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1 Equations
1.1 Basic equations

To do what follows, we need to introduce the set of equations we’ll be us-
ing, and the approximations we’ll need. First are the momentum equations,
written in vector form:

;ﬁ—l—ﬁ-Vﬁ—kQQxﬁ:—;Vp—gfc—k;if (1)
Herew is the velocity,p is the densityp is the pressure; is gravity, 7 is
the applied stress arfd is the rotation vector for the earth. Note that this
equation is actually three equations in one—one for each spatial dimen-
sion.

We also have the continuity equation:

)
a0+ Vot p(V il =0 )

This expresses the conservation of mass. If the flux of density into a fixed
volume is positive, the total mass will increase. Despite the simypladit
that idea, the equation is nonlinear and non-trivial.

But to simplify matters, we will make thBoussines@pproximation.

This assumes that:

p:po+,0l($,y,2,t) (3)

wherep, is a constant and that:

po > |p/]



The density of water is nearly a constant—it changes only slightly when
heated (over a reasonable range). So we can replacaost of the equa-
tions by the constant,. This simplifies the continuity equation a lot:

0 . S
aPOJrU'V,OOﬂLPO(V'U):O (4)

or:

V.-i=0 (5)

Thus the Boussinesq fluid iscompressible This means that volume is
conserved.
The momentum equation is also simplified somewhat because the pres-

sure term is now linear:

1 1
-Vp — —Vp (6)
P Po

The Boussinesq approximation is valid for the ocean and approximately
valid for the planetary boundary layer in the atmosphere. It is not accu-
rate in the troposphere, due to the compressibility of air. But if one uses
pressure coordinateshe pressure term is also linearized and the flow is
incompressible. So the equations in pressure coordinates are similar to the
Boussinesq equations.

We also require the stress term on the RHS of the momentum equa-
tion. We will write this as the sum of an (unspecified) forcing term and a
diffusive damping term:

10

— 1 =F+uvVi (7)
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The forcing could for example be the wind acting on the ocean, or convec-
tive motion in the atmosphere. The diffusion term represents molecular
dissipation, withv ~ 107> m?/sec.

We will alter the momentum equation slightly. For one, we can rewrite

the advective term using incompressibility. Notice that:

V- (ia) = @-Va+a(V @) = i-Va (8)

Second, we can write the gravity term as the gradient ofdmpotentia|

gz. Put together, we can write the momentum equation as:

9
STV (o) + 20 x 1 = —V(§+gz)+5f+yv2@ 9)
0

The circle in the advection term signifies a tensor product, because this ac-
tually represents 9 terms, in three separate equations. Sedbeponent
IS:

10

gtu + V- (du) — fou = —%a—xp-i— F* + vV?u (10)

wheref, = 2Qsin(0) is the vertical component of the Coriolis acceleration
(I'm ignoring the term involving the horizontal componetft, because
that term is generally small).

Interestingly, there is onlgnenonlinear term in this equation: the sec-
ond term, representing the advection of momentum. Thisgeaaratic
nonlinearity, because it involves the product of the unknown velocities.

Turbulence springs from this term, as we’ll see shortly.



1.2 Scaling

Not all the terms in the momentum equation are equally important. To see
this, we approximate each of the terms with “typical” values,lieL, P,
etc. The x-momentum equation scales as:

gtquV (uu) — foo = —plogxan F* 4+ vV
U U? P vU
If we divide through by the last term, we get:
2 2 2
L UL fL PL FL | (12)

vT v v porU vU
Thus the advection term is a factor Gf. /v times the size of the dissipa-

tion term. This parameter is tHeeynold’'s numberHow big is this? At
the scale of weather systems in the atmosphere, we have:

UL _ (10m/sec)(10°m)
v 1075m?2/sec

= 10"

This means that advectionnsuchmore important than molecular dissipa-
tion at these scales.
The second point concerns the time scdle,We can rewrite the first

scaling term thus:

L?> T,

T T (13)
This is the ratio between the actual time scale of the motigrand the
dissipation time scalel},, = L?/v. This is the time scale approximately
that is required for molecular friction to bring the motion at sdale rest.

How long is this? At the weather scales:

7



L*  (109m)?

~ = 10"
v 1079m?/sec oee

I/:

This is roughly10'? days, or abous x 10° years—roughly one fourth the
age of the present universe(!) So we would have to wait a very long time
indeed for molecular dissipation to halt a storm system.

Of course the dissipation time scale is a strong function of the spatial
scale. Consider a cup of coffee. Say you add sugar to the coffee and stir it.
How long do you have to wait for it to slow down? Assuming a cup 10 cm
across, the dissipation time scale is:

P (0.1m)?

~ = 10° sec
v 107> m?/sec

1,

This is about 15 minutes. But coffee settles down much faster than this,
perhaps over 15 seconds. We’'ll see why shortly.

Another important scaling can be obtained if we instead divide through
the scales by U, the size of the Coriolis term. Then we obtain:

0 10
_ Aduw) = foo=——— e 2
T V - (du) — fv p” o Pt I+ vVau

1 % 1 P F v

fr fL fUpeL  fU  fL?
The ratio of the advective term to the Coriolis terntigf L. This is the
Rossby numbeiAt synoptic scaletorder 1000 km in the atmosphere), the

(14)

Rossby number is roughly 0.1, meaning the Coriolis term is 10 times larger
than the advective. Scaling the other terms, we find the pressure gradient
term is about the same size. So the dominant balance at weather scales is

between the third and fourth terms, known asdkestrophic balance



A temperature time series with "turbulence"

Low pass filtered signal

High pass filtered signal
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Figure 1: A time series of temperature measured over a ngr&iod. The upper panel
shows the whole time series, while the middle and lower Faslebw the low-pass and
high-pass filtered time series.

2 Statistics in a nutshell

Turbulence often appears to be “noise” in a signal. Consider the tempera-
ture time serie§’(t) in the upper panel of Fig. (1). The temperature varies
slowly in time, but it also has a high frequency component. If we low-pass
filter the time series, we get the signal in the middle panel. This has a
smooth, even quasi-predictable looking, variation. If on the other hand we
high-pass filter the time series, we get the signal in the lower panel. This
appears to be “white noise”, i.e. a random signal with no dominant fre-
guencies. This part of the signal looks completely unpredictable, i.e. we

don’t know from one instant to the next how it will behave.
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Figure 2: The probability density function (PDF) of the higass filtered time series in
Fig. (1). The dashed curve is a Gaussian PDF.

Turbulence signals are often like in the lower panel. They are funda-
mentally unpredictable (we will demonstrate this in sec. 4). So rather than
worrying about the exact values of the signal at any given time, we focus
instead orstatistics We are more concerned about the range of possible
values and the statisticaloments-the mean, the variance, etc.

The moments can be derived from fhrebability density functio(PDF).

To obtain this, we calculate a histogram from the signal by counting the
number of times the temperature falls in selected ranges, e.g. between
—0.2 and—0.1. Then we normalize the histogram so that:

| p(T)dr =1 (15)
The result shows us the probability of getting a particular value.

Fig. (2) shows the PDF for the high-pass filtered time series. We see
that the value is most often around zero. But values as larg#) &socca-
sionally occur.

The moments can be derived from the PDF. For examplerban

10



temperature is:

<T>= [ Tp(T)dT (16)
The mean for the distribution shown49).0022. This is close to zero, as
we expected.

The width of the PDF is determined by the second momentyé#ne
ance

V(T) =< (T— < T>)*>= [ (T— <T>7p(T)dT  (17)

For the distribution shown, the varianceif386. A better indicator of the
actual width though is thetandard deviationwhich is the square root of

the variance:

SD = (< (T— < T >)*>)/? (18)
In the present case, this(isl965. You can see that the PDF falls to roughly
half its maximum value at-0.2. This means that the temperature in the
high pass filtered time series is most often betweér? and0.2.

We can also calculate higher moments. The third order moment is the
skewness

2 (T— < T >)3p(T)dT
SD?3
It is traditional to normalize the skewness by the cube of the standard de-

S = (19)
viation so that the result is a non-dimensional number. The skewness in-
dicates how asymmetric about the origin the distribution is. In our case,
S=0.0271; the PDF is slightly skewed toward positive values. Consistent
with this, there is a peak in the PDF to the right of T=0.

11



The fourth order moment is also useful—this is kugtosis

IR (T— < T >)p(T)dT
SD4
also occasionally called the “flatness” factor. The value reflects th@esha

K:

(20)

of the PDF. If the PDF has a sharp peak in the middle and long wings, the
kurtosis is large. In our case, k=2.9792.
If the kurtosis is near the value of three (as it is here), then the PDF is

close to aGaussiaror “normal” distribution. The Gaussian is defined:

1 (T— < T >)?
p(T) - \/W e:z:p(— 252 )
This is indicated by the dashed curve in Fig. (2). We see our PDF is indeed

(21)

close to normat. It is advantageous having a Gaussian PDF because all the
moments can be derived analytically.

Exercise A random time series

a) Generate a random time series in Matlab using:

x=randn(1000,1);

Construct the PDF(x). What is the mean of x? The standard deviation?
The kurtosis?

b) Now use:

x=rand(1000,1);

Plot the PDF(x). What is the most likely value of x?

1There is a theorem in statistics called tBentral Limit Theoremwvhich states that the sum of indepen-
dent processes has a PDF which converges to a Gaussian.

12



3 The Fourier transform

Another operation we’ll be using is the Fourier transform. The basic idea
Is that we project a function onto a basis of sinusoidal functions:

qw:gmwwt (22)

where the sum goes over the range of the frequencyWe prefer the
complex sinusoidal function because it’'s easier to work with than sines
and cosines.

We can extract the component at a single frequency by Fourier trans-
forming, thus:

1

T —iw’ L a i(w—w
TAG@etﬁ:TA;GM& It =

A~ ~

Gw)d(w — ') = G(w) (23)

HereT is the length of the record (not the temperature from the previous

section) and:

1 ifz=
“@:{owi¢8
Is the delta function.

Strictly speakingw = 27n/T, wheren is an integer. This guaran-
tees a whole number of waves in the interjall’]. Then the integral of
et — 2min=n)t/T js equal to zero ifv # ' (it's the integral of a
sinusoidal function, which vanishes).df= «’, thene’“@—+) = 1 and the
integral exists.

This is a Fourier transform in time. But the transform can be made in

space as well. For instance, we can write:

13



P(r,y) = > ;&(k, ety (24)

Then the corresponding transform is:

. 1 L M _—
bk 1) = o [0 el y)e ™ dy da (25)
assuming that the domain has= [0, L] andy = [0, M]. Again, to have

an integral number of waves inandy, the wavenumbers take on discrete

values:

2mn 2mm
k= — k= ——
L’ M

An advantage of the Fourier transform is that it makes taking derivatives

easy. Ify above is the 2-D streamfunction, such that:

%, d
U= —Fy@/)a v = O (26)
then:
a(k,l) = —ild(k,1), =ik (27)

Another useful point is concerns the energy. The total kinetic energy in
the domain is:

E:;wﬂ;ﬁ+&mmy (28)

The Fourier version of this is:

E= %%IWV+WF (29)

DO | —

14



Thus the kinetic energy is the sum of the squares of the Fourier amplitudes
by wavenumber. This result is dueRarseval’s theoremWritten in terms
of the streamfunction, the energy is:

E= ;;;0«2 LR (30)

Very often, we’ll talk about the energgpectrum This is just:

L. .
E(k,1) = 5 (lal* + [o[) (31)
Then the total energy is the sum of the spectrum over all wavenumbers.

The spectrum shows contribution to the energy by wavenumber (or fre-

guency). This is a central quantity in turbulence theory.

Exercise Spectra
a) In Matlab, let:

t=1[0:.01:1]
and
x = cos(2*pixt)+ cos(bxpixt)+rxrand(size(t))

with r=0.1. Plot x, and then plot the power spectrum for x. For the spec-
trum, use:

P = . xconj(i)

You will only need one half of the vector (since, for real x, the second half
of P is just a reflection of the first half).

b) Now let r=10. Plot x and the spectrum. Use a loglog plot and com-
pare the result to the spectrum in (a). Can you see the sinusoidal compo-
nents now?

15



(For help with the fft and power spectra in Matlab, see:
http://www.mathworks.se/help/techdoc/ref/fft.html).

4 A chaotic example

As noted eatrlier, the “trouble” with the momentum equation is the quadratic
nonlinearity on the LHS. It's useful to consider how this affects the solu-

tion in a simple casé The x-momentum equation is again:

0 . 10 5
au-l—v-(uu)—fv— poaxp-l—Fm-l-VVu (32)

We'll approximate this with a “toy” example:

jtu—l—mf:l—u (33)

This has only a single variable,t). The terms on the RHS are simple
forcing and dissipation terms. The equation has a quadratic nonlinearity,
and that is multiplied by, which is essentially the Reynolds number for
the problem. Ifr is small, the flow is viscous and the equation is approxi-
mately linear. Ifr is order one or larger, it is nonlinear.

We will discretize the equation, using a simple Euler routine with a time
stepdt = 1:

u(t+1) —u(t)
1

+ru(t)? =1 —u(t) (34)

We can rewrite this as:

u(t +1) = F(u(t)) = 1 — ru(t)? (35)

2This example is based on one by Frisch (1995).

16



This is a variant of the “logistic map®.

The behavior of the system depends strongly on the parametidry
Is very small (less than 0.01), the solution approaches u=1.0. This is the
viscous limit when the forcing determines the solution.

If ~ is larger than that, the solution approaches a smaller value. This is
known as dixed point We find the fixed points by solving:

d
@uz—ru2+1—u=0 (36)

This quadratic equation has solutions:

1 v1+4
=g Y (37)
2r 2r

There are two roots, one positive and one negative. YWith0.1, the roots
areu = 0.9161 andu = —10.9161. Solving (35) numerically (in Matlab),
we see that the solution rapidly converges to the positive root (left panel of
Fig. 3).

Why does it favor the positive root over the negative one? To see, we
performlinear stability analysis Let's say the solution is near a fixed
point, denoted.,. By definition, at a fixed point we have:

F(ug) = uq (38)

So if we start at the fixed point, the mapping stays there. If we are near the
fixed point, we can write:

u=1uq+ 0(t) = F(ug) + d(t) (39)

3The logistic map was originally proposed in a paper by May7@)9 His was an idealized model of a
biological system where the growth rate of a population @pprtional to the population itself. The paper
became a landmark in the chaos literature.

17



logistic map with r=0.1 logistic map with r=0.75
T T T T T T T 1 T T T T T T T

2500 3000 3 40 50
time time

Figure 3: . Two solutions of the logistic map with u(0)=0. T$wution at right has r=0.1
and the one on the right has r=0.75.

whered is a small deviation. Putting this into (35), we have:

u(t+1) = Flug) +0(t+1) = F(u, +6(t)) = F(uq) + F'(us)d(t) (40)

after using a Taylor expansion. We keep only the first term, consistent with

a “linear” analysis. Cancelling th&(«,) on both sides, we get:

O(t+1) = F'(u,)é(t) (41)

We can deduce how evolves in time by writing the equation as an itera-

tion:

Onir = (F'(ua))0n = (F'(uq))?0p1 = ... = (F'(uq))"61 (42)
Thus if:

|F'(ug)| < 1 (43)

theno will asymptote to zero. This means the solution will converge to the
fixed point.

18



Note that if0 < F'(u,) < 1, theny decays monotonically to zero, while
if —1 < F'(u,) < 0, ¢ oscillates as it decays. Likewise, it (u,) > 1,
d increases monotonically and#'(u,) < —1, § oscillates and increases.
If o decreases in time, then we say thatis a stablefixed point; if
Increases, it is an unstable fixed point.

We have that:

F'(u) = —2ru (44)

With the positive rooty, = .9161; with » = 0.1, F'(u,) = —0.1832. So
we expect decaying oscillations. In fact, there are oscillations in Fig. (3)
but the decay is so rapid we don’t see them. The other tQot; 10.9161
has F’(u,) = —2.1832. Thus this point is unstable. So the numerical
solution converges to the positive root rather than the negative one.

