic partgatesgy, while
Az, andAzp are the respective space increments.

d.

Let j4 = 1(1)J4 + 1 denote the counter in the atmospheric part gnd= 1(1).Jo + 1 the
counter in the oceanic part, whejg = 1 is associated with = 0 andj, = 1 is associated with



3 PROBLEM SET: VERTICAL MIXING IN A COUPLED ATMOSPHERE-OCENM

z = —H. Thus the interface is associated with= Jo+1. Show that under these circumstances
D= J,Azy andH = JpAzp, and hence that the ratio between the time steps is

AtA . KoKA (AZA)2 . KoKA (DJ0)2

= 25
Ato KAKO AZO KAKO HJA ( )

e.

Let us for a moment assume that there is an equal amount opgitds in the two spheres,
that is,J4 = Jo = J, and thatK, = Ko = K. Use (25) and the numbers given in Table
1 to show that under these circumstanggs < Atp, that is, the time step you have to use
for the atmospheric part is much less than the for the oceaanic Please discuss why there is
such a difference in the time steps, and the possible coesegs it has in terms of physics and
numerics under the condition that = 0.45.

f.

Next let us assume thdf, = K, = K = 0.45, but thatJ, # Jo. If we let Aty = Atp then
Azo # Azy, and if we letAzp = Az, thenAtp # At . From a numerical point of view it is
advantageous to €kt 4, = Aty. Please explain why.

g.

Next letAt, = Atp andJo, = J4 = J. Show that under these circumstances
KO IioDQ
20 _ 26
KA HAH2 ( )

Does K, satisfy the sufficient condition for stability? Please diss possible implications re-
garding the growth factor.

h.

Use the FTCS scheme you developed under éerto find the numerical solution to (15) that
satisfies the initial and boundary conditions. Solve for weses; one stable case in which
K4 = Ko = 0.45 and a second unstable case in which = K, = 0.55. For both cases let
Aty = Atp = At, J4 = 28 andJp = 301. The latter implies thaf\zo = 0.1m. For the stable
case please plot the vertical distribution of the potemdiadperature at the time levels= 0 (the
initial distribution),n = 50, n = 500, n = 5000, n = 50000 andn = 500000. For the unstable
case please plot the distribution for the time levels 0, n = 10, n = 20, n = 30, n = 40 and

n = 50. Compute the time in hours for each case and include a legénéigure 2).

Please keep the scale along the axes in the two cases sodhatrtherature range 8 €
[T, Tr] and the depth/height range is € [—H, D]. Preferably the plot should show the
height/depth along the vertical axis and the temperaturegathe horizontal axis as shown in
Figure 2, which conveniently shows the results for the stabbe.

7



3 PROBLEM SET: VERTICAL MIXING IN A COUPLED ATMOSPHERE-OCENM

Temperature evolution: Coupled atmosphere-ocean model

270

240

Depth/height in m

Case: Stable, Dirichlet condition at top

T

210

T =J_ F——F————>—J] 1 T T T T T T

i[— nitial

. n=50, 1.25 min

{| =+ n=500, 12.5 min

| n=5000, 125 min

¢ | -=+ n=50000, 1250 min
n=500000, 12500 min

.30 PR I
-1

Temperature in deg C

Figure 2: Depicted is the initial temperature distributesrtording to (20) and the time evolution
of the vertical temperature profile for five time levels asdiprogresses.

I
Assess and discuss the solution. In particular you are agskedmpare the solution with the

steady state solution (22), that is, the solutiort as oo given the above initial and boundary
conditions. Explain in particular why the solution fary = 0.55 develops a “saw tooth” pattern.

I
What happens if the upper boundary condition is changed toflux condition, that is,

FA|Z:D - _KAaze|z:D = 07 (27)
oro.0 = 0atz = D? Solve for this case and plot the vertical potential tentpeeadistribution in
this case. Asses the the solution by comparing it to the fosakition with a fixed temperature
condition at the top of the ABL.



4 PROBLEM SET: YOSHIDA'S EQUATORIAL JET CURRENT

4 Problem set: Yoshida'sequatorial jet current

Like Yoshida(1959) we consider an “infinite” equatorial ocean consgstiri two immiscible
layers with a density differenc&p (Figure 3). The density of the lower layer equals the refegen
densityp,. The lower layer is thick with respect to the upper layer. iAtet = 0 the ocean is
at rest, at which time the thickness of the upper layer eqtaksquilibrium depthH. At this
particular time the ocean is forced into motion by turningeowesterly wind (wind from the
west).

A
z
T
e

L 1T — = —_ — — ~— z=0
h(x,y.t)

I

P AP u
— =] - == — —=— z=H
Po
= >

Figure 3: Sketch of a reduced gravity ocean model consisfibgo layers with a density differ-
ence given byAp.

The governing equations of such a “reduced gravity” modéhefocean, is

xT

-
Ju— Pyv = ] (28)
o+ Pyu = —glﬁyh (29)

oh+Hopv = 0 (30)

Hereu = u(y, t) andv = v(y, t) are the respectively the east-west and north-south comp®ne
of the velocity in a Cartesian coordinate systémy, z) with = directed eastward along the
equator,y directed northwards witly = 0 at the equator, and directed along the negative
gravitational direction as displayed in Figure 3. The imtmdi¢he Earth’s rotation is given by the
Coriolis parametelf = 22 sin ¢ wheref2 is the Earth’s rotation rate angis the latitude. The
westerly wind is given by the wind stress componehtwhich is fixed in time. Furthermore,

9



4 PROBLEM SET: YOSHIDA'S EQUATORIAL JET CURRENT

we define the reduced gravity gy = g(Apo/p) Whereg is the gravitational acceleration. The
instantanuous thickness of the upper layer is giveh by h(y, t).

Note that at the equatgf = 0 and that it increases with increasing latitude. A simplified
parameterization of this effect is through the so caligalane approximation,

f=py, hvor B=20,f|,=. (31)

We note thes is just a measure of the first term in a Taylor seried @it the equator. Thus it
represents the first order effect effect of the impact of thenge in the Earth’s rotation rate with
latitude.

Part 1:

a.

Show that the inertial oscillatidris eliminated by neglecting,v in (29).

b.
Show that the system of equations (28) - (30) reduces to thearny differential equation
L48§U — % = aly (32)
where
c T
L= -, a= y €= 'H 33
\/; pofLH I (33)

under the condition that the inertial oscillation is eliratiad.

C.

Explain why we are allowed to specify two boundary condiiolm the following we will assume
that they are|,—o = 0 andv|,_,, = 0.

d.

We make (32) dimensionless by letting= Lg, (u,v) = a(i,9), andt = (3L)"'t. Use the a
direct elliptic solver, e.g., Gauss elimination, to sollke timensionless expression of (32). Let
Ay = 0.1 and ploto and# at timef = 1 as a function ofj) from ¢ = 0 to § = 8. We note
thatv|,_,.. = 0 and hence that is different from zero afj = 8. Explain how make use of the
condition that|,_,~, = 0.

3An oscillation in which the frequency equals the inertigiduencyf.

