

Two-way nesting Lars Petter

Introduction

Principles o two-way nesting

Simple case: Advection of a 1-D bell distribution

Staggered grids

Realistic case California Current System

Conclusions and final remarks

# Two-way nesting: Principles and examples

Lars Petter Røed

Norwegian Meteorological Institute

larspr@met.no

February 3, 2016

#### Overview

#### Two-way nesting

- Lars Petter Røed
- Introduction
- Principles o two-way nesting
- Simple case: Advection of a 1-D bell distribution
- Staggered grids
- Realistic case California Current System
- Conclusions and final remarks

- 1 Introduction
- 2 Principles of two-way nesting
- 3 Simple case: Advection of a 1-D bell distribution
- 4 Staggered grids
- 5 Realistic case: California Current System
- 6 Conclusions and final remarks

#### Literature

#### Two-way nesting

Lars Petter Røed

#### Introduction

Principles o two-way nesting

Simple case: Advection of a 1-D bell distribution

Staggered grids

Realistic case: California Current System

Conclusions and final remarks

- Blayo and Debreu, Ocean Mod., 2005: OBCs based on characteristics
- Penven et al., Ocean Mod., 2006: One-way nesting,
- Blayo and Debreu, Springer, 2006: Nesting Ocean Models
- Debreu and Blayo, Ocean Dyn., 2008: Two-way embedding algorithms
- Debreu, et al., Comput. Geosci., 2008; AGRIF: Adaptive Grid Refinement In Fortran),
- Debreu, et al., Ocean Mod., 2012, Two-way nesting in ROMS-AGRIF

### Present situation at MET Norway

Two-way nesting

Lars Pette Røed

#### Introduction

Principles o two-way nesting

Simple case: Advection of a 1-D bell distribution

Staggered grids

Realistic case California Current System

Conclusions and final remarks

#### Triply one-way nested system:

- Running Arctic20 (A20) with FOAM at OBs
- Feeding A20 results into Nordic4km (N4)
- Feeding N4 result further into NorKyst800 (N800)



|                                                     | Sketch of | fsituation |   |    |   |  |
|-----------------------------------------------------|-----------|------------|---|----|---|--|
| Two-way<br>nesting                                  |           |            |   |    |   |  |
| Lars Petter<br>Røed                                 |           |            |   |    |   |  |
| troduction                                          |           | Parent     |   |    | Ω |  |
| rinciples of<br>vo-way<br>esting                    |           |            |   |    |   |  |
| mple case:<br>dvection of a<br>D bell<br>stribution |           | Child      | ω |    |   |  |
| aggered<br>ids                                      |           |            |   |    |   |  |
| ealistic case:<br>alifornia<br>urrent<br>vstem      | l         |            |   | '' |   |  |
|                                                     |           |            |   |    |   |  |

and final remarks

Ir

Two-way

nesting

#### Staggered grids

Realistic case: California Current System

Conclusions and final remarks

# The problem

The governing equations:

$$\partial_t q = \mathcal{L}[q]$$
 (1)

Examples are the 1-D, non-linear shallow water equations:

$$q = \begin{bmatrix} u \\ v \\ h \end{bmatrix} \text{ and } \mathcal{L} = \begin{bmatrix} -u\partial_x & f & -g\partial_x \\ -f & -u\partial_x & 0 \\ -h\partial_x & 0 & u\partial_x \end{bmatrix}$$

or the advection equation

$$q=\psi$$
 and  $\mathcal{L}=-u_0\partial_x,$ 

or ROMS governing eqs. Note: (1) are to be solved for both domains.

.

#### Discretization

Two-way nesting Lars Petter

#### Introduction

Principles of two-way nesting

Simple case: Advection of a 1-D bell distribution

Staggered grids

Realistic case California Current System

Conclusions and final remarks Discretized on the parent and child domains

$$\left[\partial_t q\right]_p = \mathcal{L}_p[q_p] \quad \text{and} \quad \left[\partial_t q\right]_c = \mathcal{L}_c[q_c],$$

 $\mathcal{L}_p$  and  $\mathcal{L}_c$  are the same discretizations of the continuous operator  $\mathcal{L}$ , but at <u>different</u> resolutions.