The oscillations are more noticeable whers larger. Consider =
0.75. In this case, the positive fixed point has= 2/3, and thusF" (u,) =
—2ru, = —1. So linear stability suggests pure oscillation—neither de-
creasing or increasing in time. At first glance, the numerical solution,
shown in the right panel of Fig. (3), suggests decaying oscillations. But
this is because our initial value{0) = 0.5, is outside the range of linear
stability. As such, the numerical solution shows the fixed poimbislin-
early stable—the solution gets closer tg, in time. But eventually it settles
into a fixed oscillation which goes between the values ef [.6633, .67],
consistent with linear theory.

Consider what happens with a slightly larger value; 0.8. The posi-
tive fixed point has:, = 0.6559, so F"(u,) = —1.05. Thus linear stability
suggests growing oscillations about the fixed point. The numerical cal-
culation bears this out (left panel of Fig. 4). Initializing the program at

19



logistic map with r=0.8 Spectrum with r=0.8

u

° °

S g
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. . . . . . . . .
.50 60 o 005 01 015 02 025 03 035 04 045 05
time frequency

Figure 4: . The solution (left) and spectrum (right) with r&0

u(0) = 2/3, we see that the oscillations grow in time. But after a period of
time, they cease to grow further. So the nonlinear behavior is oscillatory,
but with a large amplitude. Now varies between.348 and0.903.

We can also examine the spectrumwgfas a function of the (non-
dimensional) frequencyy (right panel of Fig. 4). After the solution has
reached its stable oscillations, the spectrum has a single peak; at5.

Increasingr further, the behavior becomes more complex. The case
with » = 1.3 is shown in Fig. (5). We see thatis oscillating about the
fixed point (atu = 0.5731). But the oscillations are less regular. Look-
ing at the spectrum, we see why: there are fnmavdominant frequencies.
One is at the Nyquist frequency (= 0.5) and the other is at half that
frequency. This is typical of the “transition to chaos”—as the critical pa-
rameter is increased, you pick up oscillations which have twice the period
of the original oscillation. We speak of “period doubling bifurcations”
when passing the such critical parameters.

Increasing- further, the solution becomes even more complex as more
and more frequencies appear. With= 1.37, there are four dominant fre-
guencies. But withr = 2 (Fig. 6), the solution is fullychaotic « oscillates

20



logistic map with r=1.3 Spectrum with r=1.3

energy

20

tirsrl:e
Figure 5: . The solution with r=1.3.

between -1 and +1, but the motion is erratic and unpredictable. Sometimes
there are rapid changes and sometimes slower ones. In addition, the spec-
trum (right panel) is nearly “white” (flat), indicating equal contributions

across the range of frequencies.

Spectrum with r=2

logistic map with r=2

energy
w »

Am m bbbl

.2 0.25
frequency

L L L
60 70 80 90 100

Figure 6: . The solution with r=2.

Chaos implies that the system is sensitively dependent on the initial

condition. The initial value in Fig. (6) is(0) = 0.1. Let’'s change that
slightly to«(0) = 0.10001. The two resulting solutions are plotted in Fig.
(7). Initially the curves are together. But shortly after t=10, they begin to

21



Logistic map, r=2, with u(0)=0.1 and 0.10001
. . . . IR

L |
0.8 || I H I ‘\ It

| | |
06l \ I I M e
\ [ |
0.4r \ | h
I | | | il
M I

02f I | |
CUHNY T N

-02f ‘ |
—04f | | [l
- R [

| | [ |
-0.6f \‘J i “‘\‘ \" ‘ | “ [

-0.81

Figure 7: . The solution with r=2, with two initial values vei are nearly the same.

diverge. And by t=20, the two are essentially independent of one another.
This is a central difficulty with chaotic systems: unless you know the initial
conditionsexactly it's impossible to make a correct prediction—and there
Is always some error in the initial conditions.

This unpredictable behavior occurs with a “Reynolds number'of
only 2. This suggests that havinge = 10° or Re = 10'? in the mo-
mentum equation will inevitably lead to chaotic solutions. Second, imag-
ine that the map is a weather model. The sensitive dependence on initial
conditions means that the weather prediction is more or less meaningless
after a certain period of time. Thedictability timefor the logistic map
depends on the error in the initial condition. The closer we are to the “cor-
rect” starting value (the current weather), the longer the forecastis val
But after some time, the forecast will diverge from observations.

Given that the motion is unpredictable, it perhaps makes more sense
to focus on the statistics. The PDF wofis shown in Fig. (8) for both
of the initial values used in Fig. (7). Despite that the two time series

are very different, the PDFs are almost identical. We see:thakes on

22
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—e—u(0)=0.1
— u(0)=0.10001 ¢

U (1-u?y”
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Figure 8: . The histogram of the logistic map with r=2 and 00,@&terations. The red

curve is the analytical prediction for this magu) = 1/(7v/1 — u?).

all values in the range from [-1:1]. We also see that u is most frequently
near the extremes, -1 and 1. These are the extremes of the oscillations, so
u spends more time in their neighborhood (the same is true for a simple
sinusoidal oscillation). Note too that unlike with our noise example earlier,
this PDF isn’'t remotely Gaussian. The kurtosis is roughly 1.5, well below
the Gaussian value of 3.

With this value ofr, it's actually possible to predict the shape of the
PDF. Making a suitable change of variables (see Frisch, 1995), one can
convert this to a “tent map”, which hasuaiform (or flat) PDF. Then one
can convert back again toto predict the PDF. The solution is:

1
- 45
p(u) = —— (45)
This is indicated by the red curve in Fig. (8).

There are several points here. One is that the system is fully chaotic at
r = 2. If this is our Reynolds number, we see that the value is very low.

23



With a Reynolds number af0'?, as in the atmosphere, it isn’t surprising
the weather is chaotic.

Second, becauseexplores the entire range of values between -1 and
1, we say the motion isrgodic Given (almost) any initial value, we can
expecty to take on any other value in the range. Thus if we diéasemble
of experiments, measuredat a point and then averaged all the values we
obtained, we would get the same answer if we just averagedime. We
say that is behaving in a probabilistic way.

Lastly, we caution about taking the logistic map too literally. The pro-
gression from stable fixed points, to more and more oscillations to chaos
Is typical of nonlinear systems with few degrees of freedom. In the at-
mosphere or ocean, where there are many, many degrees of freedom, the
transition from stability to chaos is usually less clean. Neverthetbss
logistic map gives us a good idea of what a quadratic nonlinearity can do.

Exercise Another map

Analyze the equation:

— 4ru=(r—1)u (46)

with dt = 1.

a) Write the equation as a map.

b) What are the fixed points? Are they stable or not?

c) Write a Matlab code to solve the mapping. Check the solution for
various values of.

d) Write a second code to calculate the spectrum @heck the spectra
in the cases in (b).

e) What are the critical values ofwhere transitions occur? When are
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the solutions fully chaotic? Plot time series to show this.

5 Conservation laws

Central in what follows are twgoonservation laws These are foenergy
andenstrophy

5.1 Energy

If we take the dot product of the momentum equation with the velocity, we

get:
01 1
Sl + V(@) = -V [a(f +g2)] + @ F+vi- Vi (47)
0

We've used incompressibility to rewrite the pressure gradient/geopotential
term. Note too that the Coriolis term has vanished—this is because it is
perpendicular to the velocity.

We integrate this over a volume. We’'ll consider one of three types of

(idealized) volume:

e A domain enclosed by solid walls
e A periodicdomain, where flow out one side comes in the other side

e A channel (periodic in one direction, walled in the other)

At solid walls, the normal component of the velocity vanishes. With peri-
odic conditions, the velocity is the same on opposite boundaries, so their
difference is zerd.

4Boundaries can be important places, supporting boundgeydavhich are sometimes turbulent them-
selves. We purposely avoid such issues here.
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The main effect is on the integral of divergences. Consider:

J[[ V- @G)dv = ffGi-idS =0 (48)
which is the advection of some quantify, By Gauss’s theorem, the inte-
gral can be converted to a surface integral. This then vanishes with solid
walls because the normal velocity is zero. With periodic boundary condi-
tions, it also vanishes. Consider for example the integral in: tthieection:

/oL aax(“G) dr = u(L)G(L) —u(0)G(0) = 0 (49)

By periodicity, the two terms are equal so their difference is zero.

Thus, if we integrate (47) over the volume, we get:

iE:///ﬁ.deJrV///ﬁ-VQﬁdV (50)

where:

o1
E = ///2|u2|dV (51)
Is the total kinetic energy. This states that the total energy changes only
in response to forcing and dissipation. Advection doesn’t change the total
energy; it only redistributes energy in the domain. Dissipation causes the
energy todecreaseTo see this, we use a vector identity:

Vi=V(V- i) -V x(Vxi)=-Vxd& (52)

whered is the total vorticity. The first term vanishes by incompressibility.
Taking the dot product witl, we get:

0-Vi=—i-(Vxw)=-&G-(Vxd)+V-(@xd) (53)
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using another vector identity. Now when we integrate over space, the last

term vanishes:

J[[V-@xa)av = f@xa)-nds=0 (54)

Under periodicity, it vanishes becausex u has the same value on the
opposite boundaries. It also vanishes with solid walls as the normal com-
ponent ofu vanishes.

So we can write:

v [[[i-Viidv = —v [[[&-(Vxia)dv = v [[[ |5 dV  (55)

So the energy equatiowjthout forcing is:

—E = —v [[[|&]* av (56)

The energy dissipation is proportional to the integral of the squared vortic-
ity, also known as thenstrophy Because the RHS is negative definite, the
energy can onlylecrease in time

A question which will become important later on is whether the en-
ergy isconserveavhen the viscosity goes to zero. We know that that the
molecular viscosity is very small—does this imply that energy is basically
conserved at large scales? To say for sure, we need to know how the en-
strophy behaves. It could happen, for example, that the enstrophy increases
asv decreases:

JIf 152 v & (57)

in the limit of small viscosity. Then we would have
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dE
=-C (58)

Then the total energy would decay at a constant rate, regardless of how
smallv is.

If something like this were to happen, there muspbaductionof en-
strophy in the absence of forcing (i.e. the enstrophy doesn't just decrease).
To see whether or not this is the case, we turn to the vorticity equation.

5.2 Vorticity and enstrophy

We get the vorticity equation by taking the curl of the momentum equation.
This calculation is easier if we first rewrite the momentum equation. The
advection term can be rewritten with a term involving the vorticity and
which is a gradient. The result is:

0 ; 1
Za+ (@ +20) xd=-V(L 42|+ ) + F+ Vi (59)
ot L0 2

Taking the curl (and using another vector identity), we get:

0
&wﬁ-Wﬁwa(v-ﬁ) = Gy - VU4V X F4+ VG (60)

where:
Gy =V x @+ 20

is the absolute vorticity The third term on the left side vanishes by in-
compressibility. Assuming for the moment that the rotation vedtois

constant, we're left with:
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0
aw+v-(aow):cva-qu+V><Jf+uv2¢v (61)
(after using incompressibility to rewrite the second term).

Now the question is whether the enstrophy decreases monotonically if
there is no forcing F = 0) and the viscosity is vanishingly small. To

obtain the enstrophy equation, we take the dot product of (61)avith

1] i = VA (74 1 3 IV R (M v} R BV O vty (62)
Integrating this in space, and using the same vector identities that we did
with the energy, we obtain:

CZ///;W AV = [[[ & (@, Vi) dV —v [[[ IV x&*dV  (63)

The last term is negative definite, causing a decay in the enstrophy. But the
middle term has an undetermined sign—in fact, this can act as a source of
enstrophy. So the total enstrophy isn’t necessarily constant in the limit of
vanishing viscosity, it can increase. That means in turn Ehatay not be
conserved in the same limit.

What happens in such high Reynolds number fluids is that the velocity
gradients become very large at small scales. So the enstrophy can be very
large. The smaller the viscosity, the larger the observed gradients.

However, this isn’t the case twodimensions. In this case, the velocity
Is purely horizontal:

U= (u,v,0) (64)

The vorticity, which is perpendicular to the velocity, is puregrtical:
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L 0 Jd . .-
&= (0,0,%U — 8yu) = (k (65)

In addition, the planetary rotation vector is predominantly vertical at large

scales:

20 ~ 20sin(0)k = fk (66)

So:

wa - Vi = (C+ k- V(ui+vj) =0 (67)

So the source of enstrophyadsent in a 2-D flowThis means the enstro-
phy can only decrease in time. Thus the eneésgynserved in the inviscid
limitin 2-D, i.e.

dE
dt
This has an enormous effect on 2-D flows.

0 (68)

limu—>0

But is the enstrophy itself conserved in a 2-D flow with vanishing vis-
cosity? Without the production term, the RHS of equation (63) is nega-
tive definite. But it is not guaranteed that enstrophy is conserved unless
we know that curl of the vorticity is bounded in this limit. To see that,
we have to consider the next equation, for gainstrophy It turns out
there is a source term for that as well. So we can’t assume enstrophy is
conserved—ijust as we couldn’t assume energy was conserved in 3-D.

Thus in the limitr — 0, the energy is conserved in 2-D. In 3-D, it isn’t
necessarily conserved. What we will see is that evensitiny, the energy
can decrease in 3-D. But this doesn’t happen in 2-D. This suggests that
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energy isn't affected by the dissipation at very small scales in 2-Dll We
see why shortly.

6 3-D turbulence

Now we return to the coffee cup. Why does it spin down so quickly?
More specifically, how can dissipation, acting at molecular scalesctaff

the energy at the scale of the coffee cup? We'll see that this has to do with
how energy is exchanged between scales. To understand that better, we

turn first to the energy.

6.1 Triad interactions

To understand how energy is transferred between scales, we will work in
Fourier space. Imagine the forcing, happens at large scales. This is
the spoon stirring the coffee. Assume too the dissipation is at the molec-
ular scale. This implies that there is a rangemérmediatescales where
the forcing and dissipation aren’t relevant. At these scales, it is &idnec
which dominates the changes in the velocity.

We can illustrate how this works by focusing on just one of the advec-

tive terms, in the x-momentum equation:

—U=—U—U (69)

To examine the interactions between scales, it is best to work with Fourie
transformed variables. But how we do this is a little subtle.

We can illustrate this by considering a single Fourier component for the
velocity in (69):

31



w=u(k,t)e™ (70)

Then the equation would look like:

aata(k:, t) e = —ika? ek (71)

Multiplying both sides by —#<:

9
ot
Thus the LHS of the equation is a function/oindt, but the RHS is also

a(k,t) = —ika?e™™ (72)

a function ofz. The equation is inconsistent.
But say instead we usatifferentcomponents for each of thés ap-
pearing in (69). Say for instance that we write the equation thus:
0

aa(kz, t) e = — (1 ") (—i2kn ek (73)

This reduces to:

0
— 1 — i2ku’ 74
8tu(k’t) i2ka (74)

because the** cancels from both sides. Now we have a consistent equa-
tion.

The point is that we have to ushfferentwavenumber expansions for
the velocities on the right hand side of (69), exactly because the term is
nonlinear. As this term involves the product of velocities, it allows differ
ent wavenumbers to interact.

Let’s consider the full range of wavenumbers. We first write the velocity
on the LHS of (69) thus:
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u = Z a(E) t) eik‘xl’-i-ikyy-l-ikzz (75)
k

The summation is over the three wavenumbéts, k,, k.). The RHS we
write thus:

0 . | | |
—Up U= = zl: %: maa(l t) a(im, t) elletmeetilyrm y+iltms)z  (76)

Note the factor ofn, comes from taking the x-derivative.
Now we take the Fourier transform of the LHS of (69) by multiplying
both sides of the equation kyp(—ik,x — ik,y — ik.z) and integrating

over the domain. On the RHS, we have an integral like:
1 ‘ . ‘
- i(lg+mg—ky)x+i(ly+my—ky)y+i(l.+m.—k.)z
73 /// € dx dy dz
Now if:
k=1+m
then the integral is one. If not, the integral is zerdhus the result is:

2,
ot
where agai(x) is the delta function (sec. 3). The results shows that wave

(k,t) = — ; >y a(l ) a(m, ) 6 (I +m — k) (77)

interactions occur between groups of three waves;jauis.®

So a wave witht = (3,3,0) will interact with waves with(1, 2, 0) and
(2,1,0). This is known as docal interaction, because the wavenumbers
for the triad are all similar. But the same wave will also be affedte the
waves with(—10,2,0) and(13, 1,0). These have a much smaller scale in

SAgain, we assume we have an integral number of wavenumbéres lomain. So, e.gk, = nr/L.
5The triad interaction can also be derived directly from tbevolution theorem of Fourier transforms.
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the z-direction. This is anon-localinteraction, as the components have
very different sizes.

