

[Two-way](#page-29-0) nesting

Lars Petter Røed

Simple case: [Advection of a](#page-11-0)

Current

and final

Two-way nesting: Principles and examples

Lars Petter Røed

Norwegian Meteorological Institute

larspr@met.no

February 3, 2016

Overview

[Two-way](#page-0-0) nesting

Lars Petter Røed

Simple case:

and final

[Introduction](#page-2-0)

2 [Principles of two-way nesting](#page-5-0)

- 3 [Simple case: Advection of a 1-D bell distribution](#page-11-0)
- 4 [Staggered grids](#page-21-0)
- 5 [Realistic case: California Current System](#page-23-0)
- 6 [Conclusions and final remarks](#page-26-0)

Literature

[Two-way](#page-0-0) nesting

Lars Petter Røed

[Introduction](#page-2-0)

Simple case:

California Current

and final

- Blayo and Debreu, Ocean Mod., 2005: OBCs based on characteristics
- Penven et al., Ocean Mod., 2006: One-way nesting,
- Blayo and Debreu, Springer, 2006: Nesting Ocean Models
- Debreu and Blayo, Ocean Dyn., 2008: Two-way $\mathcal{L}_{\mathcal{A}}$ embedding algorithms
- Debreu, et al., Comput. Geosci., 2008; AGRIF: Adaptive Grid Refinement In Fortran),
- Debreu, et al., Ocean Mod., 2012, Two-way nesting in ROMS-AGRIF

Present situation at MET Norway

[Two-way](#page-0-0) nesting

Lars Petter Røed

[Introduction](#page-2-0)

Simple case: [Advection of a](#page-11-0)

Current

[Conclusions](#page-26-0) and final

\blacksquare Triply one-way nested system:

- Running Arctic20 (A20) with FOAM at OBs
- Feeding A20 results into Nordic4km (N4) $\mathcal{C}^{\mathcal{A}}$
- Feeding N4 result further into NorKyst800 (N800) $\mathcal{L}_{\mathcal{A}}$

The problem

[Two-way](#page-0-0) nesting

Lars Petter Røed

[Principles of](#page-5-0) two-way

Simple case:

California Current

and final

The governing equations:

$$
\partial_t q = \mathcal{L}[q] \tag{1}
$$

Examples are the 1-D, non-linear shallow water equations:

$$
q = \begin{bmatrix} u \\ v \\ h \end{bmatrix} \quad \text{and} \quad \mathcal{L} = \begin{bmatrix} -u\partial_x & f & -g\partial_x \\ -f & -u\partial_x & 0 \\ -h\partial_x & 0 & u\partial_x \end{bmatrix}.
$$

or the advection equation

$$
q = \psi
$$
 and $\mathcal{L} = -u_0 \partial_x$,

or ROMS governing eqs. Note: [\(1\)](#page-5-1) are to be solved for both domains.

Discretization

[Two-way](#page-0-0) nesting

Lars Petter Røed

[Principles of](#page-5-0) two-way nesting

Simple case:

California Current

and final

Discretized on the parent and child domains

$$
[\partial_t q]_p = \mathcal{L}_p[q_p] \quad \text{and} \quad [\partial_t q]_c = \mathcal{L}_c[q_c],
$$

 \mathcal{L}_p and \mathcal{L}_c are the same discretizations of the continuous operator \mathcal{L} , but at *different* resolutions.