10



4 PROBLEM SET: YOSHIDA'S EQUATORIAL JET CURRENT

e.

Discuss the numerical solution. Let = 0.1Pa, 3 = 2. - 107 (ms)™1, L = 275km, p =
10%kgm =2 and H = 200m. What is the maximum current in the equatorial jetfer 1?

f.

Solve (32) analytically. Hint: Make a series using Hermmtiolynomials (se for instance
Abramowitz and Stegui965).

11



5 PROBLEM SET: ADVECTION IN THE ATMOSPHERE AND OCEAN

5 Problem set: Advection in the Atmosphere and Ocean

Since tracers such as temperature, salinity and humidgyalaecisive impact on the dynamics
of the atmosphere and ocean through its influence on theysesdsstribution through density,
advection (transport) of these tracers is of zero order mapce to get correct.

Moreover, transport of contaminants in the ocean and atheyspis one crucial element
when discussing environmental issues. For instance esnssif radionuclide in one location
are transported via atmospheric and oceanic circulatittenps to quite other locations. Other
examples are transboundary advection of chemical sulegtanch as sulfur (mostly atmosphere)
and nutrients (mostly ocean). In the ocean advection pseseare also of crucial importance
regarding search and rescue, oil drift, and drifting olgjéetg, fish larvae, rafts, man overboard,
ship wrecks, etc.)

Commonly all transport and spreading of the above are geddoy an advection-diffusion
eqguation, say

o+ V- (vip) =V - (kVY) (34)
wherey is the concentration of the tracer,s the three-dimensional wind or current vector and
r is the mixing or diffusion coefficient. We note that commotiig transport is associated with
the advection part of (34), while the spreading is assagiaith the mixing part of (34). While
the mixing was exemplified in Computer Problem #s 2 and 3 wedam the advection part
here. Thus we will neglect the mixing part in the remaindetha$ problem except in the very
last question.

To make the problem as simple as possible, but no simpleredgce the advection problem
to one dimension in space. Furthermore we let the advecfieadsbe constant, say = Ai,
whereA is a constant. Thus we will consider numerical solutionfeodquation

Ot + uoduth = 0 (35)

with appropriate boundary and initial conditions. To thisleve will make use of three schemes,
namely thdeapfrog schemeaheupwindor upstreamscheme and thieax-Wendroffscheme.

Part 1. Analysis

a.

Show that the three schemes are numerically stable und@Rbeondition

At

whereC' is the Courant numbef\z is the space increment anxt is the time step.

b.

Show that a forward in time, centered in space (FTCS) finitierdince approximation applied
to (35) results in an unconditionally unstable scheme.

12



5 PROBLEM SET: ADVECTION IN THE ATMOSPHERE AND OCEAN

C.

Show that the upwind scheme inherently includes a numediffakion with a diffusion coeffi-
cients given by

%|u0|Ax(1 e (37)

where(' is the Courant number given in (36).

d.

Initially we let

x

2
¥(x,0) = oe (7)1 i € [~o0,00], (38)
at timet = 0. Herev) is the maximum tracer concentration ands a measure of the width of
the bell. Thus the larger is, the wider the bell is.
Under these circumstances show that the analytic soluti¢d3) is

r—ugt

(e, 1) = e (). (39)

Part 2: Numerical solutions

We now solve (35) numerically. In this we use (38) as the ahitiondition. However, as is
obvious, we have to limit our domain to a finite domain, sag [—L, L]. We note that these
boundaries are artificial and hence that the governing equé5) are valid at the two bound-
ariesr = —L andz = L as well as in the interior domain € (—L, L). These boundaries are
therefore open boundaries in the sense that the solutioningoeded there.

In accord with the analytic solution we note that the peakhef bell at the times” =
2mL/|ug| is positioned at: = 2mL, wherem = 0(1)N. Hence if we map the analytic solution
forx € [2n—1)L,(2n+1)L]; n = 1,2,...0ntox € [—L, L] the solutions are all on top of
each other. Numerically we mimic this by imposing a so catleclic condition requiring

U(x,t) = Y(x + 2L, 1). (40)

Thus whatever leaves the interior domaincat L then immediately shows up at the left hand
boundaryr = —L.

In the following we will investigate the evolution in time ofo initial Gaussian bell func-
tions. The first is a wide bell with; = % while the second is a narrow bell with, = %
For both cases we &tz = 1—100—1, which properly resolves the wide bell, but not the narroll. be

Furthermore we lef, = 50 km.

e.
Letz; = —L+ (j — 1)Az for j = 1(1)J + 1. Show that
2L
J = AL (41)

13



5 PROBLEM SET: ADVECTION IN THE ATMOSPHERE AND OCEAN

Advection: Wide bell case
C=0.5, Leapfrog scheme

T

— Initial 1
-—- Half cycle 1
Onecycle| !
-—. Two cycles
-- 5cycles
10 cycles | ;

Figure 4: Displayed is the solution for the wide bell casengghe leapfrog scheme with a
Courant number equal one half (C=0.5).

f.

Furthermore, show that the numerical analogue of the cholimdary condition (40) is

Vi =) for j=1(1)---, (42)
and that the numerical analogue of the initial condition) (38

—L4+(j—1)Ax

zﬁzwwﬁ—ff—f for j=1(1)J + 1. (43)

g.

Solve (35) using the leapfrog, upwind/upstream and Lax-dkffih schemes subject to the condi-
tions (42) and (43). Stop the computations after 10 cycles,is, when the peak of the bell has
traversed ten times the distanzkb. Do one experiment with the Courant numléér= 0.5 and
another withC' = 1. Please also feel free to experiment with other Courant mauﬂ'%b< C<1
and other space incrementse. Plot the solution after 1/2, 1, 2, 5 and 10 cycles togethén wi
the initial tracer distribution for each of the two Couranimber values. Lump the plots for the
concentration as a function of distance into one plot fohesaheme, that is, six curves on each
plot, as exemplified in Figure 4.

14



5 PROBLEM SET: ADVECTION IN THE ATMOSPHERE AND OCEAN

h.

Discuss the solutions based on the plots. What charactdheesolution as it evolves in time?
Which of the solutions are diffusive and which are dispeBiwVhat are the characteristics of
these processes?

I
Use the Semi-Lagrange method to explain why the upstreamiiidp scheme is perfect when

C = 1. Also show that under these circumstances all higher orderenical "diffusion” terms
for the upwind scheme are zero.

15



6 PROBLEM SET: FLUX CORRECTION METHODS

6 Problem set: Flux correction methods

We continue to consider numerical solutions to the adveaiuation (35) in which the advec-
tion speed is not necessarily a constant. Writing the adweeguation in flux form we get

9,0 + 0y (ub) = 0 (44)

wheref is the tracer fraction.

To solve (44) we consider a non-staggered grid as shown ur&ig with a grid distance of
Ax. Furthermore we consider using the scheme

ot =0y — (K~ FL). (45)
whereF7" is given by

T o . n n 1 At
Fi =3 [ + 1) 07 + (ufsy — |ujpl) 0744] Az’ 9

Q: #-points — : u, F-points

© S/ ©
j—1 J Jj+1

Figure 5:Displayed is the cell structure of lattice A bfesinger and Arakawél976) (non-staggered) in
one space dimension. The circels are associatedaapibints, while the horizontal bar is associated with
u- and F-points within the same cells counted using the couptefhe distance between two adjacent
#-points (and hence alse and F-points) areAz.