Consider Fig. (9), which shows a hypothetical energy spectfurie
plot the spectrum as a function of the total wavenumber:

k= (k*+ k; + ki)l/z

The wavenumber is on the-axis. Note that increasing wavenumber im-
plies decreasingsize; so the large scales are on the left. Now the fluid is
forced at a large scale, perhaps by the spoon in the cup. This produces an
energy spectrum like that in dash-dot line—a spike at the forcing scale. In-
teractions between wavenumbers cause the spectrgpréad outas the
energy is transferred to other wavenumbers. Thus triad interactions cause
the energy tacascadeo other scales. and at later times there is energy
across a range of wavenumbers. Then non-local interactions can occur,
between large and small scale waves.

Eventually energy arrives at the smallest scales, where itis disdipst
molecular interactions. So this is how molecular dissipation can bring the
coffee to rest: because turbulence transfers energy down to the dissipation
scales.

Exercise 2-D triads
Triad interactions also occur in 2-D. In this case, we can write the vor-

ticity equation as:

—(+ u—xC +v—C=0 (78)

In 2-D, the velocity and vorticity can be written in terms of a streamaf
tion:
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Initial energy

E(k)

"cascade"

final energy

k

Figure 9: A hypothetical cascade of an initially narrow bamergy spectrum to smaller
scales. We imagine that energy is conserved during the dassa that the area under the
curves is conserved (despite appearances).

= 9 =Py 29, O
u=-—go v=g (=gw-su=ViYo (79)

Y =30 W (k, ettty (80)
ko
Fourier transform the vorticity equation, assuming a domain with lengths
27 in each direction and integral wavenumbets={ [0, 1, 2, ...]). Substi-
tute in the expansions above and obtain an equatio%{@(%). Show that

the advective terms contribute in triads.

6.2 Kolmogorov's inertial range

Thus forcing puts energy into the system and dissipation removes it. We as-
sume the forcing happens at much larger scales than the dissipation, which
happens on molecular scales, and that there is a range of scales in between
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where neither forcing or dissipation are important. As the great British

scientist, Lewis Fry Richardson put it:

Big whirls have little whirls,
that feed on their velocity.
And little whirls have littler whirls,
and so on to viscosity.

Kolmogorov proposed a theory in 1941 for this transfer, which has be-
come known as theertial range The theory employs a number of as-

sumptions:

e We assume the turbulencesetropic—the same in all directions. So
instead of usingk(k,l, m), we can focus orF/(x), wherek is the

magnitude of the wavenumber vector.

e \We also assume the turbulencé@mogeneousthe same at all loca-
tions in space. So we can speak about the dynamics in wavenumber
space, without worrying about variations from place to place.

e And we assume that triad interactions &eal. This reason for this

will become clearer later on.

As stated, the details of the forcing and dissipation don’t matter in the
inertial range. Thus thenly important parameter in the inertial range is
the rate at which energy is transferred downscale. We call this the energy
flux, e.

Now the spectrumf(k), has dimensions of?/72. That's because
energy has units of?/T?, and the energy is the sum over wavenumbers
of the spectrum (and the wavenumber has unit& df). The flux on the
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other hand has units df? /T3, ase is a rate of change of energy.dfs the

only parameter which matters in the inertial range, then we must have:

E(k) = C¥B35/3 (81)

based on dimensional considerations alone. Heis a constant. Thus
Kolmogorov obtains a definite prediction for the slope of the energy spec-
trum in the inertial range.

The inertial range begins near the forcing scale. It extends down to a
scale where dissipation begins to be important. We can deduce the lat-
ter scale by equating time scales. The dissipation time scale, mentioned
before, is:

LQ
T, x — x v 'k (82)

1%
In the inertial range, the flux is the only relevant parameter, so we can

deduce the time scale from it:

T, o e 323 (83)

In the dissipation range, the dissipation time scale is shorter than the cas-
cade time scale, because energy decays before it is transferred. The oppo-
site is true in the cascade range. At the transition between the cascade and
the dissipation ranges, the two scales are equal. Equating them, we get:

by = () (84)

3
The corresponding length scalg, ~ (v°/¢)'/*, is now called theKol-
mogorov scaleThis marks the boundary between the inertial and dissipa-

tive ranges.
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The Kolmogorov formulation is also self-consistent with regards to dis-
sipation. As noted earlier, the energy dissipation rate is given by:

D=—v [[[ & av

The term in the integral has a scale:

2
1/LU2 x vk*U?
U? scales as the total energy, @’k ~2/3. So the energy dissipation (per

unit volume) scales as:
D o ve3EH3

At the dissipation wavenumbek,, this equals
/3

V€2/37:€
1%

So the dissipation rate is equal to the energy flux across the inertial range.
The Kolmogorov construct is self-consistent in that the amount of energy
put in by the forcing is removed by dissipation.

But notice something—the dissipation ratendependent of! Imag-
ine that we make smaller and smaller. Then the dissipation sdglds
similarly smaller. But the dissipatiaiate is the same. The only difference
is that the inertial range carries the energy to smaller scales.

This is a critical point. Because of the downscale cascade, energy will
not be conserved in a 3-D fluid, so long as there is even an infinitesimal
amount of dissipation. Energy can only be conserved if there is identically
zerodissipation, which can never be realized.

The Kolmogorov picture can be illustrated as in Fig. (10). The energy is
injected at wavenumbet;,;, and at a rate. It then cascades downscale at
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Figure 10: The Kolmogorov energy spectrum.

the same rate;, to the dissipation wavenumbey,, where it is dissipated
at the same rate. In the inertial range, the only parameter which miatters
¢, yielding the characteristic >/ spectrum.

6.3 Shell models

A simple way to understand the Kolmogorov model is as follows. Imag-
ine the turbulence involves energy transfer between discrete wavenumber
bins (Fig. 11). In the figure, we have four bins, and so four different wave
scales. Energy enters at the largest sdale (1) and is removed by dissi-
pation at the smallest scalke € 8).

In drawing the figure this way, we make the assumption that the wavenum-
ber interactions artocal. Energy transfer occurs only between adjacent
bins. The situation would be much more complicated if we allowed for
transfer between all the bins.

The rate that energy is transferred frégm= 1 to £ = 2 is given bye.
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Forcing

k=1 k=2 k=4 k=8

Dissipation

Figure 11: Energy transfer in the shell model. Energy is pattithe largest scalé & 1)
and removed at the smallegt € 8).
This is the same rate as energy is transferred t04. Imagine this were
not so. Say the energy transfer fradm= 2 to k = 4 was onlye/2. Then
the energy would be entering tle= 2 bin faster than it was leaving, and
the energy in the bin would increase in time. The spectrum then would not
be stationary in time. So the transfer rate must be the same between all
bins.

Also notice that the rate that energy is removed from the lastbin §)
Is alsoe. So the dissipation rate is equal to the flux. Again, if this weren't
so, the energy would pile up in the smallest bin.

In fact, this is a real possibility. In numerical models with too littiesi-
pation, the energy cascades to the smallest scales faster thanatisotatk
So the energy increases at the smallest scales and the model subsequently

blows up. The shell model illustrates why this is so.

Exercise Structure functions
Kolmogorov (1941) did not actually derive the form of the energy spec-
trum. Rather, he derived relations for the velocstyucture functions
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These are powers of the velocity difference between two points. For ex-
ample, the second order structure function is:

S(r) =< |u(@+ 1) — u(Z)]* > (85)
The brackets indicate ansemblaverage, i.e. an average over a number
of observations. Use dimensional analysis to deduce ${owvaries with
the separatiorn;. Compare this to the spectrum. Consider also the third
order structure function, which has a special significance in turbulence the-
ory.

6.4 Observations

Observations support Kolmogorov’s prediction for the energy spectrum.
An example is shown in Fig. (12), from measurements in a jet in the
laboratory (Champagne, 1978). The’/® dependence is seen clearly over
roughly two decades of wavenumber.

Another well-known example is the observations of Grant et al. (1962)
in a tidally-mixed fjord on the west coast of the US. This also yielded
strong evidence of &~%/3 spectrum (Fig. 13).

There are numerous other examples as well, from the atmospheric bound-
ary layer, in laboratory experiments and in numerical simulations.

However, where the model is less successful is at predictingitfner
moments Energy, like the variance, is a second order statistic, being pro-
portional to the velocity squared. But one can also look at higher powers,
such as the skewness and the kurtosis. Or, one can look at velocity PDFs.

What is typically found is that the differences between velocities at sep-
arated points (see the exercise above on structure functions) are not Gaus-
sian. As shown in Fig. (14), the PDFs for velocity differences with large
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Figure 12: The energy spectra for the stream-wise and teasswelocity components in
a jet, with Re = 626. From Champagne (1978).
separations are close to Gaussian. But as the separatiapproaches
the Kolmogorov scale, the wings of the PDFs become more and more ex-
tended.

What this implies is that while the velocities themselves may have an
approximately Gaussian distribution, the velogtadientsare not Gaus-
sian. What one sees if one measures the gradients is that large values
occasionally occur, much larger than would be expected for a Gaussian
process. Such episodes appear as “bursts” in the time series. We say that
the turbulence is “intermittent”.

This can be taken into account in the shell model above, by stating that
the turbulence fills only a fraction of the bins. This is the idea behind

the “S-model”. Such a model yields the same spectra as Kolmogorov, but
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Figure 13: Energy spectrum from towed measurements in &lak&n by Grant et al.
(1962). The boxed region shows the region of transition ¢odissipative range.

predicts deviations in the higher moments, as observed.

7 2-D turbulence

At synoptic scales in the atmosphere and ocean, the motion is more nearly
two dimensional than three dimensional. This is because the vertical ve-
locity, suppressed by rotation, is much smaller than the horizontal veloci-
ties. Turbulence in two dimensions is similar to that in 3-D, but also quite
different.

We take the motion to be identically two-dimensional, so that the ve-
locity is given by:

£

= (u,v,0) (86)
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Now the continuity equation is just:

—u+—v=0 (87)

This implies we can write the velocities in terms of a streamfunction,

0 0
U= —@w, v= o (88)
The vorticity is perpendicular to the velocity, so it only has a vertical com-
ponent:
- 8 (9 -~ L 2
W= (&sz ayu) k= V<Y (89)

We usually refer to the 2-D vorticity as The equation for the 2-D vortic-
ity follows from (61):
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K/2 K 2K

Figure 15: A triad in two dimensions. Energy flows from theteetox to the other two.
Each box has a scale which is twice that of the box to it’s right

;C+6-V(C+f):VX~F+VV2C (90)

As noted earlier, the vorticity production term is absent because the vortic-
ity and velocity are perpendicular.

7.1 A triad interaction

The interesting aspect about 2-D turbulence is illustrated nicely in an ar-
ticle by Fjgrtoft (1953Y. We look at a triad interaction between three
wavenumbers, as illustrated in Fig. (15). Energy is initially in the cen-
ter box, at wavenumbeét. The energy flows to the other two boxes, one
which has waves twice as largg¢2 and the other twice as smalk. The
energy in the boxes i8,, /1 and E», going from left to right.

Fjartoft takesy = 0, so that both the energy and enstrophy are con-
served. This is a reasonable assumption in the inertial range, where dissi-
pation is unimportant. Thus:

Ey+ Ey = E; (91)

and:

A remarkable, short paper...with no references! Fjgrtaftias all his points on first principles.
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o+ Zy = 74 (92)

Now these two statements are related to each other, as follows.
The energy in 2-D is:
1

EmQWMw%:;W+FW2 (93)

The enstrophy on the other hand is:

1o 1,0 0 o 1oy 900 o
Zo<2C _2(8$U 8yu) —Z(k: + 5)** = k°FE (94)

So the enstrophy conservation statement for the boxes can be written:
2 2 2
Using our values for the wavenumbers, we have:

2

S By +4k2E; = KBy (96)
or simply:
1
ZEO +4F, = E (97)

We can combine this with the energy equation to obtain:

4 1
Ey = 5E1, Ey = 5E1 (98)

Thus 80% of the energy goes to theger scale wave. Energy is apparently
going upscale rather than downscale!
What about the enstrophy? We have:
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K
Zy = ZEO = ZgEl = ng (99)
Similarly, we find:
4
Zy = 521 (100)

So the situation is reversed: 80% of the enstrophy goes &ntladlerwave.

If you use different size waves, you will find different fractions of en-
ergy and enstrophy transfer. But as shown by Merillees and Warn (1975),
most triads nevertheless act as the one above and transfer energy to larger

scales.

Exercise Another triad

Consider the more general case wheje= x;/n andks = nk,. What
fraction of energy goes to the larger wavenumber and what fraction to the
smaller. What about the enstrophy?

7.2 An integral argument

Another way to see these tendencies was proposed by Batchelor (1953)—
in the last couple of pages of his seminal bdtdmogeneous Turbulence
Imagine we have a narrow energy spectrum initially, as in Fig. (9). The
spectral peak will broaden in time, as energy is passed to other wavenum-
bers via triad interactions. We can express this as:

d

dt/(m — k) Edk >0 (101)

wherex; is the wavenumber peak of the initial spectrum. Expanding the
LHS, we get:
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d
dt[//@2Edm—2mi/mEd/€+/€?/Edﬁ:]>O (102)

Now the first integral is the enstrophy and the last is the energy, both of

which are constant in time. So we must have:

CZ/HECZKV<O (103)

Written another way, this is:

d [k FEdk d
— = — 104
i\ T Ea) = @t <Y (104)

dt
Thusk,,, the mean wavenumber of the spectrumgesreasing in time

That implies that the spectrum is shifting to the left, toward largerescal
Consistent with Fjgrtoft, Batchelor concludes that energy is moving up-
scale in 2-D.

We can use a similar argument to see what's happening to the enstrophy
(Salmon, 1998). If the spectrum is spreading, we also can write:

;/(52 — k)2 Edk >0 (105)

Expanding this, we get:

d
SR Bdr — 22 [ Bds+ k! [Edk] >0 (108)

The second term is proportional to the total enstrophy, and the last term to
the total energy. So we have:

d

d
Cﬁ/ﬁ4Edm:CZt//§2Zd/§>0 (107)

So:
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if k2 7 dk
dt [ Zdk
Thus the mean square wavenumber for the enstropghgrisasingin time;

> 0 (108)

the enstrophy spectrum is shifting to the right, toward small scales.

Thustwo cascades are occurring simultaneously in 2-D: there is an en-
ergy cascade to larger scales, and an enstrophy cascade to smédier sca
That implies that there are two cascade ranges.

Exercise Batchelor, part 2
Re-do Batchelor's arguments using theanwavenumbers,,, instead
of the initial wavenumbers;. Assume that the variance in wavenumber

increases in time. Do you get the same results?

7.3 The two inertial ranges

In 2-D turbulence, there are actuatiyoinertial ranges. This was realized
by Kraichnan (1967), Leith (1968) and Batchelor (1969). We assume the
fluid is forced and that the spectrum is stationary (not changing in time),
just as in the Kolmogorov case in 3-D.

As noted, there are two inertial ranges. One is the energy cascade range.
Dimensionally, this is exactly the same as in the Kolmogorov case. The
energy cascades at a ratfeand the spectrum has the form:

E(r) = Ce¥Pr3 (109)

exactly as in three dimensions. The only difference is the direction of
transfer, which is nowpscale So if the forcing were, say, at the 1 km
scale, it could conceivably produce eddies 1000 km large! This is truly
remarkable.
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But what to do about that energy? The energy after all is dissipated at
the other end of the spectrum, at small scales. Presently we have no means
to remove energy at large scales. So the energy will just pile up there, and
the spectrum will never reach a steady state.