Example: Advection equation (upstream scheme):

$$
\mathcal{L}_{p} = -u_{0} \frac{\tilde{\psi}_{j_{p}}^{n} - \tilde{\psi}_{j_{p}-1}^{n}}{\Delta x_{p}}
$$

$$
\mathcal{L}_{c} = -u_{0} \frac{\tilde{\psi}_{j_{c}}^{n} - \tilde{\psi}_{j_{c}-1}^{n}}{\Delta x_{c}}
$$

 $\hat{\psi}_{j_\rho}$ and $\tilde{\psi}_{j_c}$ are ψ at parent respectively child grid points $j_p, j_c.$

and final

Slice through interface

[Two-way](#page-0-0) nesting Lars Petter Røed

[Principles of](#page-5-0) two-way nesting

Simple case: 1-D bell

Grid configuration

[Two-way](#page-0-0) nesting Lars Petter

Røed

[Principles of](#page-5-0) two-way nesting

Simple case: 1-D bell

and final

Numerical problem

[Two-way](#page-0-0) nesting

Lars Petter Røed

Solve

[Principles of](#page-5-0) two-way nesting

Simple case: [Advection of a](#page-11-0)

California Current

and final

 $\left[\partial_t q\right]_p = \mathcal{L}_p[q_p]$ and $\left[\partial_t q\right]_c = \mathcal{L}_c[q_c],$

within the two domains so that

1 The parent solution impacts the child solution

- 2 The two solutions are nested at Γ, ideally respecting conservation of mass (volume), energy fluxes, transport, etc.
- **3** The child solution is allowed to impact the parent solution

The two-way nesting algorithm (explicit schemes)

[Two-way](#page-0-0) nesting

Lars Petter Røed

[Principles of](#page-5-0) two-way nesting

Simple case: [Advection of a](#page-11-0)

[Realistic case:](#page-23-0) California Current

[Conclusions](#page-26-0) and final

1 Advance the parent solution from level *n* to level $n + 1$

$$
q_p^{n+1} = q_p^n + \Delta t_p \mathcal{L}_p[q_p^n]
$$

2 Advance child on Γ using an interpolator $\mathcal P$ based on the parent solution (one-way nesting)

$$
q_c^{n+\frac{m}{l_r}}|_{\Gamma} = \mathcal{P}[q_p^n, q_p^{n+1}]; \quad m = 1, 2, \ldots, i_r
$$

3 Advance child to level $n+1$ in the interior

$$
q_c^{n+\frac{m}{i_r}} = q_c^{n+\frac{m-1}{i_r}} + \Delta t_c \mathcal{L}_c[q_c^{n+\frac{m-1}{i_r}}]; \quad m = 1, 2, \ldots, i_r
$$

4 Update the parent within child domain using a restriction operator $\mathcal R$ (filter)

$$
q_p^{n+1} = \mathcal{R}[q_c^{n+1}]_p
$$

Simple example: Advection of a 1-D bell function

[Two-way](#page-0-0) nesting

Lars Petter Røed

Simple case: [Advection of a](#page-11-0) 1-D bell distribution

Current

and final

Governing equation

$$
\partial_t \psi + u_0 \partial_x \psi = 0 \quad ; \quad x \in [-L, +L]
$$

Initially

$$
\psi(x,0)=\psi_0e^{-\left(\frac{x}{\sigma}\right)^2}
$$

Cyclic boundary conditions:

$$
\psi(x,t)=\psi(x+2L)
$$

Step 1: Solve for parent domain

[Two-way](#page-0-0) nesting

Lars Petter Røed

Simple case: [Advection of a](#page-11-0) 1-D bell distribution

California Current

and final

Numerical solution using upstream scheme

$$
\hat{\psi}_{j_p}^{n+1} = \hat{\psi}_{j_p}^n - C\left(\hat{\psi}_{j_p}^n - \hat{\psi}_{j_p-1}^n\right); \quad j_p = 2(1)J_p + 1
$$

$$
\hat{\psi}_1^{n+1} = \hat{\psi}_{J_p+1}^{n+1}; \quad \text{boundary condition}
$$

where $C=u_0\frac{\Delta t_p}{\Delta x_r}$ $\frac{\Delta t_\text{p}}{\Delta x_\text{p}} = \frac{1}{2}$ $\frac{1}{2}$ is the Courant number.

 \Rightarrow Diffusivity depends on resolution!