Part 1:

a.

Show that (45) is, a first order scheme in time and shace

b.
Show that the scheme (45) is stable under the condition
ult At
max | — <1, 47)
jim Ax

where we have assumed that the velocity is slowly varyingacs, that isy}, ; ~ u.

4Hint: Do the analysis fou] > 0 andu] < 0 separately.
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6 PROBLEM SET: FLUX CORRECTION METHODS

C.
We now assume that = u, is a constant. Under these circumstances show that the sqdé&n
has a numerical diffusion with a diffusion coefficiefitgiven by

1
a— §\u0|(Ax — |ug| At). (48)

Part 2:

We observe that there are two integration constants, oneednd one in space. Thus to solve
(44) we need to specify one boundary condition in time (tlitgaincondition) and one boundary
conditions in space.

In what follows we assume that the initial tracer distribatis a Gaussian bell given by

2:07L)2

0o = Ope~ (*= (49)
wheref, is the maximum tracer fraction,is a measure of the width of the Gaussian bell &nsl
a length specifying the position in space for which the traoatration is maximumu( = L/2).
As in Computer Problem Set 3 on page 12 we assume that the dliatrébution is cyclic within
the ranger € [0, L].

d.

We will now solve (44) forz € (0, L] numerically using the scheme (45) within the time range
t € (0, 00) assuming that the initial condition (49) prevails for 0. Leto = L/10 and the space
increment beAx = ¢ /10, 6y = 10°C, ug = 1m/s andt,, = nAt wheren is the time counter and
At is the time step. Furthermore |Bt=50km. Plot the results aftér(initial distribution), 5, 10,
15, 20, and 25 cycles.

Describe and discuss what you observe by comparing thetewolf the tracer distribution
with the initial tracer distribution. Explain what happens

e.

According toSmolarkiewic1983) it is possible to counteract the inherent numeridaision
in the scheme (45) by adding a correction term to (44), th&tyisolving the equation

0,0 + 9, [(u + u*)8] = 0. (50)

rather than (44). The velocity* is the so calle@nti-diffusive velocitylefined by

. 0,0/ , 6>0
u—/-c{o C9<o (51)
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6 PROBLEM SET: FLUX CORRECTION METHODS

Smolarkiewicz named his method the Multidimensional RasiDefinite Advection Transport
Algorithm or MPDATA method.

Solve (50) using the MPDATA method, that is, the predictorrector method. Use first
the iterative method with at least two steps, then the simq@thod of scaling the anti-diffusive
velocity. Let the parameters and initial condition be asantR, itemd.. When scaling use a
scaling factor ofS. = 1.3. When computing the anti-diffusive velocity use a centearespace
finite difference approximation, and ensure that you adduggested bmolarkiewic£1983),
a small numbet = 101 in the denominator.

f.

Why do we have to add the small numledo the denominator?

g.

Make experiments varying the scaling fact)r Try out other finite difference approximations
to the anti-diffusive velocity. Discuss the results.

18



7 PROBLEM SET: GEOSTROPHIC ADJUSTMENT

7 Problem set: Geostrophic Adjustment

One of the most important and strongest balances in the atmeos and ocean, confirmed over
and over again by observations, is geostrophy. When therfioidon is in geostrophic balance
we have a balance between the Coriolis acceleration andéssyre forcing, that is,

1 1 1
fk xu, = —%VHp, or vy = E&Ep, Ug = —wﬁyp, (52)
wheref = 2(Q)sin ¢ is the Coriolis parametek is the unit vector along the verticalaxis, u, is

the (horizontal) geostrophic velocity with componenjsv, along ther-axis andy-axis, respec-
tively, po is the densityVy = i0, + jo, is the horizontal component of the three-dimensional
del-operator, ang is pressure. Note that (52) contains three unknowns, namely, andv,,

but only two equations. Hence the solution is undetermir@aly by specifying one of them,
say the pressung can we find the two other variables.

A fundamental question is therefore how the atmosphere aedmoactually adjust from an
unbalanced state to one in geostrophic balance undergrawis problem, coined geostrophic
adjustment (under gravity), was first raised by Carl GustasdRy back in the 1930sRossby
1937, 1938), and is nicely summarized Bjumen(1972) and Gill, 1982, Chapter 7, Section
7.2, page 191). Itis the background for this computer proble

As usual we make the problem as simple as possible, but ndesimphus, we consider
the one-dimensional (1-D) shallow water equations for phigpose. It conveniently serves the
purpose of illustrating the wave-modes of the solution,rtile of initial conditions and the use
of an open boundary condition (FRS).

We recall that the shallow water equations assumes a hwdi®$alance and hence that
p = pogh, whereh is the geopotential height. Thus the governing equatioriggrently non-
linear, are

oh = —Vg-(hu), (53)
ou = —fkxu—u-Vyu—gVyh, (54)

where the Coriolis parameter j5 = 1.26 - 10~*s™! (corresponding to its value at 89). As

is common we may regar as the geopotential height of a pressure surface in the ptreos
and as the depth of a water column in the ocean. The equitibnieight of~. in the atmosphere
is associated with a pressure surfacex0§00hPa, while the equilibrium depth in the ocean is
commonly= 1km.

SCarl-Gustaf Arvid Rossby (1898 - 1957) was a Swedish-U.Seorelogist who pioneered explaining the large-
scale motions of the atmosphere in terms of fluid mechanicssiBy came into meteorology and oceanography
while studying under Vilhelm Bjerknes in Bergen in 1919, whBjerknes’ group was developing the concept of a
polar front (the Bergen School of Meteorology). His hamesisogiated with various quantities and phenomena in
meteorology and oceanography, e.g., the Rossby numbesbiResadius of deformation, and Rossby waves.
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7 PROBLEM SET: GEOSTROPHIC ADJUSTMENT

Part 1:

a.

Show that by introducin@J = hu andh = h as new variables then (53) and (54) become

Oh = —Vy-U, (55)
Uu 1

b.
Show that (53) and (54) may be combined to yield the vortiegyation

(O, +u-Vy)P, =0, (57)
whereP, is the potential vorticity defined as

_ ¢t/
Pv_Ta (58)

where inturn{ = k - Vg x u is the relative vorticity.

C.

Let us assume that the motion is independent@f, = 0). Show that under these circumstances
(53) and (54) reduces to

oth = —ud,h — ho,u, (59)
ou = fu—udu— go.h, (60)
ov = —fu—udv, (61)

and show that the steady state solution to (59) - (61) theng@smogeostrophic balance and given
by

u=0 and v= %&Ch. (62)

d.

Utilize (57) and (62) to show that the steady state solut@miBB) - (61) is a solution to the
ordinary differential equation

2
agh—@h: S (63)
g g

whereP,, = P, (z) is the initial distribution of the potential vorticity.
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7 PROBLEM SET: GEOSTROPHIC ADJUSTMENT

T =T,

Figure 6: Depicted is the initial geopotential height acog to (64).

e.