To avoid this, we require dissipation which acts at large scales. A good
candidate isEkman friction which acts equally at all scales. It can be
shown?® that Ekman friction can be included by adding a linear drag term

in the vorticity equation. Specifically, we modify (90) thus:

0
5,0 T V(CH ) = F —r¢+ vV (110)
whereF is the forcing and where

L fos
2H

Is the inverse of the Ekman spin-down time. Héfas the depth of the
fluid andég is the Ekman layer thickness.
To see that Ekman friction acts equally at all scales, consider the case

without forcing or small scale dissipation, with= const. Then:

SC=—rC (111)

where

is the Lagrangian derivative. The solution to this is:

¢(t) = ¢(0)e™™ (112)

8See my notes for the class GEF4500.
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So the vorticity decays exponentially, regardless of the scale.

Where does Ekman friction terminate the upscale cascade? As before,
we find out by equating time scales. The Ekman damping time scale is just
r~1. The advection time scale in the energy cascade is:

1/3,.-2/3

TXE '°K

Equating them, we can solve for the large scale dissipation wavenumber:

Koy = (7’:)1/2 (113)
This is the boundary between the energy inertial range and the largest
scales, which are dominated by Ekman friction.
Now to the other inertial range. In this, enstrophy cascades downscale
to smaller scales. In analogy to the energy range, we have an enstrophy
cascade ratey, with units of 1/7% (because the enstrophy has units of

1/7?). From dimensional grounds, we infer the spectrum has a shape:

E(k) = Cp*3k3 (114)
So this is steeper than the energy inertial range.
An interesting thing about the enstrophy cascade range is that, unlike

with the energy inertial range, the advective time scaladependent of
the length scaleWe have simply that:

7o 3 (115)

In fact, this time scale is determined by the largest eddies in the dasca
range. As such, the enstrophy cascade is non-local—the smaller scales are
stirred by the eddies at the top of the inertial range, which can be much
larger.
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Equating this time scale with the dissipation time at small scajes,
(vs?)~1, we get the dissipation wavenumber:
1/3

Ky = (L )12 (116)

1%
This is where the enstrophy cascade terminates. We can calculate the rate
at which enstrophy is dissipated by scaling the enstrophy equation (63). At
the dissipation scale, the RHS of (63) scales as:
2 2/3,.—2 2/3,.1/3
V|V><C\20<VU0<V77 Py, =1 (117)
LA k4 v

So as with the energy cascade in 3-D turbulence, the enstrophy cascade is

independent of the viscosity, Even ifv is very small, enstrophy is trans-
ferred to the small scales to be dissipated. Thus enstropiot conserved

in 2-D turbulence, since it will always (eventually) be dissipated.

Ky Ks Ky
Figure 16: The energy spectrum for stationary 2-D turbudefmrced at wavenumbed;.
We summarize the cascades in Fig. (16). Energy and enstrophy are “in-
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jected” into the system at wavenumber. There are two inertial ranges:
thex %/ range at larger scales and thie’ range at smaller scales. Energy
cascades at a rate,and enstrophy at a rate, Energy is removed at large
scales by Ekman friction and at small scales by molecular dissipation.

Exercise Energy dissipation rate
Check that the energy lost to Ekman damping at the upper limit of the
energy range is also equaldo

7.4 Physical interpretation

But what exactly is enstrophy? How do we visualize these different cas-
cades?

To see, it helps to understand the difference between the streamfunction
and vorticity, and between energy and enstrophy. The vorticity is:

¢ =V
In terms of Fourier-transformed variables, we have:

E= -
So the vorticity is multiplied by the wavenumber squared. That means that
vorticity is like a high-pass filtered version of the streamfunction.

Shown in Fig. (17) is the streamfunction obtained from a 2-D turbu-
lence simulation (run without forcing, from random initial conditions).
The field is fairly smooth, with high and low pressure regions side by side.
In the right panel is the vorticity field at the same time. This has much more
small scale structure. There are vortices, but also many smalkiitabe-

tween the vortices. We could hardly have guessed these structures existed,
looking at the streamfunction.
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geopotential, t=3, j1dbluank

0

Figure 17: A snapshot of the streamfunction (left) and edsti(right) from a 2-D turbu-
lence simulation. Note the vorticity has much more smallesstucture.
The energy essentially reflects the streamfunction, and the enstrophy

the vorticity. From before, we showed that:

Z(k) = K°E (118)

So the enstrophy is like a high-pass version of the energy. While the energy
reflects the large scale structures, the high and low pressures in Fig. (17),
the enstrophy is more affected by the small scale filaments being strained
out betweerthe pressure systems. It is these filaments which are being

dissipated by the small scale damping.

7.5 The vortex view

The traditional view of 2-D turbulence, following Kraichnan (1967), is
in terms of the Fourier components. Like Kolmogorov (1941), we have
assumed the turbulence is homogeneous and isotropic. But as with the
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velocity gradients in 3-D turbulence, 2-D turbulence exhibits intermittency.
And this intermittency is hard to miss— if one looks at the vorticity field.

Beginning in the 1980s, the computer power was sufficient to simulate
2-D turbulence at reasonably large Reynolds numbers. What researchers
began to see was that the vorticity is dominated by long lived or “coherent”
vortices. These are essentially the cyclones (and anticyclones) which are
familiar in the weather. Atmospheric vortices also persist for longoglari
of time—it is possible to track storms from their origin in the western
Atlantic to their demise in the Nordic Seas.

Vortices also account foextremevelocities. An observer at a fixed
location will notice the velocities rise and fall, then a vortex witllst and
the velocities will be very large, as with a hurricane. Having vortides a
mean the flow is no longer homogeneous—the vortex parts of the flow are
distinct from other locations.

In two seminal papers, McWilliams (1984, 1990) noticed that freely-
evolving (unforced) turbulence quickly evolves to a state where the vor-
tices dominate the flow, as the vorticity between vortices is strained out
and dissipated. Thereafter, the evolution is primarily a processeofers
between vortices. Positive vortices (cyclones) merge with other cyclones
and negative vortices (anticyclones) merge with other anticyclones. The
merged vortices are larger than the vortices which joined to make timem. |
this way, energy is shifted toward larger scales—the flow is dominated by
fewer, larger vortices.

This is illustrated in Figs. (18). The left panel shows the vorticity from
a simulation begun with random initial conditions. After a short period,
vortices emerge, with both signs (cyclones and anticyclones). As time
goes by, the vortices merge, so there are fewer at later times (righ)) panel
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Figure 18: Snapshots of the vorticity from a 2-D turbulencewsation. The panel at left
is at an earlier time, and the one at right at a later time.

Left to itself, the system would eventually evolve to a dipole—one cyclone
and one anticylcone.

McWilliams (1990) studied the statistics of the vortices. He found that
the number of vortices decays ap@awer law(Fig. 19), i.e.:

Ny oct™@ (119)

wherea =~ 0.7. The finding was supported in a subsequent calculations
using “point vortices” (right panel of Fig. 19).

The vortices are important for the flow. Carnevale et al. (1991) showed
that all the important measures in these simulations could be explained in
terms of the vortex statistics. Theirs is a “mean field theory”, and it gees
follows. Assume that the vortices goatchesof uniform vorticity, positive

or negative. Thus the vorticity of a vortex can be written:

= (. ifr<b
10 ifr>0b

Hereb is the radius of the vortex patch.
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Figure 19: The number of vortices as a function of time foregely-evolving turbulence
simulation (left panel); from McWilliams (1990). The numbaf vortices in a “point
vortex” simulation (right panel); from Weiss and McWillian1993).

The patch also has a velocity field. Using cylindrical coordinates and

assuming no radial flow, we have:

0
¢ = im(rv) (120)
So:
1 ,r
v=—[ (rdr (121)
r JO

Thus for the patch:

| Ger/2 if r<b
| P/ (2r) ifr>b

Using this, we can calculate the energy of the vortex. Integrating over the
domain (which we assume is larger than the vortex radiyisve get:

1 (L2
E=— | Yo dr = 0 (122)
where(C' is a constant which depends on the domain sdal@ye've as-
sumed a square domain here, for simplicity).
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If there is more than one vortex, the total energy is the sum of the con-
tributions from all the vortex patches:

BE=YF, (123)

We will neglect the energy associated with the integrations between the
vortices. To write this sum, we make a mean field approximation; we have
replace the sum above witki times the average vortex quantitiesNifis

the total number of vortices. Thus we have:

1
F x ﬁNC Cotocpo? (124)

wherep is the vortex density in the domain/ L2,
Now, we demand that energy be conserved in this system&—soonst.

Thus:

2 = const. (125)
PG

We know that:

poct ™ (126)

with o« =~ 0.7. This means that the product ¢f b* mustincreaseat the
same rate.

Carnevale et al. make one further assumption—that the vortex ampli-
tude is also conserved in mergers. If we take two patches and combine
them, the amplitude won’t change. That implies that the mean amplitude

is also constant. So:

b o 44 (127)
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The mean vortex radius is growing in time. Likewise, the mean areads als

growing:

A= 7b? x t? (128)

This is the inverse cascade in the model—mergers are producing larger and
larger vortices.
Interestingly, the vortex mergers amt conserve enstrophy. The en-

stropy for a single vortex is:

1 2 1 2 2
7 = L2//< dA = —Cimb (129)

because the vorticity is constant inside and zero outside the patch. Again
the total enstrophy is the sum over all the patches:

1
Z:ZZi:ﬁN CCrb? o p b’ (130)
Thus we have that:
Z ot 010/ = /2 (131)

Given McWilliams’ value fora. = 0.7, this implies the enstrophy decays
ast~ "%, This is remarkable, because except for the mergers, this vortex
patch system haso dissipationat all. The prediction was supported by
numerical simulations (Fig. 20).

Why does enstrophy decrease? During mergers, silaatlentsare cast
off. These are then assumed to be dissipated by small scale damping. The
mergers thus conserve energy, but they don’t conserve vorticity.

The vortex view of 2-D turbulence is that the dynamics are determined
by the vortices. Vortex mergers conserve energy, but enstrophy decreases
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FIG. 10, A comparison of average vortex number N (1), vorex radius
ry(t), vortex circulation magnitude [,(¢), enstrophy Z,(¢), and kurtosis
K, (1) from the modified point-vortex model [solid lines) and scaling
theory (dotted lings). In the model, & < ¢ < £ + £, where {,=0.050 and
Iy = 0.14 is the earliest time for one of the 30 eycles to reach N= 100

Figure 20: Vortex statistics from the simulations of fromi¥geand McWilliams (1993).
Here N, r andT are the vortex number and their mean radius and circulatiors the
enstrophy ands is the vorticity kurtosis. The predictions from the meantggrtheory

are indicated by lines.

in time, as filaments are cast off. This is basically the same conclusion
that we reached in discussing the inertial ranges. But the vortex view is an
appealing physical description which is easy to grasp. We'll return to the

mean vortex model later on.

Exercise Enstrophy conservation

What if vortex mergers conserved enstrophy instead of energy? Show
that in this case, the total energy wowgmbw in time. Thus the two quan-
tities cannot be simultaneously conserved in this model.



7.6 Passive tracer spectra

Thus far, we have focused on vorticity, which isativetracer. Advection
of an active tracer changes the flow. Thus momentum, density and vorticity
are active tracers. But we can also ask what happeng&ssivetracer,
which has no affect on the flow. Examples are smoke, ash from volcanic
plumes and spilled oil. Temperature is often considered to be a passive
tracer, but since it affects the density, it is actually an active one.
The equation for a passive tracer can be written thus:
0

gc + - VC = kVC (132)

So time changes in the tracer occur because of advection, or by diffusion.
The coefficient,x, is thediffusivity. This is usually different from the
viscosity, which dictates how molecular mixing affects the velocity. The
main difference between this equation and the vorticity equation is that the
tracer concentratiord;, does not affect the velocity (while vorticity does).
So the advection term Igear. This is why the tracer is “passive”.

Just as with energy and vorticity, we can speak of a spectra of the pas-
sive tracer. We can in particular talk about the tracer variance—dhe v
ation about the mean. If we Fourier transform, we can consider the tracer
fluctuations as a function of scale—exactly as we do with enstrophy (the
vorticity variance) or energy (the velocity variance).

What would such a spectrum look like? Following our previous ar-
guments, we might expect that in a turbulent inertial range, the flux of
tracer variance across scales will be constant. Otherwise the tracer
ance would pile up at a certain scale. Physically this would mean, for

example, that we'd see filaments of a certain width emerging in the flow.
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But this does not usually hapen. Rather, the tracer is drawn out into ever
narrower filaments, until they start to disperse.

The tracer flux has units of concentration squared per second. Let's
call this x. The spectrum of the traceR(x) has units of concentration
squared times length (so that the integral over all wavenumbers will yield
concentration squared). So, on dimensional grounds, we expect:

p=X" (133)
K

wherer is the turbulent time scale.

Here is where the passive element comes in. The tracer doesn'’t affect
the time scaler; that only depends on the active portion of the flow, the
vorticity. So forr, we will use the time scales inferred for the turbulent
ranges.

For the energy range, = ¢ /3 ~2/3, Substituting in, we get:

P(k) = ye V353 (134)

Sointhe energy range, the tracer spectrum has the same slope as the energy
spectrum.

For the enstrophy range, we hawe= n~'/3. As noted, the enstrophy
range is “non-local” because the time scale is independent of scale (as op-
posed to a “local”’ range, where the time scale is determined by the eddies
of that scale). Substituting in, we get:

P(k) = xn k! (135)

So the spectra is shallower than the energy spectrum in the enstrophy

range.
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Interestingly though, the tracer spectrum is #aeneas the enstrophy
spectrum (see the exercise). This implies that vorticity is adveaotdakei
enstrophy rangdike a passive tracereven though it is an active tracer.

The reason is that the enstrophy range is non-local; all fields are advected
passively by the largest eddies in the range.

The spectra are summarized in Fig. (21). Note that the tracer variance
cascadesownscale We do not see the growth of tracer blobs, like we do
with vortices. Thus we assume here that tracer is being put in at the largest
scales and cascading through both the energy and enstrophy ranges. The

spectral slopes are®/® andx .

Ky Kt

Figure 21: The passive energy spectrum in forced 2-D turtmeleThe forcing is applied
atxy, and the tracer is introduced at large scales, afNote the tracer variance cascades
downscale at all scales.

Exercise Enstrophy spectrum
Derive the enstrophy spectrum in the two inertial ranges for 2-D turbu-
lence. Show then that the slope in the enstropy range is the same as that
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for a passive tracer.

7.7 Predictability

Another interesting application of turbulence phenomenology is to pre-
dictability. Imagine the atmosphere was really just a 2-D turbulent fluid.
Now consider that there is an error in the initial conditions at some small
scale. We know the winds at large scales, from measurements, but we can’t
know them precisely at, say, the 1 meter scale. Because the atmosphere is
chaotic, these slight differences in the modelled initial state and thialact
state will grow, eventually disturbing the forecasts at large scaées &.

But how quickly will this happen?

7.7.1 Lorenz Model

The usual point of reference for atmospheric predictability is Lorenz’s
(1963) model. This model is essentiallyffaee mode truncationf the
equations describing a convective fluid system, under the influence of heat-
ing of the lower boundary. In other words, we Fourier transform the vari-
ables and only retain three terms. After non-dimensionalizing, his equa-
tions can be written:

d

C;;:U(y—x)
@_Tx— — Tz
at Y

d

di::cy—bz (136)

Herez,y, z are “state variables” (representing temperature and velocity
in the convective system) and wherer, b are various parameters. The
equations are nonlinear, due to theandzy terms in the second and third
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equations. As with the logistic map (sec. 4), these terms are the source of
the system’s unpredictability.
The equations have three fixed points:

(x,y,2) =(0,0,0), (a,a,r—1), (—a,—a,r—1) (137)
Here
a=/b(r—1)

The first solution is the trivial one, with no motion. The other two have
convection, with opposing circulation.