**Example:** Advection equation (upstream scheme):

$$\mathcal{L}_{p} = -u_{0} \frac{\tilde{\psi}_{j_{p}}^{n} - \tilde{\psi}_{j_{p}-1}^{n}}{\Delta x_{p}}$$
$$\mathcal{L}_{c} = -u_{0} \frac{\tilde{\psi}_{j_{c}}^{n} - \tilde{\psi}_{j_{c}-1}^{n}}{\Delta x_{c}}$$

 $\hat{\psi}_{j_p}$  and  $\hat{\psi}_{j_c}$  are  $\psi$  at parent respectively child grid points  $j_p, j_c$ .

# Grid configuration

#### Slice through interface

Parent

Two-way nesting

#### Principles of two-way nesting



Ω

### Grid configuration

Refinement factor  $i_r = \frac{\Delta x_p}{\Delta x_c} = \frac{\Delta t_p}{\Delta t_c} = 3$ 



#### Introduction

Principles of two-way nesting

Simple case: Advection of 1-D bell distribution

Staggered grids

Realistic cas California Current System

Conclusions and final remarks



### Numerical problem

Solve

Two-way nesting Lars Petter

Introduction

Principles of two-way nesting

Simple case: Advection of a 1-D bell distribution

Staggered grids

Realistic case California Current System

Conclusions and final remarks  $[\partial_t q]_{\rho} = \mathcal{L}_{\rho}[q_{\rho}] \text{ and } [\partial_t q]_{c} = \mathcal{L}_{c}[q_{c}],$ 

within the two domains so that

1 The parent solution impacts the child solution

- 2 The two solutions are nested at Γ, ideally respecting conservation of mass (volume), energy fluxes, transport, etc.
- 3 The child solution is allowed to impact the parent solution

# The two-way nesting algorithm (explicit schemes)

Two-way nesting Lars Petter

#### Introduction

Principles of two-way nesting

Simple case: Advection of a 1-D bell distribution

Staggered grids

Realistic case California Current System

Conclusions and final remarks **1** Advance the parent solution from level n to level n+1

$$q_p^{n+1} = q_p^n + \Delta t_p \mathcal{L}_p[q_p^n]$$

2 Advance child on Γ using an interpolator *P* based on the parent solution (one-way nesting)

$$q_c^{n+rac{m}{i_r}}|_{\Gamma} = \mathcal{P}[q_p^n, q_p^{n+1}]; \quad m=1, 2, \ldots, i_r$$

3 Advance child to level n + 1 in the interior

$$q_{c}^{n+\frac{m}{i_{r}}} = q_{c}^{n+\frac{m-1}{i_{r}}} + \Delta t_{c} \mathcal{L}_{c}[q_{c}^{n+\frac{m-1}{i_{r}}}]; \quad m = 1, 2, \dots, i_{r}$$

 Update the parent within child domain using a restriction operator *R* (filter)

$$q_p^{n+1} = \mathcal{R}[q_c^{n+1}]_p$$

### Simple example: Advection of a 1-D bell function

Two-way nesting

Lars Pette Røed

Introduction

Principles o two-way nesting

Simple case: Advection of a 1-D bell distribution

Staggered grids

Realistic case California Current System

Conclusions and final remarks

#### Governing equation

$$\partial_t \psi + u_0 \partial_x \psi = 0$$
 ;  $x \in [-L, +L]$ 

#### Initially

$$\psi(x,0) = \psi_0 e^{-\left(\frac{x}{\sigma}\right)^2}$$

Cyclic boundary conditions:

$$\psi(x,t)=\psi(x+2L)$$

### Step 1: Solve for parent domain

Two-way nesting Lars Petter

Introduction

Principles of two-way nesting

Simple case: Advection of a 1-D bell distribution

Staggered grids

Realistic case California Current System

Conclusions and final remarks Numerical solution using upstream scheme

$$\hat{\psi}_{j_{p}}^{n+1} = \hat{\psi}_{j_{p}}^{n} - C\left(\hat{\psi}_{j_{p}}^{n} - \hat{\psi}_{j_{p}-1}^{n}\right); \quad j_{p} = 2(1)J_{p} + 1$$

 $\hat{\psi}_1^{n+1} = \hat{\psi}_{J_p+1}^{n+1};$  boundary condition

where  $C = u_0 \frac{\Delta t_p}{\Delta x_p} = \frac{1}{2}$  is the Courant number.