Let us assume that the initial condition is one at rest, aatittie geopotential height is given by
a Heaviside function, that is,

u=v=0, and h=H,—sgnz —x,)AH at t=0,Vz (64)

where sgfw) = +1if ¢» > 0 and sgifiyy) = —1 if ¢ < 0 (Figure 6). Show that under these
circumstances the solution to (63) is

1— 2 5 fr < T,
h=Hy+AH M e : (65)
—1+)\+f\e R | I A
—FAy

where)\; = % g(Ho ¥+ AH) is Rossby’s deformation radius, and whéfg= 1000 m, AH =

15m,u, = 0 ms™!, andz,, = D/2 is the middle point of the domain of lengfh. Is the height
anomalyh — H, negative or positive at = x,,,? Discuss the solution.

f.

If you were to solve the system (59) - (61), how many boundaxy iaitial conditions do you
have at your disposal? Explain how you derived the numbeownditions.

Part 2:

We will solve the system (59) - (61) using numerical methadsaflimited domain: € (0, D).
To this end we need boundary conditionscat 0, D and initial conditions at time = 0. We
assume that the motion is started from one at rest and whergeibpotential height (or ocean
surface) is given by (64).
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7 PROBLEM SET: GEOSTROPHIC ADJUSTMENT

o

Construct a CTCS (leapfraog) scheme to solve (59) - (61).cillis in some detail how you
derive the various terms. Explain your choices. Add a fikeretmove the two gridlength noise
(cf. the Lecture Notes).

h.

Is the CTCS scheme consistent? Derive under what condsditimg scheme you have constructed
is stablé. How long time step\t may be used?

I
Construct a Semi-Lagrange scheme to solve (59) - (61). ibesicr some detail how you derive
the finite difference analogue and the choices you make.

J.
Let the grid length beé\z = 100km andD = 62Ax and solve the above equations numerically
using first the leapfrag (CTCS) scheme and then the Semiabggrscheme you have constructed
for the domainc € (0, D). Assume that the variables v, and/ retain their initial values at the
boundariess = 0 andx = D.

Plot i hourly, including the initial time, for the first 10 hours.d®hlso the solution after 300
hours. Discuss the solutions. Try to make a movie spanning), 300]hrs. What kind of waves
do you observe?

K.

Repeat the above computation using the the FRS method tothedlanner solution towards the
externally specified valuds, o, 1) = (0,0, Hy+AH) atz = 0 and (4, 0, h) = (0,0, Hy— AH)
atz = D. Let the buffer zone be seven points wide where the relaxgi@mamete; is as given
in Table 2.

Compare the two solutions, for instance by plotting thesdé@hce between them, and discuss
any differences. Also compare the two solutions to the stetate solution you derived in item
e. Explain and discuss any differences you observe.

Compute the geostrophic component of the velocity

_9
v, = fﬁzh (66)

SHint: We always neglect the non-linear terms when perfogine stability analysis.
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7 PROBLEM SET: GEOSTROPHIC ADJUSTMENT

Aj J
1.0 Jmaz
0.69| jour — 1
0.44| joow — 2
0.25| jour — 3
0.11 | s — 4

-5

—6

0.03| jimas
O'O jmaa:

~NOoOURWN P

Table 2: Values of the relaxation parameter used in Parefyjit The left-hand column refers
to thej numbers in the left-hand FRS zone, where- 0 corresponds tg = 1. The right-hand
column refers to the right-hand FRS zone where D corresponds t9 = j,,4z-

using the solution for, att = 6 hours. Compare, andv at¢ = 10 hours and describe and
discuss what you observe. What do you think have happened?

m.

Finally, replace the initial condition and boundary corafis forv in (64) by one in geostrophic
balance, that is,

U:§@m. (67)

whereh, is the steady state solution displayed by (65). Redo the atettipns and discuss the
solutions you get.
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8 PROBLEM SET: PLANETARY WAVES

8 Problem set: Planetary waves

One of the most important and strongest balances in the atmeos and ocean, confirmed over
and over again by observations, is geostrophy. When therfioidon is in geostrophic balance
we have a balance between the Coriolis acceleration andéssyre forcing, that is,

1 1 1
Jk xu, = —%VHp, or vy = E&Ep, Ug = —wﬁyp, (68)
wheref = 2(Q)sin ¢ is the Coriolis parametek is the unit vector along the verticalaxis, u, is

the (horizontal) geostrophic velocity with componenjsv, along ther-axis andy-axis, respec-
tively, po is the densityVy = i0, + jo, is the horizontal component of the three-dimensional
del-operator, ang is pressure. Note that (68) contains three unknowns, namely, andv,,

but only two equations. Hence the system is underdetermi@aty by specifying one of them,
say the pressung can we find the two other variables.

A fundamental question is therefore how the atmosphere aedmoactually adjust from an
unbalanced state to one in geostrophic balance undergrawis problem, coined geostrophic
adjustment (under gravity), was first raised by Carl GustasdRy back in the 1930sRossby
1937, 1938), and is the background for this computer probksrusual we make the problem as
simple as possible, but no simpler. Thus, we consider thedomensional (1-D) shallow water
equations for this purpose. It also conveniently servegtipose of illustrating solution modes,
the role of initial conditions and the use of an open boundandition (FRS).

We recall that the shallow water equations assumes a hwdim$alance and hence that
p = pogh, Whereh is the geopotential height. Thus the governing equatiorierently non-
linear, are

oh = —Vyg-(hu), (69)
ou = —fkxu—u-Vyu—gVyh, (70)

where the Coriolis parameter j5 = 1.26 - 10~%s! (corresponding to its value at 89). As

is common we may regarid as the geopotential height of a pressure surface in the ptmos
and as the depth of a water column in the ocean. The equitibinieight of~. in the atmosphere
is associated with a pressure surfacex0900hPa, while the equilibrium depth in the ocean is
commonly= 1km.

"Carl-Gustaf Arvid Rossby (1898 - 1957) was a Swedish-U.Seorelogist who pioneered explaining the large-
scale motions of the atmosphere in terms of fluid mechanicssiBy came into meteorology and oceanography
while studying under Vilhelm Bjerknes in Bergen in 1919, whBjerknes’ group was developing the concept of a
polar front (the Bergen School of Meteorology). His namesisogiated with various quantities and phenomena in
meteorology and oceanography, e.g., the Rossby numbesbiResadius of deformation, and Rossby waves.
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8 PROBLEM SET: PLANETARY WAVES

Part 1:

a.

Show that by introducin@J = hu andh = h as new variables (69) and (70) become

Oh = —Vgy-U, (71)
Uu 1

b.
Show that (71) and (72) may be combined to yield the vortiegyation

(O, +u-Vy)P, =0, (73)
whereP, is the potential vorticity defined as

_ ¢t/
Pv_Ta (74)

where in turn{ = k - Vy x u is the vorticity.

C.

