
Lecture 10, page 1 

Lecture 10: Bayesian 
modelling of time series 
 
Outline of lecture 10 
 
• What is Bayesian statistics?  
• What is a state-space model? Or why use Bayesian statistics? 
• Known vs. unknown distributions: BTS vs. BUGS 
• What is simulation? 
 

___________________________________________ 
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What is Bayesian statistics?  
 
My favourite definition: “Everything that you think that 
frequentist statistics is”(!)1 
 
 A different way of thinking – appealing. Much more 

intuitive and straightforward 
 Instead of asking: What is the likelihood of this data point 

given the model (frequentist), the Bayesian ask: What is the 
likelihood of the model given this data point? 

 

Short history: 
o “Normal” (classical, frequentist) statistics formalised in 

the early 20th century (Karl Pearson, Ronald Fisher et 
al.), became dominant. 

o Bayesian philosophy developed by Reverend Thomas 
Bayes in late 18th century 

o Revival of Bayesian statistics in late 20th century due 
largely to computational advances (software and 
computing power) 

 
 

                                 
1 M. Kittilsen, pers com. 
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Classical/Frequentist  vs. Bayesian statistics 
  Concept Frequentist Bayesian 

Probability Long-run relative frequency with 
which an event occurs in m|any 
repeated similar trials. 
Objective quantity 

Measure of one’s degree of 
uncertainty about an event. 
Subjective quantity 

Inference Evaluate the probability of the 
observed data, or data more extreme, 
given the hypothesized model (H0) 

Evaluating the probability of a 
hypothesized model given observed 
data 

95% C. Interval A 95% Confidence Interval will 
include the fixed parameter 95% of 
the trials under the null model 

A 95% Credibility Interval contains 
the parameter with a probability of 
0.95. 

“Range” The P-value (of significance) 
measures the probability of getting a 
result at least as extreme as the one 
observed, given that the null 
hypothesis is true. 

The probability of any given model 
can be evaluated given observed data. 
Unobserved data are irrelevant. 

 

___________________________________________ 
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Formal framework of Bayesian 
Statistics 
 
Bayes’s theorem (entirely uncontroversial) states that the 
probability that event A occurs, given that event B has occurred, is 
equal to the probability that both A and B occur, divided by the 
probability of the occurrence of B: 
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BAPBAP ∩

=  

 
Now setting A as a parameter, a collection of parameters, i.e., the 
hypothesis (θ ) and B as the obtained data (x): 
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P(θ|x) is the Posterior (probability) of obtaining a parameter 
estimate θ, given the data obtained. 
P(x|θ) is the likelihood of obtaining the data under the hypothesis 
(the same quantity as in frequentist statistics) 
P(θ) is the Prior probability of θ 
P(x) is the probability of obtaining the data under all admissible 
parameter estimates (essentially a scaling constant) 
 

“Posterior = prior x likelihood” 

___________________________________________ 
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Mighty Joe and Herman  

– An example 

0.3 

0.2 

0.1 

0.4 

 
Two paper frogs: 
 

     
Mighty Joe:     Herman: 
Lands on feet 60%    Lands on feet 20% of times 
 
 We pick one frog, “jump” it. It lands on its feet. What is the 

probability it is Mighty Joe? 
 

Mighty 
Joe 

Herman 

feet 

back

0.6 

0.4 

feet 

back

0.2 

0.8 

0.5 

0.5 

Prob. of 
choosing one 

”Known” 
information 

 
Likelihood 
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We frame this in the Bayesian setting: 
 

)(
)()(
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= , and in our example: 
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Thus, the probability that this was Mighty Joe is 75%. 
 
 We “jump” the frog again. Again it lands on its feet. How 

can we Update our belief whether or not this is Mighty Joe? 

Mighty 
Joe 

Herman 

feet 

back

0.6 

0.4 

feet 

back

0.2 

0.8 

0.75 

0.25 

Revised Prob. 
of choosing one 
(i.e. the prior) 

”Known” 
information 

Revised 
Likelihood 

 

0.45 

0.30 

0.05 

0.20 

90.0
05.045.0

45.0
)(

)()( =
+

=
∩

=
feetP

feetJoePfeetJoeP  
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 We “jump” the frog a third time. This time it lands on its 
back. How does that influence our belief in this being Mighty 
Joe? 