Recall that the scheme is diffusive, with diffusion coefficient

 $\kappa_p^* = \frac{1}{2}(1-C)|u_0|\Delta x_p$ 

 $\Rightarrow$  Diffusivity depends on resolution!

### Step 2: Interpolate to get child solution at $\Gamma$

Two-way nesting Lars Petter Røed

Introduction

Principles o two-way nesting

Simple case: Advection of a 1-D bell distribution

Staggered grids

Realistic case California Current System

Conclusions and final remarks

For 
$$m = 1, 2, ..., i_r$$

$$\begin{aligned} \tilde{\psi}_{1}^{n+\frac{m}{i_{r}}} &= (1-\frac{m}{i_{r}})\hat{\psi}_{J_{\rho l}}^{n} + \frac{m}{i_{r}}\hat{\psi}_{J_{\rho l}}^{n+1}, \\ \tilde{\psi}_{J_{c}+1}^{n+\frac{m}{i_{r}}} &= (1-\frac{m}{i_{r}})\hat{\psi}_{J_{\rho r}}^{n} + \frac{m}{i_{r}}\hat{\psi}_{J_{\rho r}}^{n+1}. \end{aligned}$$

#### where

$$J_{
m \it pl} = 1 + rac{(1-a)L}{\Delta x_{
m \it p}} \quad {
m and} \quad J_{
m \it pr} = 1 + rac{(1+b)L}{\Delta x_{
m \it p}}$$

 $x_{J_{pl}} = -aL$  and  $x_{J_{pr}} = bL$  are the left-hand respectively right-hand interface.  $a \le 1$  and  $b \le 1$  are constants.

### Step 3: Solve for child domain

Two-way nesting Lars Petter

Introduction

Principles o two-way nesting

Simple case: Advection of a 1-D bell distribution

Staggered grids

Realistic case California Current System

Conclusions and final remarks For  $m = 1, 2, ..., i_r$ .

$$\tilde{\psi}_{j_c}^{n+\frac{m}{i_r}} = \tilde{\psi}_{j_c}^{n+\frac{m-1}{i_r}} - C(\tilde{\psi}_{j_c}^{n+\frac{m-1}{i_r}} - \tilde{\psi}_{j_c-1}^{n+\frac{m-1}{i_r}}); \quad j_c = 2(1)J_c$$

The Courant number  $C = u_0 \frac{\Delta t_c}{\Delta x_c} = u_0 \frac{\Delta t_p}{\Delta x_p} = \frac{1}{2}$  is the same for the two grids.

Recall that the diffusion coefficient is

$$\kappa_c^* = \frac{1}{2}u_0(1-C)\Delta x_c$$

 $\Rightarrow$  Child less diffusive than parent ( $\Delta x_c < \Delta x_p$ )

### Step 4: Update parent within child

#### Two-way nesting Lars Pette

Introduction

Principles o two-way nesting

Simple case: Advection of a 1-D bell distribution

Staggered grids

Realistic case California Current System

Conclusions and final remarks Apply the restriction operator or filter  $\mathcal{R}$ , for instance a simple 1-2-1 filter (Shapiro with  $\mu = 0.5$ )

$$\hat{\psi}_{j_{p}}^{n+1} = \frac{1}{4} \left( \tilde{\psi}_{j_{c}^{*}+1}^{n+1} + 2\tilde{\psi}_{j_{c}^{*}}^{n+1} + \tilde{\psi}_{j_{c}^{*}-1}^{n+1} \right); \quad j_{p} = J_{pl} + 1(1)J_{pr} - 1,$$

where  $j_c^* = 1 + i_r(j_p - J_{pl})$  is a common child/parent grid point.

### Solutions: Initial condition

Two-way nesting Lars Petter

Introduction

Principles o two-way nesting

Simple case: Advection of a 1-D bell distribution

Staggered grids

Realistic cas California Current System

Conclusions and final remarks





 $\Rightarrow \Delta x_c = 0.2$  km,  $\Delta t_p = 500$  s and  $\Delta t_c = 100$  s.