As with the logistic map, the solutions become chaotic if the nonlinear
terms are comparable in size to the linear ones. If you integrate the equa-
tions numerically, you find that the system orbits around one of the two
non-trivial fixed points for a while, then abruptly makes a transition to or-
bit around the other. Physically, the convection is happening with one sign
of swirl, then abruptly switching over to the other sign. These transitions
are unpredictable and the system exhibits a sensitive dependence on the
initial condition.

Predictability is a measure of how quickly the system diverges under
a change in the initial condition. In the Lorenz model, the error growth
depends on where the system iplmse space.e. in(z,y, z) space. The
error generally growsxponentiallyin time and the magnitude of the error
depends on that of the initial condition. The smaller the initial error, the
longer it takes for the error to propagate through the system.

However, the Lorenz model isn’t very realistic. Think if we truncated
our turbulence model with only three wavelengths. Energy could pass from
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to the other, but it couldn’t go any further; energy would have to recycle
between the three wavenumbers.

As we've seen, the actual turbulence system has a huge range of ac-
cessible wavenumbers. Furthermore, turbulence can be forced and be in
a statistically stationary state. There is no forcing or dissipatiorhén t
Lorenz model, so it is never in a steady state; energy moves back and forth

between scales.

7.7.2 Predictability in 2-D turbulence

So how do errors propagate through a turbulent system8 opposed to

a passive tracer, we assume the error is introduced at a small scale (whe
the observations are poor) and that they cascgdeale If this were not

the case, we’d have nothing to worry about. Errors at small scales would
only hurt the predictions at smaller scales!

But how this cascade occurs depends on the type of cascade. If the
cascade iocal, an error at one scale would affect the next largest scale.
Then that scale would affect the next scale, and so on up to the largest
scales. The total time to reach the largest scale would then be an integral
over all wavenumbers.

To express this mathematically, we can speak of a “spectrum” of inter-
action times:

po T as)

K
Again we divide byx so that the integral over all wavelengths will produce

a quantity with units of time, i.e.:

9The researcher C. Leith from the National Center for AtmesighResearch (NCAR) was an early
proponent of using turbulence models to understand pigdliity. The following section is based on the
presentation in Vallis’s bookdtmospheric and Oceanic Fluid Dynamics.
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7= ["T ak (139)

k0 K
Here x; is the scale where the error is introduced (a large wavenumber,

corresponding to a small scale), arglis our “weather scale”, the large
scale we're focused on.
Consider the enstrophy cascade first. Here /3, so:
w11/

T = dr =13 In(
JKO K KQ

The predictability time thus depends on the scale of the error. So we can

K1

) (140)

increase the predictability time by reducing the scale of the error (increas
ing x1). In addition, the errors grow exponentially in time. Rewriting the

equation in terms of scales,x !, we get:

Lo=Lie""T (141)

So scale of the error increases with a rate proportiongltd Thus the
enstrophy range is in line with our expectations from the Lorenz model.
Now consider the energy inertial range. Ther- ¢~ /3x~%/3. Substi-

tuting in, we get:
1 1

kKl _ _
T=| € V3753 dk o € 1/3(2—/3—2—/3) (142)
ko k1

Now if the scale of the error is much smaller than the largest eddies, we
have:
1

Thus with an energy cascade, the predictability timadependenof the
scale of the error! This is quite different from the Lorenz model. The
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reason is that in the energy cascade the interaction time decreases with
increasing wavenumber. So the error propagation depends on the largest
scales, where the error transfer is the slowest. This has quite largeakact
implications, because it says that increasing the resolution of the observa-
tions will haveno effecton predictability if the system is undergoing an
inverse cascade.

7.7.3 Predictability in the atmosphere

What about the atmosphere? Nastrom and Gage (1985) used velocity data
collected from over 6000 commercial aircraft to calculate wavenumber
spectra in the upper troposphere (Fig. 22). These indicate’ aange

from 100-2000 km and a—°/% range at smaller scales. The® range is
thought to be en enstrophy cascade (e.g. Lindborg, 1999). The dynamical
basis of thex~>/3 range is still debated. If it is a 2-D energy cascade, it
Implies a source of energy at small scales. The scales are somewhat too
large for a 3-D energy range, but some have argued for that. Others be-
lieve it is a 2-D energy range forced by, say, thunderstorms (with scales of
a kilometer or so). Others suggest it is due to temperature anomalies on
the tropopause (Tulloch and Smith, 2006). Whatever the case, the small
scale range ikcal.

Given what we now know about 2-D turbulence, we infer that the pre-
dictability is limited by the local range at small scales, and by the itians
scale, 100 km. The latter would determirngin the previous discussion.

So regardless of how good our observations are, we could not improve the
predictability time. Using approximate values for the dissipation rate, one
obtains a value of " on the order of a week. We caution though that the

dissipation rate is not well-known; indeed, even its sign is debated in the
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Figure 22: Kinetic energy spectra from data collected onroencial airplanes over the
U.S. The zonal and meridional components are shown, withattex shifted one decade
to the right. Note the lower x-axis is mislabeled— it shou&y Swavelength”. From
Nastrom and Gage (1985).

smaller scale range.

8 Geostrophic turbulence

Figure (22) raises some interesting questions. The two dimensional system
we have considered so far is very idealized. The flow in the atmosphere
and ocean are affected by planetary rotation, stratification and bottom to-
pography, to name a few. Yet we still see energy spectra which resemble
those in pure 2-D turbulence. How can this be?
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Geostrophic turbulences what happens when we add these more real-
Istic factors. The name comes from an article (Charney, 1971) where two
dimensional turbulence was considered in a quasi-geostrophic fluid with
continuous stratification. But we use the term to also encompass varia-

tions in f and in topography. We begin with

8.1 The Beta-effect

The vorticity equation (61) in two dimensions is given by:

gtw + - Vw, = vV3w (144)

Using only the vertical component of the vorticity, this is:

;§+6~V@+j):vV% (145)

Notice that if f is constant, it drops out of the vorticity equation com-

pletely. So a constant Coriolis parameter has no effect on 2-D turbulence.
Now let's examine what happens whévaries with latitude. For this,

we will use theBeta-plane approximatiarSpecifically, we Taylor-expand

the Coriolis parameter about a central latitugie,

af | 2f
f(0) = f(0) +@(90) (0 —0) 502

We neglect the higher order terms, so that:

(60) (0 —60)* +...  (146)

& 5(00)+ S 00) (0~ 00) = fo+ By (147

where
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and
y = a(0 — )

Herea is the radius of the earth.
Substituting this into the vorticity equation, and neglecting the dissipa-

tion for the moment, we obtain:

a 7 —
5iCH U VC+Pu=0 (148)

The fundamental difference here is that meridional motion can induce
changes in the relative vorticity. This can be seen clearly if we tewri
the equation in Lagrangian form:

d
¢+ By) =0 (149)

This implies:

( + By = const. (150)

for a parcel. If the parcel moves north, to greajeit’s vorticity must
decrease. As such, titeeffectconstrainsNorth-South motion.
The linear version of the vorticity equation is just:

gtg + Bv=0 (151)

Written in terms of the 2-D streamfunction, this is:
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fv%+ﬁ ¢—0 (152)

Substituting a wave solution:

w _ 1& eika:+ily—iwt (153)
we obtain:
Bk
w = _k2 e (154)

which is the dispersion relation fétossby wavesRossby waves, discov-
ered by C. G. Rossby (1936) are fundamental to our understanding of time
variability in the atmospher®.
Rossby waves have a zonal phase speed of:
w s

=Y 155
“TE T TRrRip (155)

So Rossby waves always propagate to the west (in the absence of a mean

flow) and larger waves move faster than smaller waves.

Now let’'s put advection back into the problem. Now we expect that
the flow can also be turbulent. But which scales are turbulent and which
are wave-like? We can get a rough idea by simply scaling the vorticity

equation:

a — J—
aC‘l‘U'Vc—FBU—O

U U?
r oz U

OFor more details on Rossby waves, see my lecture notes for 4BEE available at
http://folk.uio.no/josepl/publications.html.
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1 U
pLT  BL?
Recall that the vorticity scales d%/L. In the last line, we've divided
through by3U. We see that the advective term scaleg/§8L%)~!. This

is essentially the Rossby number, if we substittite 5 L.

1 (156)

If this parameter is small, the equation should be approximately linear
and the flow is dominated by Rossby waves. If large,ghterm will be
unimportant and the dynamics will be turbulent.

As such, we expect a “boundary” between wave and turbulent dynam-
ics, with the latter occurring at small scales and the former at |agmes.

The separation scale is often called the “Rhines scale” after Rhines (1975):
U

Li=\3 (157)

At Lg, all three terms in the vorticity equation are of equal importance.

Note we haven't specified a time scale in the vorticity equation. This is
because we assume the time scale adjusts to the dynamics. With Rossby
waves, the first term should balance the third, sothat (5L)~!. If the
flow is turbulent, we expect the advective time scédles L/U.

Imagine we have a source of energy at some small ggaleur “spoon”,
stirring the fluid). This will generate a cascade to larger scales. But at
some scale, Rossby waves will dominate over turbulence. At these,scales
the dynamics will be quasi-linear and turbulent transfers will be weak or
non-existent. So we expect thawill halt or arrestthe cascade. The arrest
should occur near the Rhines scale.

However, an interesting thing happens when you run a numerical sim-

ulation of this. An example is shown in Fig. (23), of simulations with a
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barotropic fluid on a sphere (recall that a sphere is periodic i iieec-

tion). The simulations show the energy cascade does indeed arrest, but the
arrest isanisotropiq: it stops in they-direction but not in the:-direction.

The result is that the flow develogenal jets The result is a banded struc-

ture, reminiscent of the Jovian atmosphere.

Figure 23: Numerical simulations of forced barotropic tudémce on a sphere. Note the
formation of banded flow, superimposed over a field of eddibs. mean zonal velocities
are indicated in the inserts. From Williams (1978).

Thus the arrest is actualbniostropicbecause it depends on direction.
This anisotropy comes about because the Rossby wave dispersion relation

Is also anisotropic—there iskain the numerator, but nb As such, differ-
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ent scales of motion have different wave periods, depending on their zonal

and meridional extent. If we write the wave time scale as:

S K+ 1
-~

we see that the time scale increasathout boundaskt — 0. Zonal jets in

(158)

TR X |w

particular havé: = 0.

We can re-write the wave time in terms of the total wavenumber vector,

/432 K

— = 1

E Brcos(@)  Beos(0) (159)
Hered is the angle the wavevector makes, i.e.:

(k,1) = [kcos(0), ksin(0)] (160)

Figure 24: The boundary between turbulence and Rossby waweplotting, we assume

3/e=1.
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At the transition from turbulence to Rossby waves, the wave time scale
equals the turbulent time scale. In the energy cascade, this is:

= /3723 (161)

The two time scales are equal when:

~1/3,.-2/3 _ K~ 162
c " Beos () (162)
or.
K= kg = (53)1/5 3/5(0 163
= rg = (*_) /"cos™(0) (163)

(Vallis and Maltrud, 1993). This has two components:

(s 15) = (P 5c0s¥5(9), () cosiB(0)sin(e)] (164)

€ €

The result is an arresioundaryin (£, 1) space. The boundary is plotted
in Fig. (24). It has two symmetric lobes. Outside the lobes, the wavenum-
bers are participating in triad interactions and moving energy toward the
lobes. Inside the lobes, the dynamics are essentially linearly and the energy
flux is weak.

Vallis and Maltrud (1993) tested this prediction with numerical simula-
tions. They employed a 2-D model, with random initial conditions. The
latter were isotropic and covered a specified band in wavenumber space
(upper left panel of Fig. (25). The initial spectrum thus appears as a ring
in (k.l) space. As time proceeds, energy spreads inward, shifting toward
smaller wavenumbers. But it ceases at the lobe structures described above
Vallis and Maltrud called these “dumbbell” structures.
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Fac, &, Simitar 10 Fig 4 b now caloutated using o small ensemble
ol direct simulanons {sia] of the equations of mation.

Figure 25: Spectra from a freely-evolving 2-D turbulencendation, plotted in
wavenumber space. From Vallis and Maltrud (1993).

The “dumbbell” shape explains the anisotropy observed in Fig. (23).
Consider energy moving in along the axis whére 0 (the x-axis in the
figure). The energy cascade here would stop at1. But energy moving
along the y-axis, witht: = 0, will proceed nearly to the center. The reason
Is that if & = 0, the meridional velocity is zero and titeterm drops out
of the vorticity equation. So for zonal motion, it is as if theeffect were
non-existent.

This implies that a forced cascade withwill produce structures with
k = 0—zonal jets—as in Fig. (23). But there are also eddies superimposed
on the bands; this is the turbulence at smaller scales. The mean velocities
indicate alternating eastward and westward flow. However that ffow i
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asymmetric; the eastward jets are sharper than the westward oness This i
a consequence of barotropic stability, which favors sharper eastward jets.

Exercise Topographic arrest
A bottom slope acts exactly like theeffect in a barotropic fluid. The
vorticity equation (see eq. 182 below) can be written:

O+ =0 (165)

whereh is the topographic elevation. Say that ax (the bottom slopes

up to the east). Find the dispersion relation for the waves (assume periodic
boundary conditions iz andy). Now solve for the arrest wavenumber.
Draw it in (k, [) space. What type of structures do you expect?

8.2 Beta turbulence in a closed basin

Zonal jets can exist in re-entrant domains, like the atmosphere. Indeed, the
Jet Stream is a zonal jet, albeit a highly time-dependent one. But can such
jets exist in theocean where there are lateral (continental) boundaries?

To see, we must consider Rossby waves in a closed basin. These have
a slightly different structure and dispersion relation than the plane Rossby
waves discussed above. We are still working with the linear vorticjtiae
tion (152), but now the streamfunction must vanish so that there is no flow
into the walls. For example, on the western wall, we requireﬁqat: 0.
This demands that have a constant value along the wall, and we can take
that constant to be zero.

The solution is straightforward, but we will not give it héfe The wave
has a dual structure— a propagating wave superimposed upon a stationary

11See for example Pedlosky’s (1987) book, sec. 3.25.
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envelope. For a rectangular basin, the Rossby wave streamfunction has the

form:

mrx, . nmy
I )sin( L, ) (166)

Here L, and L, and the lengths of the domain inandy. The two sine

Y = Acos(kx — wt)sin(

terms ensure that the streamfunction vanishes on the boundaries. Note
that the wavelengths are quantized—only whole waves are permitted in
the basin. This solution is referred to as a barotriyisin mode
The dispersion relation for a basin mode is given by:
s

= 167
v 2m(m2/L2 + n?/L12)\/? (167)

This too is quantized, i.e. there are only discrete values of the frequency,

corresponding to the discrete wavenumbers. The dispersion relation re-
sembles the plane Rossby wave dispersion relation, except that there is no
“k” in the numerator. This makes all the difference.

The time scale for basin modes is the inverse of the frequency, which

we can write as:

e “;" (168)

wherer,,,, = 2r(m?/L2 +n?/L2)"/* is the (quantized) total wavenumber.
Equating this to the turbulent time scale in the energy range:

1323 — fimn (169)
B
yields:
kg = B3P 1P (170)
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for the arrest wavenumber (LaCasce, 2002). This too is quantized. But the
important thing is that the wave-turbulence boundary with basin modes is
isotropic. There is no reason to expect zonal jets.

Numerical simulations confirm this. Shown in Fig. (26) are the stream-
functions from two forced simulations, one in a periodic domain (left
panel) and one with solid walls (right). The former shows zonally-elongated
structures, spanning the domain. The closed basin simulation on the other
hand has mostly isotropic eddies. The only place where the flow is zonally
elongated is along the northern boundary (where in fact a stationary gyre
develops; Fofonoff, 1954).

Periodic, =200 Basin, [3—200
6‘ ' - 1
[ 3 .

5
4

~ 0.2
~ 0

o |
l

-0.8

4

Figure 26: Streamfunctions from a forced 2-D turbulenceugations with periodic (left)
and solid wall (right) boundary conditions.