Let us assume that the motion is independent@f, = 0). Show that under these circumstances
(69) and (70) reduces to

oth = —ud,h — ho,u, (75)
ou = fu—udu— go.h, (76)
ov = —fu—udv, (77)
and (71) and (72) reduces to
oh = —0,U, (78)
v o1,
U = fV -0, 7+§gh (79)
oV = —fU-0, (U_}Z/) : (80)

Part 2:

We will solve the shallow water equations using numericathods for a limited domain €
(0, L). To this end we need boundary conditions at 0, L and initial conditions at time = 0.
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8 PROBLEM SET: PLANETARY WAVES

We assume that the motion is started from one at rest in whiglg¢opotential height (or ocean
surface) is perturbed. Thus the initial conditions are

u=v=0, and h(x,t)=Hy+ Ae_(%fm)2 (81)

whereH, = 1000 m, A = 15 m, z,,, = L/2 is the middle point of the domain, ands a measure
of the width of the Gaussian bell.

d.

How many boundary and initial conditions are you allowedpecdfy when solving the system
(75) - (77)? Explain how you derived the number of conditions

e.

Under itemg. andh. you are asked to solve the shallow water equations usingrelile system
(75) - (77) or the system (78) - (80). To this end adopt a CTG®m®e, and describe here in
detail how you derive the finite difference approximatiorthe various terms. Explain your
choices.

f.

Under what conditions is the scheme stable? Describe inl tieta you analyzed the stability
and the consistency of the schéimdow long time step\t can be used? Explain your choice.

g.

Solve either the system (75) - (77) or the system (78) - (80)guthe CTCS scheme you have
constructed for the domain € (0, L). Assume that the variables retain their initial values at
the boundaries = 0 andx = L. Further, let the grid length b&z = 100km, L. = 62Az and
o = 5Auw.

Ploth at timet = 0, 1.5, 3.0, 4.5, 6.0 and10.0 hours. Discuss the solution. Try to make a
movie spanning < [0, 10]hrs. What kind of waves do you observe?

h.

Repeat the above computation using the the FRS methodngléhx inner solution towards an
externally specified solution given iy, v, fz) = (0,0, Hp). Let the FRS or buffer zone be seven
points wide within which the relaxation paramefgrvaries in the two FRS zones as given in
Table 3.

Compare the solution to the one you obtained performing éinepeitation in itenyg., for in-
stance by plotting the difference between them. Explaindiscliss any differences you observe.

8Hint: Neglect the non-linear terms when performing the iitgtanalysis.
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8 PROBLEM SET: PLANETARY WAVES

Aj J
1.0 Jmaz
0.69| Jiaz — 1
0.44| jaz — 2
0.25| Jimaz — 3
0.11] jiae — 4

-5

—6

0.03| Jimax
OO jmaa:

~NO 01D WN RS

Table 3: Values of the relaxation parameter used in Part 2.

I
Compute the geostrophic component of the velocity

2@:%@h (82)

using the solution foi, at¢ = 6 hours. Compare, andv att = 6.0 hours and describe and
discuss what you observe. What do you think have happened?

]
Finally, replace the initial condition far in (81) by

v = %Bxh. (83)

and repeat the computation of itdm using (83) as initial condition. Discuss the solution by
comparing it to the solution obtained through itermabove.
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9 PROBLEM SET: ROSSBY WAVES

9 Problem set: Rossby waves

The response of the atmosphere an ocean consists in masyatasgious types of waves. One
important distinct type of wave response is the barotrogisdRy wavd_aCasceg2009). These
waves are unique in the sense that their phase velocity isvaes while their group velocity
is eastward. Since the energy of the waves propagates véatgrtiup velocity it implies that
the waves tend to die out as they propagate westward. Anottigue feature is that the phase
velocity or wave speed depends on the rate at which the Eatatgon changes with latitude.
Hence the wave speed decreases with latitude. ConsequbketiRossby waves are hard to
observe at high latitudes.

The equation governing these waves is derived from the difsotropic shallow water
equation, that is,

du+ fkxu = —Vgo, (84)
Oy + céVH u = 0, (85)

with the additional assumption that the motion is effedyivddvergence free. Thus we get
¢ + 8Oy = 0, (86)

wherey is the streamfunction, that is, = k x Vgv and{ = k- Vy x u is the vorticity. The
constant3 = 2 - 10~ (ms)~! represents the first order effect of the impact of the changes
Earth’s rotation rate with latitude, that is, the first dative in a Taylor series expansion of the
Coriolis parametef with respect to the latitudg, viz.,

F@) = fly=o + By =) + O ([y — wl*) where 5=0,fl,—,. (87)

Here we will solve the one-dimensional version of (86) by edical means. Thus the gov-
erning equation we solve is

8, (6%0) + Bd = 0. (88)
Part 1. Analysis

a.

Show that (88) follows from (84) and (85) and discuss underabsumption under which it is
correct. For instance, what physics are neglected?

b.

Show that the wave solution '
¥(x,t) = Re {Ae"*=)} (89)

is a is solution to (88), whereis the phase speed ands the wavenumber. Note that A is an
imaginary number so that the solution may be written

= A, cosa(r —ct) — A;sina(x — ct), (90)
whereA, = Re {A} isthe real part oA and A, = Im { A} is the imaginary part ofl.
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9 PROBLEM SET: ROSSBY WAVES

C.

Show that the phase speedf the Rossby wave is
c=——. (92)

and that the group velocity, is
cg = —C. (92)

d.

How many boundary/initial conditions must be specified idesrto solve (88)?

e.

Before we solve (88) numerically within the finite domaine< 0, L > we make it non-
dimensional. Show that by choosing a typical time scalergiwe

T = BLL (93)

the non-dimensional version of (88) becomes
O (o) + 00" =0, ; Vz'e<0,1>, (94)

or
O (3) + 0,0 =0, ; Vre<0,1>, (95)

where we have dropped the stars for clarity.

Part 2: Numerical solutions

We will experiment with three different initial distribuwins for the streamfunction, namely a
simple wave, a more complex wave and a Gaussian distriuhanis,

sin ar the simple wave
Y]y—o = ¢ sinazcosar more complex wave (96)
z 2 . . . N
e (%) Gaussian distribution

wherea is a finite, non-dimensional wavenumber different from zerdo = 0.001 is a measure
of the (narrow) width of the Gaussian bell. Let= 2mmr, m = 2 for the simple and more
complex wave. We note that the latter makes 0 atx = 0 andx = 1 at timet = 0.

To solve (95) we first splitit in two, that is,

¢+ 0pth =0, (97)
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9 PROBLEM SET: ROSSBY WAVES

and
do = ¢, (98)
where( is the non-dimensional vorticity. We note that to solve (8l (98) properly the space

incrementAx must be chosen small enough to resolve the dominant waves giy96). Next
the time incremenf\¢t must be chosen so that the stability condition is satisffeahy.

d.
Show that for a monochromatic wave the non-dimensional \speed is
1

wherea is the non-dimensional wave number of the monochromatiewav

e.

Construct a CTCS scheme for (97) and (98) that results in phicéx consistent, neutral and
conditionally stable scheme, and derive the condition tfalpifity.

f.