## Solution 1: Reference (no nesting)



Neither solution is perfect

# Solution 2: One-way nesting $(a = b = \frac{1}{2})$



Child (blue) is degraded compared to reference

### Solution 3: Two-way nesting



Conclusions and final remarks

- Both are improved
- Parent is improved both outside and inside of child domain

#### All solutions

Two-way nesting

Røed

Introduction

Principles o two-way nesting

Simple case: Advection of a 1-D bell distribution

Staggered grids

Realistic case California Current System

Conclusions and final remarks



Initial distribution



Two-way nesting C = 0.5, 6 cycles, refinement factor = 5



# Staggered grids:



Staggered grids

Realistic case California Current System

Conclusions and final remarks



and so does time splitting (barotropic vs. baroclinic time steps) Finally: 2-D and 3-D requires interpolation in both time and space and complicates conservation of fluxes

## Staggered grids: Interfaces

Two-way nesting Lars Petter Røed

Introduction

Principles o two-way nesting

Simple case: Advection of a 1-D bell distribution

Staggered grids

Realistic case California Current System

Conclusions and final remarks One also have to separate between dynamic and feedback interfaces:



## Realistic case: California Current System

Two-way nesting Lars Petter

Introduction

Principles o two-way nesting

Simple case: Advection of a 1-D bell distribution

Staggered grids

Realistic case: California Current System

Conclusions and final remarks Debreu et al. (2008)

ROMS AGRIF

10 year run  $\Delta x_p = 15 \text{ km}$   $i_r = 3$  $\Rightarrow \Delta x_c = 5 \text{ km}$ 



### Realistic example: California Current System

Two-way nesting Lars Pette

Røed

Introduction

Principles o two-way nesting

Simple case: Advection of a 1-D bell distribution

Staggered grids

Realistic case: California Current System

Conclusions and final remarks SST on June 8, year 6



Fig. 23. Sea surface temperature [\*C] for 8 June of model year 6. a: REF. b: LOW. c: 1-WAY. d: 2-WAY.

### Realistic example: California Current System

(a) E - 8 July 5 - 5 km grid

Two-way nesting

Lars Pette Røed

Introduction

Principles o two-way nesting

Simple case: Advection of a 1-D bell distribution

Staggered grids

Realistic case: California Current System

Conclusions and final remarks

#### Surface vorticity July 8, year 5



(b) E - 8 July 5 - 15 km grid

#### Conclusions

#### Two-way nesting

Lars Petter Røed

- Introduction
- Principles o two-way nesting
- Simple case: Advection of a 1-D bell distribution
- Staggered grids
- Realistic case: California Current System
- Conclusions and final remarks

- There is no "all singing, all dancing" solutions to nesting of models. All methods are imperfect
- The principles of two-way nesting is simple and straightforward
- Impossible to perfectly conserve mass (volume), transport, fluxes, energy, etc.
- Parent solution has large influence on the child solution independent of nesting technique used

# Conclusions (cont.)

#### Two-way nesting

Lars Petter Røed

Introduction

Principles c two-way nesting

Simple case: Advection of a 1-D bell distribution

Staggered grids

Realistic case: California Current System

Conclusions and final remarks

- Two-way nesting improves the parent solution both outside and inside of its domain
- Child is less detoriated using two-way nesting compared to one-way nesting
- Important that the restriction operator *R* is sufficiently strong to filter out the small scales created in child, and at the same time is sufficiently weak so as to retain energy on scales resolved by Parent
- Staggered grids and time splitting methods dramatically complicates matters

#### Final remarks

#### Two-way nesting

Lars Pette Røed

Introduction

- Principles o two-way nesting
- Simple case: Advection of a 1-D bell distribution
- Staggered grids
- Realistic case: California Current System

Conclusions and final remarks

- In the literature many authors state that the refinement factor must be limited to say  $i_r \leq 5$ . Why?
  - When the resolved spatial scales of parent and child become too different noise aggregates near interfaces which may lead to instabilities
  - When the resolved temporal scales become too different inaccuracies due to the time interpolation at the interfaces grows
  - Above all, too large differences in spatial and temporal scales leads to growing inaccurasies in the conservation of mass (volume), transports, energy etc. across interfaces

#### Is the refinement factor restricted?