Mighty 
Joe 

Herman 

feet 

back

0.6 

0.4 

feet 

back

0.2 

0.8 

0.90 

0.10 

Revised Prob. 
of choosing one 
(i.e. the prior) 

”Known” 
information 

Revised 
Likelihood 

 

0.54 

0.36 

0.02 

0.08 

82.0
08.036.0

36.0
)(

)()( ≈
+

=
∩

=
feetP

feetJoePfeetJoeP  

 
We have achieved: 

- A probabilistic interpretation of the problem at hand: “It is 
82% change that the chosen frog is Mighty Joe”. 

- Demonstrated general approach to Bayesian statistic 
 
 
 
 

___________________________________________ 
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General approach in Bayesian 
statistics: 
 
 Use available information to develop a prior. 
 Get new data 
 Find posterior 
 Update prior 
 Get new data  

 
 
This is an appealing framework of statistics.  
Is this why we should become Bayesian? 
Not really – My reason is pragmatic, and it involves a short 
detour to state-space models. 
 

___________________________________________ 
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State-space models 
(Chatfield C. 1996. The analysis of time series: an introduction. 
Chapman & Hall, London: Chapter 10) 
 
Scientists (and even more so biologists) discover that 
measurement of any signal is contaminated by noise: 
Observation = signal + noise 
 
It has been found appropriate to decompose these processes into 
two: state variables (state vector) and observation variables 
(observation vector). One (of many notations) is: 
 
Observation equation: 

tttt WXGY +=  
Transition equation (process equation, state equation): 

tttt VXFX += −1  
 
Yt:  Observations 
Xt:  The (hidden) variable of interest, the biological data (e.g., the 

population size etc.) 
Wt:  The noise of the observation process 
Gt:  The transition matrix of the observation process, the 

collection of parameters 
Ft:  The transition matrix of the deterministic process, the 

collection of parameters 
Vt:  The noise of the population process 

___________________________________________ 
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An example (“10.1.1. The steady 
model”): The linear regression 
 
Observation equation: 

ttt XY ε+=  
 
Transition equation (process equation, state equation): 

ttt XX υβ ++= −1  
 
Yt  is our observations.  
Xt  is our is the level 
β  is the increment (the trend).  
εt and υt is independent mutually independent noise.  
 
State-space models have been known for a long time, and they are 

intuitively attractive.  
 
They have appeared towards the back of (time series) text books, 

software and methods for applications have been missing. 
 
Estimation of state-space models has been by way of the Kalman 

Filter. A Kalman Filter is a recursive set of equations to 
update the estimated parameters.  

 

___________________________________________ 
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We see that the idea of updating in the Kalman Filter is related to 
the Bayesian approach described earlier. Indeed, the theory 
behind the Kalman Filter is Bayesian. 

 
Until recently, it has been very challenging to actually perform the 

Kalman Filter procedure. 
 
Now, increased computational power and software (i.e., BUGS) 

have made it possible for a wide variety of scientist to 
estimate state-space models.  

 
 
 
 

___________________________________________ 
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Known vs. Unknown 
distribution (=> Likelihood) 
 
If we can assume that the likelihood is known, i.e., that it can be 

written out, the recursive equations can be explicitly 
calculated.  

 
Example: Airpass.dat 
The number of air passengers can be expressed as a growth model 

(the upper equation is the observation model): 
 
 

21

111

ttt

tttt

tttY

ω+β=β
ω+β+µ=µ

ν+µ=

−

−−
 

 

 

 
where Yt is the observed nu
µt is the level  
βt is the growth/increment i
νt, ωt1 and ωt2 is independen
In addition the seasonal com
 
These equations have been 
on West M. & Harrison J. 1
dynamic models. Springer, 

_____________
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Observation equation
 
State equations
mber of passengers,   

n passenger level  (allowed to vary).  
t mutually independent noise.  
ponent is removed. 

fitted by the splus codes “bts” based 
997. Bayesian forecasting and 
New York. 
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Forecast and residuals 

Time

1954 1956 1958 1960 1962 1964 1966
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Upper is forecast. Lower is residuals (the blue dots is 
“interventions”, which is another feature of applied Bayesian 
forecasting philosophy not treated here). 
-> Very nice fit. As growth is allowed to vary, a very good fit can 
be achieved. 

___________________________________________ 
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Level: 
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100

200

300

400

500

M
od

el
le

d 
Le

ve
l

 
-> Almost a linear trend (but allows for stagnant periods). 
 