We quantify the arrest further, as follows. In the simulations shown,
the damping was with Ekman friction. This is represented by a linear drag
in the vorticity equation, as in (110). This implies a similar drag in the
momentum equation. As such, the domain-integrated energy equation (50)

can be written:
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th:///ﬁ-]?dV—r// G-i@dV =e—2rE (171)

whereL is the total kinetic energy. The forcing term determines the energy
flux, e. In a statistically steady state, the LHS on average is zero, leaving:

¢ =2rF (172)

Using this, we estimate the arrest scale as:

2 :
Ly = KZ = 27873/ (2r E)V/° (173)

We compare this estimate to the simulations by calculating spatial cor-
relations in the velocity field. In an eddy, the velocities are corrdlébe
anti-correlated) across the eddy. Outside the eddy, the velocities are uncor-
related with those in the eddy. So we can use velocity correlations to find
the size of the eddies.

We plot the correlations as ellipses in Fig. (27). The solid and dashed
curves correspond to two different ways of calculating the correlation (ei-
ther using parallel velocities along a line—the longitudinal velocities—or
perpendicular velocities—the transverse velocities). Both yield thessam
result; the eddy scales are isotropic and they are consistent with the length
scale estimate in (173).

For comparison, the correlation ellipses from two simulations in a pe-
riodic domain are shown in Fig. (28). In this case, the longitudinal corre-
lations (corresponding to thevelocities) are elongated in thedirection,
indicating coherent zonal flow. The transverse correlations on the other
hand (corresponding to thevelocities in ther-direction) are more nearly
isotropic. These reflect the small scale eddies superimposed on the zonal
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Figure 27: Velocity correlation ellipses from a series opesiments in a closed basin.
The solid ellipses are from the longitudinal correlationstlf values [0.8 0.6 0.4]); the
dashed ellipses are transverse correlations (with valt¢3.® 0]). The vertical lines

indicate the arrest scale from (173). From LaCasce (2002).

jets.

Thus the arrest in a rectangular basin is similar to that described by
Rhines (1975)—nbut it is isotropic. The isotropy stems from the fact that
the wave time scale in a basin is also isotropic. So the boundaries prevent
the formation of zonal jets. This example also highlights the importance
of using time scales to understand how the turbulence behaves.

However, the present case is still quite unrealistic in terms of thenpcea

as the bottom is entirely flat and the flow is barotropic. The actual ocean of
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Figure 28: The velocity correlation ellipses from two sietidns in a periodic domain.
From LaCasce (2002).

course has significant topography and continuous stratification. We have
found recently that zonal jets can appear with stratification, even in the
presence of basin boundaries (O’Reilly et al., 2012). Topography also can

exert a consideral influence on the flow. We consider this next.

8.3 Topography

Bottom topography in a barotropic fluid acts very much like theffect.

But instead of limiting N-S motion, topography inhibits motiaoross the
depth contours Thus an inverse cascade would be expected to generate
jets over a topographic slope, exactly as seen in the last section. This was
demonstrated by Vallis and Maltrud (1993).

But a major difference with topography is that it need not be a simple
linear slope. We have mountains, ridges and closed basins. How would we
expect such features to alter the inverse cascade?

This question was addressed in two independent and simultaneous papers—
by Bretherton and Haidvogel (1976) and by Salmon, Holloway and Hen-
dershott (1976). Both considered freely-evolving 2-D turbulence over es-
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sentially any type of bottom topography. Salmon et al. used ideas from
statistical mechanics while Bretherton and Haidvogel used the calculus of
variations. The two approaches are in fact related, as demonstratdaylater
Carnevale and Frederiksen (1987). We examine the Bretherton and Haid-

vogel derivation below.

8.3.1 The barotropic vorticity equation

To do this problem, we require the vorticity equation for a barotropic fluid
with variable depth. Strictly speaking, one begins with shallow water
equationsand then makes thguasi-geostrophi@approximation. We will
use a simplified derivation to get to the desired result.

Under the shallow water equations, fluid flow conservespibiential
vorticity in the absence of forcing or dissipation. We can write this as:

S
dt"H +n
Heren(z,y,t) is the surface elevation of the fluid(z, y) is the depth of

=0 (174)

the fluid at rest and the quantity in brackets is the potential vorticity (PV)
Under therigid lid approximation we ignore the surface elevation (as this
Is usually much less than the depth of the fluid).

Under the quasi-geostrophic (QG) approximation, we demand 1) that
the change irf and 2) the variation it are both small. Likewise, we say
that the relative vorticity is small compared tg,. So for example, if we

say:

f=Jo+ By (175)

12A complete derivation can be found in Pedlosky (1987) ori¥42006), among other places
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then we demand thatL, < fo, if L, is the maximum value of in the

domain. Similarly, if we write:

then we deman¢h| < D (whereD is the mean depth). With these ap-
proximations, the PV can be re-written:

C+f_C+fo+5y_1%(1+c“/fo+ﬂy/fo)
H  D-h D 1—h/D

q= (177)

Now all the fractions in the parentheses are small under QG. So we can
approximate the PV by:
¢ By h

q%(l—l—fO—FfO—FD) (178)

(neglecting products of the small fractions). Inserting this into the shallow
water PV equation, we get:

d foh

S(C+ By + 20 =0 (179)

after multiplying the whole equation by, and dropping the constart
term (which has no derivative). With small scale dissipation, andngrit
out the Lagrangian derivative, this is:

0
5¢ T V(¢ +By+h)=vVi (180)
I've absorbed the factor of,/D into the topographic height,, for sim-

plicity.
Notice that this is essentially the same equation as (145). What this
implies is that topography can effect the vorticity just like the vaoiati
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of the Coriolis parameter. The Beta-effect and topography thus are very
similar, dynamically.

Lastly, we rewrite this in terms of the streamfunction, thus:

gtv% +i@-V(V* + By + h) = vV (181)

This is thebarotropic QGPV equatian
8.3.2 Conserved quantities

For simplicity hereafter, we will consider the case without the variation
in f (we setg = 0). We also invoke incompressibility to rewrite the PV

equation thug?

gtv%p + V- [@(V*) + h)] = vV (182)

Using this, one can show that there are two conserved quantities in the
limit of vanishing dissipation, i.ex — 0. One is the energy:

2(%/ u? + v?) d:cdy— — /|w|2 drdy = 0 (183)

The proof of this is left for an exercise. We also conserve “total enstrophy”.
To see this, we rewrite the vorticity equation (182) thus:

gtq+v (q) =0 (184)

whereq = V2 + h is the potential vorticity. If we multiply the equation

by ¢ and integrate over space, we get:

2

(9t2//q dxder//V u —) dxdy =0 (185)

BActually the 2-D shallow water velocities aren’'t incompsigde. But under QG, the velocities are
approximated by their geostrophic counterparts, and theseon-divergent.
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The second term on the LHS can be rewritten:

J[v-( q2 dxdy—]{—u i dl (186)

by invoking Gauss’ Law. It vanishes in a periodic domain or one with
lateral walls.

So the total enstrophy?/2, is also conserved. Let’s call thi3. Note
that the enstrophy itself isot conserved. This is because the interaction
with the topography itself can produce enstrophy.

Exercise Energy conservation
Prove that the integrated kinetic energy is conserved, starting directly
with the vorticity equation (182), it = 0.

8.3.3 Minimum enstrophy

With topography too, one has a dual cascade. Again the energy shifts to
larger scales, but it is thetal enstrophy which cascades to smaller scales.

If the dissipation is non-zero, the total enstrophy will then be dissipated.
Bretherton and Haidvogel suggested that the turbulence would thereby act
to minimizethe total enstrophy, while at the same time conserving the en-
ergy.

This suggests we can seek a solution with minimum enstrophy. To do
this, we use thealculus of variationsas follows!* Let ) be the total
enstrophy. Its minimum occurs where utariation vanishes. This is as
when a function has a maximum or minimum when it’s first derivative

vanishes. We take the variation thus:

M Expositions can be found in many textbooks. See also theq@agagrange multipliers on Wikipedia.
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0Q = 5//;(V2w L R)?dA =
// (V% +h)d(V* + h) dA =0 (187)

where the) signifies a variation (change) in the quantity following it. We
assume the topography is fixed, but the streamfunction can vary. So the
equation is:

J[(V* + h)sv2p dA =0 (188)

Now this could correspond to either a minimum or maximum. To find
out, we'd have to evaluate the second variation. We won’t do that; we’ll
simply assume the extremum is a minimum.

However, this only tells us wher@ has an extremum. We haven't
said anything about the energy. But we can impose energy conservation
by using the method dfagrange multipliers In particular, we define a

functional

F=Q+uE — E) (189)

Here the constant is a Lagrange multiplier anél' is the kinetic energy:

_ 1 2 2 _ 1 2
E—2//(u +v)dA_2//\v¢y dA (190)
Ey is the specified kinetic energy of the system (and it is a constant).
If we take the variation of” with respect tq:, we get:
OF

— =FE—-E;=0 (191)
op

So this implies that the solution will have an energyiif
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If, on the other hand, we kegpconstant and take the variation bf
we get:

SF = 6(Q + u(E — Ey)) = 6Q + udE = 0 (192)

The variation ofE), is zero since it is a constant. Substituting in the ex-

pressions for) and E, we have:

0Q + pdE = [[ (V2 + h)oV3 dA +p [[ V-6V dA - (193)

Both integrals in (193) can be rewritten using integration by parts, assum-
ing either periodic or solid boundaries. Specifically we can write:

[ V-0V dA = — [[ V-5 dA (194)

Also:
J[(V2+ 0oV dA = — [[ V(V? + h) - 6V dA =

] VA (V0 + h)oy dA (195)

There are boundary terms as well (which | haven't written, but which are
also zero). Combining the terms, we get:

5Q + 6 E = ;// V(Y3 + h — )6 dA = 0 (196)

We require that the integral vanish falf variationsjv. For this to happen,

we must have:

V2 +h— up =0 (197)
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This is is known as the “Euler-Lagrange equation” for the problem. We
can solve this by Fourier transforming both the streamfunction and the
topography:

=Sk, e =3 h(k, [)e* iy (198)
k,l k,l

Substituting both into the Euler-Lagrange equation, we can solve for
terms ofh:

~ ~

N h h
_ — 199
4 w+k2+ 102 p+kK? (199)

Interesting, the predicted streamfunction resembles the topography. If

we know the transform of the topography, we have the transform of the
streamfunction. Then we can inverse transform to obtain the actual stream
function.

But what is this exactly? According to the variational calculation, this is
the flow which has the minimum total enstrophy for a given kinetic energy.
The minimum enstrophy streamfunction resembles the topography, which
means the minimum enstrophy solution has flow approximgiatsllel to
the isobaths

But the flow isn’t entirely parallel to the isobaths. This is because the
denominator in (199) filters the small scales. At large scales, spelgifical
whererx < 11, ¥ ~ h/p. But at small scales) ~ h/x?, which goes to
zero asx gets large. So the flow looks likelaw-pass filteredrersion of
the topography. The solution predicts there will be anticyclonic flow over
seamounts and cyclonic flow in basins. This is often observed in the ocean.

But what determineg, the multiplier? If the energy is conserved, then

we have:
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1 1 K2h?
Ey= Y w7 =3 5 (200)
2% 2% (p+rK2)?
So with E, we can determing. The largerE) is, the smaller: will be.
And the smalley. is, the greater the low-pass filtering effect will be. Thus

energetic flows yield smoother representations of the topography than do

weak flows.

Frovwes 2, k). For legond see nexl page.

Figure 29: A numerical simulation from Bretherton and Hagko(1976). The topogra-
phy is shown in the upper left panel and the initial strearofiom in the lower left panel.
The final streamfunction is shown in the lower right paneltiddothat this is very similar

to the topography.
The results from a numerical simulation from Bretherton and Haidvogel
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(1976) are shown in Fig. (29). This was a freely-evolving experiment, i.e.
one without forcing. The initial streamfunction is shown in the lower left
panel and the topography in the upper left panel. After a period of time,
the streamfunction settles down into the configuration shown in the lower
right panel. The streamfunction strongly resembles the topography, and
has the same signs. There is, for example, cyclonic flow in the depression
in the upper part of the domain. But note too that the streamfunction has
less small scale structure than the topography—evidence of the low pass
filtering effect predicted by the variational solution.

Observations in the ocean show that mean flows are often correlated
with bottom topography. The present theory is one possible explanation
for this.

8.4 Stratification

So far, we have only considered barotropic flows. But the atmosphere
and ocean are stratified and many important dynamics stem from having a
stratification. Both the Jet Stream in the atmosphere and the Gulf Stream
in the ocean are known to be baroclinically unstable, an effect which owes
its existence to stratification. In barotropic turbulence, we speak af tria
interactions among horizontal wavenumbers. But with stratification, we
can furthermore have interactions between waves with differertical
structure. Thus the problem becomes three dimensional.

But we are interested in large scale turbulence, and the flow is still pre
dominantly two dimensional at large scales, even with stratification. It
turns out that many of the concepts we have seen so far will carry over to
the stratified case.

The following will be based on the stratified quasi-geostrophic poten-
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tial vorticity (QGPV) equatiort?> Neglecting the variation of the Coriolis

parameter, the equation can be written:

9, .
aq +up-Vg=10 (201)
where
o, f2 o
=V + (%= 202
where
dpo
N2 — _9aro
po dz

Is the square of the Brunt-Vaisala frequency, a parameter proportional to
the background stratification. Also

up = (ug,vg,0)

Is the horizontal part of the velocity, with both components approximated

by their geostrophic versions:

(15:00) = (= 50)
At large (weather) scales, the vertical velocity is of order Rossby number
smaller, so we neglect it in favor of the geostrophic velocities. A conse-
guence of this, noted earlier, is that the velocities are horizontally non-

divergent:

._ 0,  1dp, 0 10p _
Vo= hay) Tay e 70

We'll exploit this below.

15A derivation is given by Pedlosky (1987) and in my lectureasofrom GEF4500. We will use the
Boussinesq form of the QGPV equation.
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The advected quantity; is the potential vorticity. This is comprised
of two parts: the relative vorticity and tretretchingvorticity. While the
relative vorticity is proportional to the Laplacian (and hence the lateaal gr
dients of the streamfunction), the stretching term depends on the vertical
gradient of the streamfunction. This vertical shear is absent in the baro-
tropic formulation.

For concreteness, we assume we have a periodic doméingn and
solid boundaries at = 0 andz = 1. The boundary condition on the
vertical boundaries is that the vertical velocity vanishes. One can show
that this is satisfied i. = 0 there.

8.4.1 Conserved quantities

We can derive an energy equation if we multiply the PV equation bnd

integrate over the volume:

W watv% v+l waat 882 JJ&Q Zf JdV + [ v Vgdv =0 (203)

Note I've dropped the “h” subscript on the velocity. Consider the third
term. We can use the following identity:

V- (quy) = qpV - 4+ qu - VY + Yu - Vq (204)
The first term on the RHS is zero because the geostrophic velocities are
non-divergent. The second term is zero because the velocity is parallel to

the streamfunction contours; so the dot product with the gradient is zero.
Thus the third term in (203) is:

[ wii-vqdv = [[[ V- (qe@)dV = ffvq(i-n)dS =0  (205)
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after applying Gauss’s theorem. This is zero because of periodicity in
andy and because the vertical velocity vanishes at the top and bottom.
Using integration by parts with the first term in (203), we get:

i///zpv%pdv __1a ///|w\2dv _ —ff/// W20?) dV (206)

This is the derivative of the (horizontal) kinetic energy. Note that only the
horizontal velocities contribute to the kinetic energy to first order (in the
Rossby number).

Then there’s the second term. Now we apply integration by parts in the
vertical:

o 0 f oL 0 f¢ ov 15 r%
/// ot 0z NO2 82 )dV = // atN()?az —2dt/// NO2 62 (207)

The first term on the RHS vanishes becagzsﬁ vanishes on the vertical
boundaries. The second term on the RHS is actually proportional to the
squared density anomaly; thus this is gogential energy

Summing up, we have:

dt 2 /// S+ (5, ﬁ@(?ﬁ) dV =0 (208)

So the total energy—the horizontal kinetic plus potential—is conserved.
This is our first conserved quantity.