Step 2: Interpolate to get child solution at Γ

[Two-way](#page-0-0) nesting

Lars Petter Røed

Simple case: [Advection of a](#page-11-0) 1-D bell distribution

and final

$$
For m = 1, 2, \ldots, i_r
$$

$$
\begin{array}{rcl}\n\tilde{\psi}_{1}^{n+\frac{m}{i_{r}}}&=& (1-\frac{m}{i_{r}})\hat{\psi}_{J_{pl}}^{n}+\frac{m}{i_{r}}\hat{\psi}_{J_{pl}}^{n+1},\\
\tilde{\psi}_{J_{c}+1}^{n+\frac{m}{i_{r}}}&=& (1-\frac{m}{i_{r}})\hat{\psi}_{J_{pr}}^{n}+\frac{m}{i_{r}}\hat{\psi}_{J_{pr}}^{n+1}.\n\end{array}
$$

where

$$
J_{\rho l}=1+\frac{(1-a)L}{\Delta x_{\rho}}\quad\text{and}\quad J_{\rho r}=1+\frac{(1+b)L}{\Delta x_{\rho}}
$$

 $x_{J_{pl}} = -aL$ and $x_{J_{pr}} = bL$ are the left-hand respectively right-hand interface. $a \leq 1$ and $b \leq 1$ are constants.

Step 3: Solve for child domain

[Two-way](#page-0-0) nesting

Lars Petter Røed

Simple case: [Advection of a](#page-11-0) 1-D bell distribution

California Current

and final

For $m = 1, 2, ..., i_r$.

$$
\tilde{\psi}^{n+\frac{m}{i_r}}_{j_c}=\tilde{\psi}^{n+\frac{m-1}{i_r}}_{j_c}-C(\tilde{\psi}^{n+\frac{m-1}{i_r}}_{j_c}-\tilde{\psi}^{n+\frac{m-1}{i_r}}_{j_c-1});\quad j_c=2(1)J_c
$$

The Courant number $C=u_0\frac{\Delta t_c}{\Delta x_c}$ $\frac{\Delta t_\mathsf{c}}{\Delta \mathsf{x}_\mathsf{c}} = \mathsf{u}_0 \frac{\Delta t_\mathsf{p}}{\Delta \mathsf{x}_\mathsf{p}}$ $\frac{\Delta t_{p}}{\Delta x_{p}}=\frac{1}{2}$ $\frac{1}{2}$ is the same for the two grids.

Recall that the diffusion coefficient is

Step 4: Update parent within child

[Two-way](#page-0-0) nesting

Lars Petter Røed

Simple case: [Advection of a](#page-11-0) 1-D bell distribution

and final

Apply the restriction operator or filter \mathcal{R} , for instance a simple 1-2-1 filter (Shapiro with $\mu = 0.5$)

$$
\hat{\psi}_{j_p}^{n+1} = \frac{1}{4} \left(\tilde{\psi}_{j_c^*+1}^{n+1} + 2\tilde{\psi}_{j_c^*}^{n+1} + \tilde{\psi}_{j_c^*-1}^{n+1} \right); \quad j_p = J_{pl} + 1(1)J_{pr} - 1,
$$

where $j_c^*=1+i_r(j_p-J_{pl})$ is a common child/parent grid point.

Solutions: Initial condition

[Two-way](#page-0-0) nesting

Lars Petter Røed

Simple case: [Advection of a](#page-11-0) 1-D bell distribution

and final

 $\Rightarrow \Delta x_c = 0.2$ km, $\Delta t_p = 500$ s and $\Delta t_c = 100$ s.