Solve (97) and (98) within the domaine< 0,1 > using the CTCS scheme constructed under
subsectiore. using the three initial conditions (96) and appropriatertmary condition. Explain
why two boundary conditions are needed in space and showathaiimic an infinite plane one
of them have to be the periodic boundary condition, that is,

Y(x,t) =v(x+ 1,t). (100)
Let the second boundary condition be the radiation conditizat is,
oY +cop=0 at z=0, (101)

where c is a non-dimensional wave speed given. Note thah&two monochromatic waves in
(96) the non-dimensional wave speedan be calculated using (99). Note thas not specified
when using the initial Gauss distribution. In this cassill be a function of time and must be
calculated by numerical means for each time $tep

g.

Plot the solution in a Hovmdller diagram in thet space withr along the horizontal axis and
t along the vertical axis. Verify your numerical solution ading off the wave speed from the
Hovmoller diagram and check it against the true wave speesghgn (99).

9Hint: Use the conditiod;¢ + ¢0,¢ = 0 to calculate: at the left-hand boundary.
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9 PROBLEM SET: ROSSBY WAVES

h.

Solve (97) and (98) using the CTCS scheme but this time wiltlosed domain. Show first that
a closed domain requires that

v=0 at =0 and z=1. (102)

Plot the solution as a function af, ¢ using a Hovmadller diagram as in item Discuss the
differences between the solutions with open and closed damies respectively by comparing
the two Hovmoller diagrams.
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10 Problem set: Storm surges

We consider below the storm surge problem. The purpose iaitbaxperience in constructing
numerical solutions to geophysical problems that includeenthan one dependent variable.

The water level of the ocean changes due to three main facteos one it responds to
the astronomical forcing which gives rise to the well knovdak phenomenon, a deterministic
periodic response in the water level. Next the water leviiénocean changes due to the forcing
exerted by the atmosphere through wind stress and sea lesdyse. This phenomenon is
referred to as the storm surge response and its associatedl@eel change is referred to as the
storm surge. From time to time the joint occurrence of higkegiand high storm surges can lead
to devastating high water levels even along the Norwegiastc@®ne such example is from mid
October 1987 where the water level in Oslo Harbor reachesi hé&ers above normal sea level.
More examples are given @jevik(2009). Finally the water level of the ocean may change due
to expansion by heating. This latter is a concern with reg@aaimate change in that the water
level rises under global warming.

To secure life and property many countries early on develbpecasts services for tides and
storm surges. As numerical ocean models were developed iatih 1960s and early 1970s one
of the first models that were developed was in fact numericalets to forecast storm surges and
tides. For instance the National Oceanography Centerrhoa, UK (formerly the Proudman
Oceanographic Laboratory) was founded in the late 1960srexést tides and storm surges in
British waters, and has since then been one of the leaditiguiinens within this field. Since the
late 1970s and early 1980s also the Norwegian Meteorolbigisétute has developed numerical
models to forecast sea level changes due to storm surge&gdasdising numerical models de-
veloped through the work ddjevik and Rged1976),Martinsen et al(1979) andRged(1979).

Many of the earlier studies of storm surges, including thjasereferenced, have shown that
the storm surge is mainly a barotropic response. To coris&rigtorm surge model we may
therefore use an ocean in which we assume the density to staobin time and space. The
equations therefore reduce to the well known shallow wajaaegons. Let

C(z,y.t)
U(z,y,t) = / u(z,y, z,t)dz, (103)

—H(J?7y)

with componentgU, V') along thez, y-axes, respectively, be the transport of water in a water
column of depthh = H + ( where( is the sea level deviation away from the equilibrium depth
H (see Figure 7). Then the shallow water equations are

QU+ V- (h'UU) + fkx U = —ghVu(+py'(Ts— 1), (104)
Oh+Vy-U = 0. (105)

wherer, and T, are respectively the wind and bottom stresses with compsernieh 7¢) and
(¥, 7), g is the gravitational acceleration apglis the (uniform in time and space) density. The
Coriolis parameter ig = 22 sin ¢ where(? is the Earth’s rotation rate angis the latitude.
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10 PROBLEM SET: STORM SURGES

Figure 7: Sketch of a storm surge model along a straight czasteniently showing some of the
notation used.

We observe that the second term on the left-hand side and$h&efim on right-hand side of
(104) are non-linear terms. The main effect of these terms gget the interaction of tides and
storm surges correct. In many instances this effect is sanadl in the remainder we will neglect
them.

To make things even simpler we will also look for solution lod storm surge problem in the
presence of a straight coast along thaxis as sketched in Figure 7. Under these circumstances
we may also neglect terms containing derivatives with resfoey, that is, we le, = 0. Thus
through linearization and negligence of variations witspect toy we get from (104) and (105)
that

at(]_ fV = _gHaxh+pal(T§ _Tg)v (106)
oV + fU = pH(ry — 1), (107)
oh+0,U = 0. (108)

It is also safe to neglect the variation with latitude in tfffee of the Earth’s rotation. Thus we
may safely assume that the Coriolis parameter is constaimaand space. In the following
we will also assume that changes in the equilibrium depthsarsmall thatd to a good ap-
proximation can be considered as being constant as wellisthae letHH = H, whereH, is a
constant.

In summary (106) - (108) allow us to investigate linear, gii@bnd numerical solution to the
storm surge problem along a straight coast assuming a fledrboflo this end we will assume
that the initial condition is an ocean at rest and in equililor. Furthermore we will assume that
the coast is impermeable, that is, the natural boundaryittondhere is no flow through the
coast. Otherwise the domain is unlimited, and hence we as¢hem far away from the coast the
solution approaches the Ekman solution € 0).
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10 PROBLEM SET: STORM SURGES

Part 1:

We first look for analytic solution to (106) - (108) so as to l®eato verify our numerical
solutions (Part 2 below). However, even this simple syst&hard to solve analytically. So we
will simplify the problem even further. Nevertheless, weyrstll use it for verification purposes.

a.

Show that (106) - (108) follows by linearizing (104) and (10&der the assumption that changes
in the equilibrium deptHd are insignificant and thatU|? < |U|.

b.

Let the cost be located at= 0 with the ocean extending infinitely in the negativelirection.
Explain why the Ekman solutidfiis the natural open boundary condition to use there. Show
that mathematically the condition is tantamount to

h=H or 0h=0 at z— —oco Vi (109)
Show also that the condition of no flow through the coastat0 is
U=0 at z=0 WVt (110)
and that the initial condition may be formulated as
U=V =0, h=H, at t=0 Vaz. (111)

C.

Show that the inertial oscillations, that is, solutionst thecillates with the inertia frequengy
are avoided if we neglect the ter@l/ in (106).

d.