Now if we multiply the PV equation by and integrate that over space,
we get:

dt2 ///q dV =0 (209)
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So the second conserved quantity is the potential enstrophy (the square of
the PV).
In fact, there are an infinite number of conserved quantities (see the

exercise); but we’ll focus on these two.

8.4.2 Energy cascade

With these two conserved quantities, we can demonstrate that the energy
shifts to larger scales and the enstrophy to smaller scales, using@an ar
ment like Batchelor’s (1953), and as shown by Charney (1971).

Let’s assume that the Brunt-Vaisala frequengyijs also constant. Then
we can redefine the vertical coordinate thus:

N

2'=—z (210)
fo
Doing this, the PV is simply:
2 82 2
1=Vt 550 =Viy (211)

whereV3 is the three dimensional Laplacian, with the new vertical coor-

dinate. Likewise, the energy is:

E= ;/// V| dV (212)

and the enstrophy is:

Q= [J[(V3wyav (213)

We will Fourier transform the streamfunction as follows:

Yy, z) = 3 e Weos(nrz) (214)
kJn
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We use the cosine expansion in the vertical so that the vertical derivative
of ¢ vanishes on the vertical boundaries {at 0 andz = 1). With this,

we have:

E= 1/,¥|@L|2dﬁ; (215)

2
and
Q= 1/ﬁ4w|2dm - 1//£2Edf£ (216)
2 2

where

K = k2 4+ 12 + n?n? (217)

Is the total wavenumber squared.

Now we can proceed exactly as in 2-D. Consider a spectrum peaked at
some three-dimensional wavenumber, We assume the peak will spread,
so that:

jt/(n — k)2 Edk > 0 (218)

Expanding:

d ;o d ,d
dt//—iEd/@—det//fEdli—Hﬁdt/Edm>0 (219)

The first and third terms are zero, So;

d
o [KEdr <0 (220)

which implies the total energy shifts to smallerThere is an inverse cas-
cade, as in 2-D turbulence. But note that this is not only to larger horizontal
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scales—it is also to largeertical scales. This means the flow will become

more barotropian time.
8.4.3 The vortex view

Again, we can invoke a vortex view, to obtain a physical impression of
this process of barotropization. In geostrophic turbulence, the vortices are
potential vorticeshaving both relative and stretching vorticity.

Consider a vortex, with potential vorticity. We can scale the PV as

follows:
2 2
_ o2, o 97
¢=Vy+ N2z
UL feUL
L? NZ2H?
f2L2
O T E (221)

I've divided through by the scaling for the relative vorticity, and I'm taking
N2=const. We see that the relative scale of the stretching vorticity depends

on the vortex sizel. We can rewrite this term as:

B _ 1
= — (222)
N2H?  [3
where
L, = E (223)
Jo

Is thedeformation radiuslif the vortex is much larger than the deformation
radius, the stretching vorticity dominates and if the vortex is much smalle
thanL,, the relative vorticity dominates.

Imagine we have a three-dimensional QG simulation, with random ini-

tial flow. The flow will organize itself into vortices, on differetgvelsin
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the flow. These vortices will be smaller than the deformation radius and
dominated by relative vorticity. So they will behave just like vortioes
2-D turbulence. Like-sign vortices will merge, making larger vortices.

As the vortices become larger, the stretching vorticity is more impor-
tant. We see, in particular, that the vortices have greater vertitahe So
they begin to interact with vortices on other levels. Occasionallg;ign
vortices will verticallyalign with one another. This is just like a merger,
but between two vortices on different levels.

The flow thus evolves to a system of fewer and fewer vortices, with
greater and greater vertical extent. This is the physical meaning of Char-
ney’s 3-D cascade.

The potential vorticity from such a simulation, from McWilliams et al.
(1999), is shown in Fig. (30). The flow started with a 3-D random initial
condition. In the upper panel is the PV at an intermediate time. Already
it is clear that like-sign vortices are congregating together. At a tates,
shown in the lower panel, the vertical alignment is clear, and two large
tornado-like structures have formed.

Thus the vortex view again illustrates the behavior that we have deduced
from spectral considerations.

8.4.4 Enstrophy cascade

Another prediction of Charney’s is that there will be an enstrophy cascade
In quasi-geostrophic turbulence. This will have an energy spectrum given

by:

E(k) o< 2k73 (224)
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FiGure 3. For caption see facing page.

Figure 30: Potential vorticity from a 3-D QG simulation fraandom initial conditions.

The upper panel shows the PV at an intermediate time andwer [ganel at a late time.

Note the vertical alignment of the vortex structures.

wheren is now the total enstrophy transfer rate, with unitsef . The
difference here is that the wavenumber is the full three-dimensional wavenum-
ber given above. However, Charney assumes that the turbulegeo&agpic

in the three directions,z, y, z*). That implies that the energy spectrum

will be the same for the horizontal kinetic energy, or indeed even one com-
ponent, i.e. fon?.

This is a possible explanation for the® range below 2000 km in the
Nastrom and Gage spectra in Fig. (22). The atmosphere is not a 2-D fluid,
but at large scales it is quasi-geostrophic. Moreover, in the troposphere the
Brunt-Vaisala frequency is approximately constant, so Charney’s stretched
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vertical coordinate is a reasonable choice. Further analysis has shown that
the enstrophy flux in this range is downscale, as expected for an enstro-
phy cascade (Lindborg, 1999). So it seems like this really is an enstrophy

cascade.

There aralsoindications of an enstrophy cascade in the ocean. Wang
et al. (2009) calculated energy spectra from current measurements col-
lected from a ferry steaming between the U.S. and Bermuda, across the
Gulf Stream. The results (Fig. 31) also show a cleat range. The peak
of the scale corresponds to roughly the 50 km scale. In addition, the ki-
netic and potential energy show the same slope, consistent with Charney’s
assumption of an energy flow which is isotropic in the three dimensional
wavenumber.

10" ¢ . . 10"

Spactral Densty (m"/a®/cpkm)
Spectral Denstty (m"/s™fcpkm)

10* L 1w*

10 10 10" 10* m." 1w’

Figure 31: Kinetic energy spectra from ADCP data collectednfia ferry steaming be-
tween the U.S. and Bermuda. The left panel shows:thedv components, and the right
panel the kinetic and potential energies. From Wang, Flaggphue and Rossby (2009).
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Thus the addition of stratification hasn’t changed the situation greatly.
However, as the flow becomes more barotropic, the boundaries will even-
tually become important. So it may be that Charney’s construction works
better at small scales, i.e. in the enstrophy range.

There are other questions as well. For example, where does baroclinic
instability fit in? Instability implies a conversion of large scale potanti
energy to kinetic energy at the deformation radius. How do we recon-
cile this with an inverse cascade? The answer can be found in detailed
consideration of the triad interactions occurring in a baroclinic system, as

follows.

Exercise Enstrophy conservation
Show thatanyfunction of the potential vorticity; is also conserved in
the QG system.

8.4.5 Cascades in a two mode system

Triad interactions become very complicated when we have vertical modes
in addition to the horizontal wavenumbers. However, we can get a good
idea of how the system behaves when we consider only two vertical mddes.

Consider again the PV equation, which we write thus:

0 0 0 0 oY 0 oY 0
— — — = —q — —— - g = 225
ot T o1 Ve, 5 Byt T ar oyt T (225)
We can write this in shorthand form thus:
0
—q+ J(¥,q) =0 (226)

ot

16The following is based on Salmon (1980).

102



The J(, ) function is called thdacobian It is defined as:

da 0b  0b0Oa
) = ——— — — — 227
J(a,b) Oxdy Oxdy (227)
We’'ll take N = const., so the PV is:
i 0

N2 922
Assuming the fluid depth is such that< > < H, we can express the

(= V4 (228)

streamfunction in terms ofertical modesthus:

nmz

We will only consider the first two terms:
nrtz
¢(I,y,2,t) - ¢B($7y7t) +¢T<xay7t) COS(?) (230)

Here g is thebarotropic streamfunction; it does not vary in the vertical.
Y is thefirst baroclinicmode. It is the gravest of the cosine modes; if we
integrate it in the vertical, it vanishes. We will exploit this below.

The PV also has two components:

nmz

q=VYp+ (V> = F)Yr 005(7) (231)
where
w2 f3
F =57 (232)

Notice that this parameter has units bf?>. Thus the square root of
is like a wavenumber. This corresponds to the inverse of the deformation
radius.
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Plugging the streamfunction and PV into the PV equation, we get:

QV2¢B + a(VQ — F)chos(n;;Z) + J(¥p, Vp)+

ot ot
T, (V= F)¢T)COS(77§) + J (¢, v2¢B)COS(n[7;Z
J(¥r, (V2 = F)ir)cos’(“) = 0 (233)

We can isolate the time derivative of the barotropic streamfunction if we

)+

integrate this equation in over the depth of the fluid, and then divide by
the depthH:

0

o,V B + (U5, Vip) + ;J (7, (V= F)yr) =0 (234)

The terms multiplied by cosine vanish, and the cosine squared term inte-
grates to one half. This is the vorticity equation for the barotropic mode.
Notice that the barotropic vorticity can change by two terms. The first in-
volves the barotropic velocity advecting the barotropic vorticity, and the
second the baroclinic velocity advecting the baroclinic vorticity.

Similarly, we can obtain an equation for the baroclinic vorticity if we
multiply the equation byos(nrz/H) and integrate over the depth. Then
we get:

0
pr
after cancelling a common factor of 1/2. This is the baroclinic vorticity

V2 — F)r + J(Wp, (V2 = F)r) + J(¥r, Vbp) =0 (235)

equation. This states the baroclinic PV changes when the barotropic ve-
locity advects baroclinic PV, and vice versa.

Each PV equation has an energy relation associated with it. If we mul-
tiply (234) by and integrate over the area of the domain, we get:

104



Z// Vs dA = [[ GpT(r, (V2 = F)dr)dA=0  (236)

after integrating by parts. Note the barotropic advection term vanishes
when integrated over the area. The first term is the barotropic energy,
which is purely kinetic. This isiot conserved, because of the interaction
with the baroclinic mode.

Likewise, multiplying (235) by and integrating over area, we get:

i//”WﬂQ + Pl dA = [[ 4rJ (g, (V2 = F)gr) dA =0 (237)

again, after integration by parts. The first term is the change in the total
baroclinic energy, which has both kinetic and potential parts. The baro-
clinic energy isn’'t conserved either, due to the interaction with the baro-
tropic mode.

However, if we integrate by parts again, we can show that:

— ([ s (r, (V2 = F)gr)dA = [[ 7] (g, (V* = F)ibr) dA (238)

So adding the two equation energy equations together, we get:

[ 196+ 1Vl + FlurfdA = 0 (239)

So the total energy, barotropic plus baroclinic, is conserved.
After a similar derivation, you can show that:

d .
= [[(F20m) + (P + F)ir)? dd =0 (240)
So the total enstrophy is also conserved.
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How energy is transferred in the two mode system depends on the triad
interactions. To see how these work, we’ll focus on the barotropic PV
equation (234). We write this for Fourier components, and we leave out
the summations for simplicity. The equation then looks like this:

0 _ | |
_&(ki + k§)¢3162k-x + J(wBQ, —(mi + m§)¢33)62m‘z+mm

+J (Y11, = (@ + @5 + F)pra) 0T = 0 (241)
Note that I'm usingn now as a horizontal wavenumber (not the vertical
mode number). To extract an equation for the barotropic streamfunction

with wavenumbersk,, k,), we multiply by ¢ p;e~** and integrate over
the area. The result is:

0
_ﬁ(

+Re{d I (Ur, —(a; +ay + F)or)}o(p+a—k) =0 (242)

This equation accounts for the change in barotropic energy at wavenum-

k2 + k)| ]” + Re{vp J(Yp2, —(mi + m2)ps) }o(m +n — k)

ber (k,, k,). Remember that the two advection terms involve sums over
many wavenumbers. Interactions between wavenumber triads can transfer
energy.

We see though that there are two types of triad. The first involves inter-
actions between three barotropic waves. This corresponds to the triads we
considered previously. The second though is something new, and involves
the barotropic wave (dt y, k,)) and two baroclinic waves.

Consider a triad of barotropic waves first. These conserve barotropic
energy and enstrophy:

d
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d
%(Zl + Zs + Zg) =0 (243)

We can rewrite the enstrophy relation thus:
d

%(%%El + K3y + K3E3) =0 (244)

This is exactly like Fjgrtoft's barotropic example. We expect then that
energy will shift to larger scales and enstrophy to smaller scales.
Now consider the barotropic/baroclinic triads. The enstrophy relations

are.

d
dt
This is more complicated than the barotropic case because &f tans

(k1B + (K3 + F)Ey + (k3 4+ F)E3) = 0 (245)

(which also affect the baroclinic energies). Consider first that all three
members of the triad have scales well below the deformation radius, so
that(x1, k2, k3) > F. Then the enstrophy equation is, approximately:

d
%(K%El + KJ%EQ + KJ?))E?,) =0 (246)

This is the same as with the barotropic triad. Thus we expect energy to
be transferred to the triad member with the largest scale (regardfes
whether this is barotropic or baroclinic). Energy would thus shift toward
the deformation radius.
Now consider that we have a large scale triad, so(thats,, xk3) < F.
Then we have, approximately:
d

o (FEy+ FEy) =0 (247)

This simply states that energy will pass between the two baroclinic waves.
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But the direction of transfer is undetermined—we can’t say whether energy
IS moving up or downscale.

Does this mean that baroclinic energy at large scales can't transition to
smaller scales? It would seem so. But what about baroclinic instability?
In that, energy is transferred from a baroclinic mean shear to barotropic
eddies. This would seem to contradict the present finding. In fact the
problem here is the assumptionlotal interactions. What about a non-
local interaction, between a large scale baroclinic mode and smaller scal
barotropic and baroclinic waves?

The usual models of baroclinic instability (the Eady model, the Charney
model and the Philips model) all involve a baroclinic shear with no lateral
shear. So we could express this as a baroclinic mode in which:

(k3 + F)r = Fim (248)
(the Laplacian is zero because the mode is constantandy). Making
no other assumptions about scales, we have:

d
%(El + FEy+ E3) =0

d
ﬁ(ﬁm + FEy+ (ki + F)E3) =0 (249)

Using the first equation, we can eliminat&, /dt from the enstrophy equa-
tion. This yields:
d

%(K%EI — FE, — FE3+ (kj + F)E3) =0 (250)

or:

d d
By = < ((F = k1) E) (251)
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This implies that the energy in both the other modes can increase in time
if:

KT < F (252)

In other words, if the barotropic wave is larger than the deformation radius,
it can take energy from the primary baroclinic wave. This is precisely the
short-wave cut-off that we found when we studied the Eady model—only
the long waves can be unstable.

But more than that, the barotropic wave can be much smaller than the
primary baroclinic wave. Recall that the most unstable wave in the Eady
problem has a scale somewhat larger than the deformation radius. Such a
triad isnon-local because there is a large separation in scales between the

triad members.

Non-local Local

Figure 32: A idealized diagram indicating the tendenciasefoergetic transfer in the
two layer model. The upper line represents the barocliniderand the lower line the
barotropic mode. Based on a figure of Salmon’s (1980).

We can summarize the results by using a schematic diagram (Fig. 32),
which is based on a figure of Salmon’s (1980). The energy at small scales
cascades to larger scales in both the baroclinic and barotropic modes via
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local interactions. Baroclinic modes with scales larger than the deforma-
tion radius are unstable and transfer energy non-locally to the barotropic
modes. Then energy eventually cascades locally to large scales in the baro-
tropic mode.

An important point here is that baroclinic instability in this turbulence
context is simply a non-local triad interaction. This means that the transfer
to the barotropic mode igenericfor large scale baroclinic modes. Thus,
for example, a large scale baroclinic Rossby wave can be unstable too (La-
Casce and Pedlosky, 2004; Isachsen et al., 2008). There is no need to have
a stationary flow, as employed in the Eady, Charney and Philips models.