Solution 1: Reference (no nesting)

and final

Reference (blue with $\Delta x = \Delta x_c$) less diffusive than Parent \Box ■ Neither solution is perfect

Solution 2: One-way nesting ($a=b=\frac{1}{2}$ $\frac{1}{2}$

and final

Parent (thin black) stays the same (as it should) ■ Child (blue) is degraded compared to reference

Solution 3: Two-way nesting

Conclusions:

[Conclusions](#page-26-0) and final

- Both are improved
- Parent is improved both outside and inside of child domain

All solutions

[Two-way](#page-0-0) nesting

Lars Petter Røed

Simple case: [Advection of a](#page-11-0) 1-D bell distribution

and final

Staggered grids:

Simple case:

[Staggered](#page-21-0) grids

California Current

[Conclusions](#page-26-0) and final

and so does time splitting (barotropic vs. baroclinic time steps) Finally: 2-D and 3-D requires interpolation in both time and space and complicates conservation of fluxes

Staggered grids: Interfaces

[Two-way](#page-0-0) nesting

Lars Petter Røed

Simple case:

[Staggered](#page-21-0) grids

California Current

[Conclusions](#page-26-0) and final

One also have to separate between dynamic and feedback interfaces:

Realistic case: California Current System

[Two-way](#page-0-0) nesting

Lars Petter Røed

Simple case: [Advection of a](#page-11-0)

[Realistic case:](#page-23-0) California Current System

[Conclusions](#page-26-0) and final

Debreu et al. (2008)

ROMS AGRIF

10 year run $\Delta x_p = 15$ km $i_r = 3$ $\Rightarrow \Delta x_c = 5$ km

Realistic example: California Current System

[Two-way](#page-0-0) nesting

Lars Petter Røed

Simple case: [Advection of a](#page-11-0)

[Realistic case:](#page-23-0) California Current System

[Conclusions](#page-26-0) and final

SST on June 8, year 6

Fig. 23. Sea surface temperature [°C] for 8 June of model year 6. a: REF. b: LOW. c: 1-WAY. d: 2-WAY.

Realistic example: California Current System

(a) $\xi - 8$ July 5 - 5 km grid

[Two-way](#page-0-0) nesting

Lars Petter Røed

Simple case: [Advection of a](#page-11-0)

[Realistic case:](#page-23-0) California Current System

[Conclusions](#page-26-0) and final

Surface vorticity July 8, year 5

(b) $\xi - 8$ July 5 - 15 km grid

Conclusions

[Two-way](#page-0-0) nesting

Lars Petter Røed

-
-
- Simple case: [Advection of a](#page-11-0)
-
- [Realistic case:](#page-23-0) California Current
- [Conclusions](#page-26-0) and final remarks
- There is no "all singing, all dancing" solutions to nesting of models. All methods are imperfect
- \blacksquare The principles of two-way nesting is simple and straightforward
- **Impossible to perfectly conserve mass (volume), transport,** fluxes, energy, etc.
- **Parent solution has large influence on the child solution** independent of nesting technique used

Conclusions (cont.)

[Two-way](#page-0-0) nesting

Lars Petter Røed

-
-
- Simple case: 1-D bell
-
- California Current
- [Conclusions](#page-26-0) and final remarks
- Two-way nesting improves the parent solution both outside and inside of its domain
- **n** Child is less detoriated using two-way nesting compared to one-way nesting
- **IMPORTER INTERTATABLE IN THE PERITM IN THE INCORDING IN THE INTERFERITM** In Important that the restriction operator \mathcal{R} is sufficiently strong to filter out the small scales created in child, and at the same time is sufficiently weak so as to retain energy on scales resolved by Parent
- Staggered grids and time splitting methods dramatically complicates matters

Final remarks

[Two-way](#page-0-0) nesting

Lars Petter Røed

-
- [Principles of](#page-5-0)
- Simple case: 1-D bell
-
- California Current

[Conclusions](#page-26-0) and final remarks

- In the literature many authors state that the refinement factor must be limited to say $i_r \leq 5$. Why?
	- When the resolved spatial scales of parent and child become too different noise aggregates near interfaces which may lead to instabilities
	- When the resolved temporal scales become too different inaccuracies due to the time interpolation at the interfaces grows
	- Above all, too large differences in spatial and temporal scales leads to growing inaccurasies in the conservation of mass (volume), transports, energy etc. across interfaces

Is the refinement factor restricted?