Let us assume that there is no bottom friction, thatjs= 7 = 0 and that there is no wind stress
in thez-direction ¢7 = 0). Show that under these assumptions, and the assumptio® thés
small compared to the Coriolis acceleration, the motionglihe coast (in thg-direction) is in
geostrophic balance. Furthermore, show that the analgtitisens to (106) through (108) under
these assumptions are

U = Ug (1—ei), (112)

V = ftUgeTr, (113)
tUp =

ho= H(1 o 114

( T ) (114)

10The Ekman solution is the solution we get when solving thadstestate version of (106) through (108) assuming
thatd, = 0 and7 = 7/ = 0.
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10 PROBLEM SET: STORM SURGES

whereLr = /gH/f is the Rossby radius of deformation and

Ty

Up = —=,
Epof

(115)

is the Ekman transport.

e.

To investigate the effect of bottom friction solve (106)abgh (108) analytically under the as-
sumptions that? = 0, 7¥ = py R, and that the termd,U in (106) can be neglectéd

f.

Plot the analytical solutions @f, U andV derived unded. ande. in ax — t diagram. Such a
diagram is often referred to as a Hovmoller diagram.

g.

What changes are introduced to (106) through (108) if thegbs in the equilibrium depth
are significant?

Part 2:

In this part we investigate numerical solutions to (106ptlyh (108) under the assumption that
the depth is constanf{d = H,). Furthermore we let the parameters appearing in (106utfiro
(108) be

g = 1oms?', =0, 7Y=01Pa p,=10°kg/n?, f=10""s",

Hy = 300m, 7= pORHQO, ) = ,OORHKO, R=24-10"m/s
if not explicitly deviated.

Since one of the spatial boundary isxat+> —oo the domain is infinite. On the computer,
however, the domain has to be finite, that is, we have to sepdmputations at a finite distance
away from the coast, say = —L. Then a boundary at — —oo is tantamount to saying that
L is large compared to some typical dynamical length scalé@fproblem. We note that the
boundary at: = — L is an open boundary. Thus the equations (106) through (X@&ti#l valid
there, and we have to construct a condition that does nadteithem.

1Hint: Make use of Laplace transforms.
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h.

Show that the dominant length scale in this problem, in faccafl shallow water problems, is the
Rossby radius of deformatiabz. Show that by assuming > Lz then we may safely assume
that the dynamics are independent:oénd hence that the natural open boundary condition is
therefore to let the solution approach the Ekman solution-at— L.

h.

Construct a centered in space and forward-backward in tehensé? on a staggered B-grid.
The B-grid is the one dimensional version of lattice BMésinger and Arakawél976) (page
47). Thus we assume that thie andV -points are staggered one half grid length with respect to
the h-points as sketched in Fig. 8.

O: h-points + : U, V-points

O +]0 +|0O +
j—1 5  j+1

Figure 8: Displayed is the cell structure of lattice BMésinger and Arakaw#1976) in one
space dimension. The circels are associated k¥jpoints, while the horizontal bar is associated
with U-points and the vertical bar withi-points within the same cells. The sketched staggering
is such that the distance between adjadepbints andU, VV-points are one half grid distance
apart.

I
Show that your scheme constructed under itens neutrally stable under the condition

At < Ar (116)

- / 2
Co 1 + <2AL—:;>

using von Neumann’s meth&tland where;y, = \/¢gH. Discuss under which the simpler condi-
tion C' < 1, whereC' = ¢y At/Ax is valid. Is the scheme dissipati’@

2Forward-backward in time means that as soon as one depevatéitle is updated (in time) we use these
values when updating the other dependent variables.

3Hint: When analyzing the instability neglect all forcingréss) terms.

Y¥Hint: To analyze the dissipation analyze the growth factor.
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]
Show that your scheme constructed under itens consistent.

K.

Solve the storm surge problem (106) - (108) numerically mgkise of your scheme constructed
under itemh. and the parameters listed including the bottom stressesogei\x so thatAr <
Lg, sayAz = Li/10. Explain why this choice is so important.

I
Plot the numerical solution of the dependent variahlds andV” in a Hovmodller diagram. Com-

pare the numerical solution with those derived analytycafiderd. ande.. Discuss differences
and similarities.
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11 Problem set: Methods of characteristicsapplied toa non
linear systems

We now solve the non-linear, rotating shallow water equretid 04) on page 32 using the method
of characteristics as outlined in the appendiRefed and’'Brien (1983) (cf. Problem set: Storm
surges on page 32). This solution method is also associdathdhve semi-Lagrangian method
explained in the Lecture Notes (Chapter 6: “Non-linearatiofy shallow water equations”). In
this we will assume that the variables are only dependenneriralepent variable in space, that
is, we letd, = 0. Furthermore we note th&l = hu, and that the pressure term in (104) may be
written ghd,.h under the assumption of a constant equilibrium depth.

a.
Show that if we define = /gh then (104) may be rewritten to yield the compatibility edoas

Dy TS — T Diz
2c) = —~=——> alon 117
5 (u+ 2) fv+ h 9 — (117)
D; TS — T Dix
—2c) = =2 alon 118
5 (U= 2) fv+ h 9 — (118)
Div TV — 1/ Dix
= — <2 alon 119
it Jut =2 9 (119)
where the operatorgi;f—’?’ are defined as
¥ D7, .x
1,2,3 1,2,3
)<y _ a ? aI? 120
dt ‘ dt (120)
and where the characteristic equations are
dltx =u-+c, thx =u—c¢, and d:f = u, (121)
respectively®
b.

Solve (117) - (119) numerically using the method of charésties with fixed space increments
Az and time stepg\t. Disregard the wind- and bottom stress and look for solstions > 0
assuming that the initial condition at= 0 is given by

hli—o = H + AH tanh(kx), uli—o = v]j=o =0 (122)

The solution domainis € < —1L,1L > where the two boundaries at= +1L are open
boundaries. Furthermore we let= 10/L, AH = H/2, H = 100 m andL = 2000 km. As

open boundary condition we recommend to use the gradiewmlitomm or the “Flow Relaxation
Scheme” (cf. the Lecture notes Chapter “Open boundary tiond).

Hint: The problem is non-linear and hence the charactesistie not straight lines. Since we utilise fixad
and At they may from time to time cross the previous time level algsf the domain bounded by;_; on the
left-hand side and;; on the right-hand side. Remember to check whether this isadhe before interpolating.
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11 PROBLEM SET: METHOD OF CHARACTERISTICS

C.

Display the solution in graphical form by plotting the timen&ution of i, u, v, as isolines in the
x,t space (Hovmagller diagram).
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12 PROBLEM SET: UPWELLING IN THE BAY OF GUINEA

12 Problem set: Upwellingin the Bay of Guinea

In their pioneering worlddamec and O’Briei1978) showed how an observed coastal upwelling
event in the Bay of Guinea that was not forced by the local vdodld be explained by wind
events in the western equatorial Atlantic, and hence bytswemoved far away from the bay
itself. The observed upwelling was puzzling because it@mdgt be explained by local wind
forcing, which was the prevailing explanation of coastalafiing phenomena at the time.