9 Turbulent Diffusion

Now we will focus on how turbulent flows advect passive tracers, and in
particular what happens with particles. In section (7.6), we examined how
the spectrum of passive tracer variance would look in a given turbulent
inertial range. In that case, we treated the tracer as a continuous Eulerian

field, like vorticity. But now we will take a moreagrangianview.

9.1 Single particle dispersion
9.1.1 Random walk

The essence of single particle motion is captured inréimelom walkor
“drunkard’s walk” problem. This is the basis of “Brownian motion”, as
studied by Einstein (1905). Consider an idealized drunk person. Imagine
he takes uniform steps, of length But because he is drunk, each step is
randomly oriented and uncorrelated with the previous step. We can write
his position as:
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D,=D, 1+5 (253)

wheres’is the random displacement. So the squared displacement of the
drunk is:

1Dnl* = [Dyr [P+ 8* + Dy - § (254)

wheres is the magnitude of. Now, if we have a party of drunks, each
moving in this way, we can average the mean square displacement for the
whole group. If you think of a “cloud” of drunks, the root mean square
displacement is proportional to the cloud’s radius. Averaging, we get:

< |Dyf? >=< |Dy_1|? > +5° (255)

where the brackets indicate an average over all the drunks. This is known
as an “ensemble average”, because each drunk is essentially and indepen-
dent experiment. The cross correlation term vanishes because the drunks’
steps are uncorrelated with their previous steps. Now, assuming the drunks

all start at the pub, with zero displacement, we have:

< |Di? >=0+ s’ (256)
and
< |Dy)? >= 25° (257)
SO
< |Dy|? >= ns? (258)
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Thus the root mean square (rms) displacement is:

(< [Dy* >)? = V/ns (259)

If the drunks take steps at uniform time, e.g. one step per second, then the
rms displacement grows @82 power. This is a characteristic feature of
Brownian motion. We will see later that particle dispersion behaves the

same way, when the particle motion is uncorrelated.

9.1.2 Diffusion

Now we will show that a diffusing cloud, with a constant diffusivity, has a
radius which also increases#$’ power. The equation for a passive tracer
was given in (132). Now we will consider what happens to the tracer in
the absence of advection, so that the equation is:

0

&0 = kV2C (260)

We define the variance of the cloud as:

20dA
<r?>= % (261)

Thus the variance is the mean square radius of the cloud. We are interested
in how this changes in time, i.el/dt < r? >. We can obtain an equation

for this by multiplying the tracer equation by and integrating over space.
Assuming that the spreading is isotropic (the same in every direction), we
have (using cylindrical coordinates):

d roo 00 10 0
dt/O r2C rdr :/0 TQHJ;%(TEC) rdr
0

= —2kK /OOC TQEC dr = 4k /(;OO Crdr (262)
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after using integration by parts. Thus:

d 5 8ﬂr2CdA_

Integrating this in time, we get:
<r?>=4dkt (264)

The rms radius of the cloud increases '@ just as in a random walk. So a
random walk is aliffusive processDrunks drifting from a pub behave as a
passive tracer, diffusing with a constant diffusivity. We often call theet
rate of change of the variance the “diffusivity” when dealing with particles.
An alternate way of deriving the same result is to use the exact solution
to (260). Assume that the initial tracer distribution is a delta function at
the origin (as if all the the drunks are initially at a pubr-at 0). One can
show that the solution to (260) is given by:

1 72

= St P ) (265)
The prefactor guarantees that:
/OOOCrdrzl (266)

We can use this solution to find the variance of the cloud. The result is:

<r?>=4dkt (267)
9.1.3 Single patrticle dispersion

We've seen that randomly walking particles are essentially diffusing in
space. Taylor (1921) formalized this, in the following way.
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Imagine we have a collection of particles. We can define the diffusivity
(in the z-direction) of the particle cloud by:
1d

K=g- < X?>=<u(t)X(t) > (268)

The factor ofl /2 is traditional, and cancels the other two when taking the
derivative. Realizing that the displacement at tiimsg just the integral of
the velocity, we can rewrite this as:

K=<u(t) [u(t)dt' >= [ <u(tyu(t)> df'  (269)

Now if the velocity field isstationary(not changing in time), we can write:

K= [ R(t') dt (270)
where
R(t) = 52 < u(0) u(t) > (271)

and where/? is the velocity variance for the particles. Note that we can
substituteu(0) for u(t) because of stationarity (the velocity on average is
the same at any time).

The functionR(t) is the normalized integral of the velociutocorre-
lation. For the random walk, the velocity is uncorrelated at each step. But
generally the velocity is correlated for some period.

Taylor (1921) noticed that the diffusivity should behave the same in the
limits of short and long times. At short times, the autocorrelation can be
expanded in a Taylor series:

dR
R(t) =1+ 1+ . (272)
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Ast — 0then,R — 1 (the limit is one because we normalized by the

velocity variancey?). Thus we have:

limy_o K = vt (273)

Thus the dispersion; X? >, increases ag.

At long times, the behavior is also similar for diverse flows. Assuming
that the velocity eventually becomes decorrelated, we expect the integral
of the autocorrelation to converge:

1 [
17 = y2/0 R(t")dt' = const. (274)

The integral has units of time and is known as tlagrangian integral
time T}, gives an indication of the predictability of the particle motion, i.e.
how long the velocity is correlated with itself. Thus the diffusivity is:

limy oo K = 1T}, (275)

and this is constant. We say that the systeuhffsisive and hence can be
modeled using a diffusion-type equation. Furthermore, the dispersion will
Increase as, exactly as the mean square radius increases under a random
walk.

Thus an implication of Taylor’s work is that we can represent many par-
ticle dispersion problems as a random walk. We can, for instance, model
ash spreading from a volcano as a mixture of advection (left out here, but
important) and a random walk. This opens the possibilitystochastic
modelsfor pollution spreading.

But there is a downside as well. Since single particle motion has such
generic limits, it is not so useful when one is trying to distinguish different
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types of flow. Say for example you would like to know whether there is an
energy or enstrophy cascade occurring. In both cases, the single particle
diffusivity should asymptote to a constant. We return to this shortly.

9.1.4 The vortex merger problem

In section (7.5), we showed that freely evolving 2-D turbulence can be
viewed as a merger process between discrete vortices. Carnevale et al
(1991) constructed a theory in which the important flow statistics, like the
enstrophy, could be deduced from the vortex population. The only un-
known in their theory was the decay rate of the vortex dengitiere we
show that can be accounted in terms of the dispersion of the votfices.

The numerical experiment in this case was a freely-evolving, 2-D tur-
bulence simulation in a periodic domain, from random initial conditions.
\ortices emerge at the early times and begin merging. At some point, par-
ticles were deployed in the flow, and the dispersion of the particles and
vortices was compared (left panel of Fig. 33). We see that after a short
time, the dispersion for vortices and particles is statistically tmaisish-
able. That implies that the vortices are dispersing exactly like the gassiv
particles. Note too that the dispersion is increagasgerthat diffusively.

A best fit of the data suggests:

< X?>x t'? (276)

This implies that the diffusivity increases #s'. Such dispersion is called
“super-diffusive”, since the spreading is greater than in a random walk.
As the vortex dispersion matches the particles’, we can think of a dif-

fusivity to characterize the vortex spreading. We can scale the diffysivit

The section follows LaCasce (2008)
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thus:

1d
D = 577 < X?>=<uX >x UL (277)

whereU is the mean vortex velocity antl is the typical spacing between
vortices. Now if we have a vortex density @fthen the typical spacing is:

Lo p /2 (278)

The velocity on the other hand scales as the square root of the total energy,
given in (124):

U x EY? « p'/2¢, b° (279)

So the diffusivity scales as:

Dx UL x p?¢ 0% p ? xT (280)

where

I =, b (281)

Is the mean vortegirculation. So the diffusivity and the circulation should
behave the same way. In the experiment shown in the left panel of Fig.

(?7?), the diffusivity scales as:

1d
D= 57 < X2 >oc 03 (282)

So the circulation, if this argument is correct, should scale the same way.
Shown in the right panel of Fig. (33) are the exponentspbtained

from a suite of experiments with different initial conditions and differ-

ent types of small scale damping. We see that the exponents tend to be
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between 0.2-0.4, for both the diffusivity and circulation, for most of the

experiments. The average value for the exponent is roughiyl /3.
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Figure 33: The dispersion for vortices (solid curve) andspeasparticles (dashed line) in a
2-D turbulence simulation (left panel). Shown in the righhpl are the growth exponents,
«, from various runs for the vortex diffusivity and the meamte circulation. The value
is usually between 0.2-0.4. From LaCasce (2008).

If we know the scaling for the circulation, we can find the decay rate

for the density. This is because the total energy is conserved. So:

E = pC*b* = pI'? = const. (283)

Thus:

pox 72 o t723 (284)

This is close to the valué),7, inferred by McWilliams (1990) and Weiss
and McWilliams (1993) (sec. 7.5). In other simulations, we find a value of
2/3 (Fig. 34), using a range of different initial conditions.

The results shown in Fig. (33) are from numerical experiments with
very weak lateral damping. Increasing the damping accelerates the vortex
decay, because lateral diffusion causes the vortices to spread out, hence
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Figure 34: Vortex density from 4 experiments with differ@ritial conditions. The lines
indicate a decay of 2/3. From LaCasce (2008).

increasing their chance for collisions. But nevertheless, it is fruitful to
think of vortex merger as a dispersion problem.

Note though that this problem has not been completely solved! Al
we've done is to shift the unknown. Previously, we didn’'t know what set
the density decay. Now we know that, but we don’t know what determines
the dispersion exponent. So there is still work to be done.

9.2 Two particle dispersion

As noted, the single particle dispersion exhibits generic behavior and so
is not terribly useful for differentiating different types of flow. Better in
this regard is the dispersion betwe®ro particles, called “relative disper-
sion”. Rather than study how a particle drifts from its starting location, we
see how two particles separate in time. An advantage is that twolpartic
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dispersion is unaffected by a constant background flowyhereas single
particle dispersion is.
Two particle dispersion is:

< |fl(t)—f2(t)’2 >=< ‘fl(t”? >4 < ’fg(t)|2 > —2< fl'fg > (285)

If the flow ishomogeneouyshen:

< |z (t)]F >=< |To(t)] >=< 2%(t) > (286)

where< z?(t) is the single particle dispersion. Thus:

<|T —DP>=2<a?> 2< T - T > (287)

Now if the two particles are moving independently of one another, i.e.
if their velocities are uncorrelated, the cross correlation term wikdre.
This is what typically happens when the particles are far apart. Then two
particle dispersion is like single particle dispersion. If we define the two

particle diffusivity, then in this limit we have:

Ky=-——< |f1 — f2|2 >= 2K, (288)

wherekK is the single patrticle diffusivity.

But what happens when the particle motiscorrelated? This is where
relative dispersion is interesting. Two particles are measuring toeive
ties at the points in space and time where the particles are (Fig. 35). Thus
the difference between the particle velocities is equal to the difference
Eulerian velocities at that time and location. Now if the flow is homoge-
neous, the mean square velocity difference for particles with a separation
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Is the same as the mean square velocity difference for any two points in the
flow also with a separation This velocity difference is sometimes called

the “second order structure function”.
In turbulence, this scales with energy or enstrophy transfer rate, just as

the spectrum does. So in the energy cascade, we have:

< |ty — @o|* >ox er?? (289)

The two thirds can be deduced from dimensional grourdsas units of
m?/sec® and the square velocity difference has unitsiof/sec’. This

relation is known as “Kolmogorov’s 2/3 Law”.

u;

Figure 35: Two particles moving in a flow.

In the enstrophy range, we find:

< |ty — ]* >oc pr? (290)
So the velocity difference increases more rapidly with separation in the

enstrophy range.
We can deduce corresponding relations for the relative diffusivity. In

the energy range, the diffusivity scales as:

Ky o /343 (291)

121



because the diffusivity has units of /sec. This relation was first noticed
by Richardson (1926). The connection to Kolmogorov’s theory was made
by Obukhov (1941) and Batchelor (1952). Notice that this implies:

9
dt
If we integrate this, we find that:

(z1 — 22)? >= c;lt < r? > €33 (292)

<7’ > et? (293)

Integrating (292) is not strictly correct, because the LHS involves the mean
square separation, not the separation. But from a scaling perspective, this
Is reasonable. The cubic growth is now known as “Richardson’s Law”.
In the enstrophy range, dimensional arguments suggest:
d

p7 <12 >oc 32 (294)

Integrating this in time, we get:

< r? >oc exp(nt/3t) (295)

This is sometimes called “Lin’s Law”, after Lin (1972). So separations in
the enstrophy range grow exponentially in time.

These results can be compared with those that we derived for pre-
dictability, in sec. (7.7). In the enstrophy range, the scale of the error
was found to increase asp(n'/*t)—exactly as the separation in particles
increases here. Similarly, in the energy range we found:

Kkl
T = . e 1370 dk & 6_1/3143_2/3‘23) ~ 6_1/31{62/3 (296)
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This implies that the length scale scales as:

L3 o 3T (297)

asLy = 2w /kg. Thus:

L o €T (298)

The predictability relations are thus identical in form to the two particle
dispersion relations. This is not coincidental. In fact, two particle disper-
sion is actually a measure of Lagrangian predictability. If we change the
initial condition of a particle slightly, the growth of the error is determined
by relative dispersion.

How do these predictions compare to observations? Morel and Larcheveque
(1974) calculated pair statistics for pairs of balloons deployed in the lower
stratosphere in the Southern Hemisphere during the French EOLE exper-
iment. The dispersion is seen to grow exponentially in time, during the
first 6 days and up to scales of 1000-2000 km. Thereatfter, the two particle
dispersion increases linearly in time. From the turbulence perspestve,
would interpret this as evidence of an enstrophy cascade at scales below
1000 km, and random, uncorrelated motion at larger scales.

It is interesting to compare this with the Nastrom and Gage (1985) en-
ergy spectrum, in Fig. (22). There we saw evidence ef aspectrum at
scales below roughly 2000 km. So the exponential growth seen here would
be consistent. However, the energy spectrum also suggest§’arange
at smaller scales. This would producé @rowth in the dispersion, which
we don’t see. However, it’'s possible that is occurring below 100 km, the
smallest scale sampled by the balloons. Er-El and Peskin (1981) examined
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Figure 36: Relative dispersion for pairs of balloons from BE@LE experiment in the
Southern Hemisphere. From Morel and Larcheveque (1974).

another set of balloons, also from the Southern Hemisphere, and obtained
exponential growth at scales below 1000 km.

Two results from the ocean are shown in Fig. (37). Both involve surface
buoys, deployed in the Gulf of Mexico during the SCULP experiment and
in the Nordic Seas during the POLEWARD experiment. In both cases, we
see indications of exponential spreading at the early times. In the Gulf, the
growth occurs below scales 2000 = 45 km, and in the Nordic Seas it
happens below the 10 km scale. In the Gulf case, the dispersion at large
scales is super-diffusive. In the Nordic Seas case, the dispersionsasrea

ast?, up to 100 km, then grows diffusively thereafter. So itis possible there
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Is an inverse cascade happening between 10-100 km in the eastern Nordic
Seas.
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Figure 37: Relative dispersion for pairs of surface drifterthe Gulf of Mexico deployed
during the SCULP experiment (left panel) and in the NordicsSkaing the POLEWARD
campaign. Note the dispersion on the left is plotted on a-gegarithmic plot and that
on the right is on a logarithmic plot. From LaCasce and OhIn{a874) and Koszalka et
al. (2009).

An interesting point is that 1000 km is comparable to the deformation
radius in the atmosphere, and 45 km is similar to the deformation radius in
the Gulf of Mexico. So both of these studies suggest exponential growth
below the deformation radius. This is what one would expect if baroclinic
instability were causing a transfer of energy and enstrophy to the deforma-
tion radius, and if enstrophy were cascading to smaller scales.

Following Richardson (1926), one can write an equation for the prob-
ability of pair separations. It is possible to solve this equation and then
compare the predicted probabilities with the observed distributions of pair
separations for balloons or drifters. The details can be found in LaCasce
(2010).
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