Their starting point was that the Russian research vessePRésat, that was located on the
Equator about 0°W observed a significant and unexpected drop in the sea sudatperature
(SST)beforethe seasonal upwelling in the Bay of Guinea was about to. stdr¢y also noted
that the time difference between the two observations wetsajoout right for an internal Kelvin
wave to travel from the location of the research vessel tdBine of Guined®. They therefore
hypothesized that the observed upwelling event in the B&yuihea was remotely forced by an
equatorial trapped, upwelling Kelvin wave generated byesgure disturbance in the western
part of the equatorial Atlantic. Once created it would ttaaastward across the Atlantic basin
towards the African coast, where it transforms into two taldaternal Kelvin waves, one prop-
agating northward and a second propagating southward. ditleward propagating one would
then after some time hit the Bay of Guinea causing an upvge#irent as the wave passed by.
To support their hypothesdsdamec and O’Brieff1978) performed an experiment using a fairly
simple, linear and numerical ocean model.

The objective is to reproduce the solutionsAafamec and O’Brier§1978). What they did
was to simulate the equatorial Kelvin wave using a lineaduced gravity model. Thus the
governing equations we will solve are,

Bu + Byk x u+ ¢'Vh = piH + AV, (123)
oh+ HVg-u = 0, (124)

whereVy = id, +jd,, # = 107! is the change of the Earth’s rotation with latitude (thplane
approximation)g’ = Ap/p is the reduced gravity wherp = 2kg/m?.

The computational domain they used is an idealized remditiohe Atlantic basin as sketched
in Figure 9. The basin is 5000 km long and stretches 1500 kimtadorth and south of the equa-
tor. The presence of the African continent is in the form oéetangular box 2000 km long and
1000 km wide protruding into the basin from the northeashepof the basin.

To solve (123) and (124) we use an Arakawa C-grid of meshs&ize- Ay = 25km with the
x-axis pointing eastward along the equator andtaeis pointing northwards. Initially the ocean
is at rest and in equilibrium with an upper layer equilibrigiepth of H = 50m. The density
difference between the upper and lower layehjs= 2kg/m’. Use a time step of maximum 1/8
day. Furthermore let the eddy viscosity Ae= 10°m?/s, and let the simulation span at least 120
days.

A motion is forced by applying a wind stress on the surfaceigiglayed in Figure 10. The
stress is pointing westward (from east towards west) so agvupwelling at the equator.

®This is actually the same mechanism that is the basis for tkglamation of the EI Nifio phe-
nomenon in the Pacific OcearHirlburt et al, 1976). For details on El Nifio confer the website
http://www.coaps.fsu.edu/lib/Florida_Consortiumf@nnks.shtml.
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1500

0 e

Bay of Guinea

-1500 2000 5000

Figure 9: Sketch of the model domain for which (123) and (124) to be solved. Numbers
along axes are in kilometers.

A
Ty 2000 km
|
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I I
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|
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Figure 10: Displayed is the distribution of the zonal wingtss component in the zonal direction.

Furthermore it is limited to act in the western part of theibasly. Thus the wind stress is,

T;‘:—To{%:_z Siﬁig v =0. (125)
wherery, = 0.025 Pa,a = 1500 km andb = 2000 km. We observe that there is no wind stress
acting in the north-south direction, and that it does nonhgeawith latitude, but depend on the
longitude such that it is zero eastof= 2000 km.

In the finite difference approximation to (123) and (124) wse w CTCY or leapfrog
scheme. To avoid instabilities due to the diffusive term wgy the Dufort-Frankel scheme for

these terms. The diffusion terms allows us to specify a iqpesindition at the walls. Thus at the

"CTCS - Centered in Time, Centered in Space.
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_AZE'_
| | |
k41
O —10 —10 —
| | | |
k Ay
O —10 —10 — |
| | |
kE—1
O —10 —10 —
J—1 ¥ j+1

Figure 11: Displayed is the spatial grid and grid cells we tossolve (123) and (124) by nu-
merical means. The grid increments dxe, Ay, respectively in ther, y directions. There is a
total of / + 1 x K + 1 grid cells along the:- andy-axes, counted by using the dummy indices
J, k. The coordinates of the grid points are= (j — 1)Az andy, = (k — 1)Ay, respectively.
Circles, (O), correspond tlo-points, horizontal dashes;§, to u-points, and vertical lines|) to
v-points.

solid walls both velocity components are zero. To make 0 along the eastern (and western)
boundary we make use of so called mirror points outside obthendary as sketched in Figure
12. By letting the value of in the mirrored point equals the value @fust inside the bound-
ary, the linearly interpolated value at the boundary itbelfomes zero as required. A similar
approach is used at the northern and southern boundarieskiexnequal zero there. We notice
that the physical (real) boundaries goes through the peovhtre the normal to the boundary
velocity component are located. Thus the eastern and wdsteindaries goes throughpoints,
while the northern and southern boundaries goes threuygbints. With this configuration the
coastlines fall exactly half way between the points wherecampute the velocity component
along the boundaries.

a.

Construct the finite difference approximation (FDA) to (128d (124) using the required scheme
as alluded to above and write it down.
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| | | B, +1
O —]10 —10 —
|
By
O —_—
|
B, -1
O —_—
B, +1

Figure 12: Displayed is the cells necessary to account ®nthslip boundary conditions at the
walls. The walls are drawn as heavy solid blue lines. Herasplayed the right-hand corner
located in the idealized Bay of Guinea (Figure 9). The thedks @long ther-axis are numbered
B, — 1, B, B, + 1, respectively, while along thg-axis the three cells are numbergg — 1,
B,, B, + 1, respectively. The notation otherwise is as in Figure 11teNbat the five cells
(B, +1,B,—-1), (B, +1,By), (B, + 1,B, + 1), (B,,B, + 1) and B, — 1,B, + 1) are outside
of the land-sea boundary, that is on land. To account for thaslip boundary condition of no
velocity at the walls we mirror the along wall velocity conmamt across the walls. Thus for the
Ve|0City pOintS shown we |ath+1By_1 = —UB,B,-1 andqu_lByH = —UB,—1B,-

b.

Why is it permissible to use the diffusive, dissipative amcbinsistent Dufort-Frankel scheme for
the FDA of the diffusion terms? What are the advantages?dixplow you would construct a
scheme that is forward in time and centered in space andtstiile.

C.

Construct a graph displaying contour lines of the thickriessationAh = H — h after 10, 50
and 100 days and with a contour intervabofi. Furthermore, construct a similar graph showing
the velocities of the upper layer at day 50.
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d.

Next construct a graph showing the thickness deviation imenibller diagram. Let the vertical
axis be the time axis ranging from 0 to 120 days, and let thiztwotal axis be 6000 km long. Let
the first part run along the equator from= 2500 km to z = 5000 km, the next 500 km along
the eastern boundary north of the equator, the next 2000 &ngdhe southern coast of Africa,
and the last 1000 km along the north-eastern boundary (Wesj

e.

Use the Hovmoller diagram to estimate the phase speed ofdlvinkvave and compare it to the
analytic one entering the governing equations. Discusesthdt.

f.
Solve the non-linear version of (123) and (124), that is,
du+u-Vyu+ fyk x ut ¢Vgh = piH + AV2u, (126)
oh+Vyg-(hu) = 0, (127)

and plot the results in a similar manner as for the linear.daseuss differences and similarities.

h.

Finally, construct an animation (movie) displaying theskn as well as the nonlinear results.
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