___________________________________________ 
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Growth/increment 
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-> What creates the level. 
 
 

___________________________________________ 
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Season 

1954 1956 1958 1960 1962 1964

-100

-50

0

50

100
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-> Here the variance is taken care of…. 
 
 
 

However, when we cannot write down 
the likelihood, we need to simulate. This 
is were the revolution has taken place: 
(Win)BUGS! 
 

___________________________________________ 
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BUGS and time series 
modelling 
(Bayesian inference Using Gibbs Sampling) 
 
Freely available: http://www.mrc-
bsu.cam.ac.uk/bugs/welcome.shtml 
 
 A program package for simulation of data, using certain 

schemes (“Gibbs” and “Metropolis-Hastings”) to sample 
from distributions. Using the simulated data to draw 
inference of the parameters, given the data 
 Taking advantage of the Markov Chain property (i.e., a set 

up in which all information up to time t is contained in the 
information for time t-1).  
 Using the Monte Carlo principle2 to obtain non-random 

information (“Integration”) 
 If the distribution is known, BUGS is not necessary (the 

problem could also be solved by, e.g., maximum likelihood 
methods). However, the results will be overall in agreement. 
 If the distribution is not correctly specified using ml-

methods, simulation may lead to a different (an probably 
more correct) result. 
 Complex likelihoods can be specified 

 

                                 
2 The method is called after the city in the Monaco principality, because of roulette, a simple random number generator. 
The term 'Monte Carlo' was introduced by von Neumann and Ulam during World War II, as a code word for the secret 
work at Los Alamos (M. Kittilsen, pers.com) 

___________________________________________ 
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WinBUGS example I: Linear regression 
 
1. Traditional frequentist analysis 
tmp <- list(x = c(1, 2, 3, 4, 5), Y = c(1, 3, 3, 3, 5), N = 5) 
tmp$xhat <- tmp$x-mean(tmp$x) 
tmp 

tmp$xhat

tm
p$

Y

-2 -1 0 1 2

1
2

3
4

5

$x: 
[1] 1 2 3 4 5 
$Y: 
[1] 1 3 3 3 5 
$N: 
[1] 5 
$xhat: 
[1] -2 -1  0  1  2 
 
plot(tmp$xhat, tmp$Y) 
 
tmp.lm <- lm(Y ~ xhat, 
data=tmp) 
 

___________________________________________ 
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par(mfrow=c(2,3)) 
plot(tmp.lm) 
 

Fitted : xhat

R
es
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ua

ls
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Fitted : xhat
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summary(tmp.lm) 
 
Coefficients: 
             Value Std. Error t value Pr(>|t|)  
(Intercept) 3.0000 0.3266     9.1856  0.0027   
       xhat 0.8000 0.2309     3.4641  0.0405   
 
Residual standard error: 0.7303 on 3 degrees of freedom 
Multiple R-Squared: 0.8  
F-statistic: 12 on 1 and 3 degrees of freedom, the p-value is 
0.04052  
 

 
We estimate the mean to be 3 (interval: 3±1.96*0.3266: 2.36 to 
3.64) with the slope being 0.8 (sd: 0.23). 

___________________________________________ 
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2.  Using WinBUGS (from the User manual): 

 
 
i.) A model is specified: 

Yi ~ Normal(µi, τ)    # Observation equation 
µi = α + β(xi - x.bar)   # System equation 

 
Note that models are specified as distributions.  
 
In program code (very similar to splus code): 
model 
 { 
  for(i in 1:N){ 
   Y[i] ~ dnorm(mu[i], tau)    # Observation 
   mu[i] <- alpha + beta * (x[i] - mean(x[])) # System 
  } 

# Distributions are set to all parameters 
  sigma <- 1/sqrt(tau) 
  alpha ~ dnorm(0, 1.0E-6) 
  beta ~ dnorm(0, 1.0E-6) 
  tau ~ dgamma(1.0E-3, 1.0E-3) 
 } 
We use the Model -> Specification menu: 

 
to check model, load data and compile the model (in that order). 
Finally, we need initial values to start the chain: 
list(alpha = 0, beta = 0, tau = 1) 

 

___________________________________________ 
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ii). We are now ready to set monitoring scheme 
This is done in the Inference -> Sample Monitor Tool.  
Here we decide what parameters to save and monitor: 

 
(we sample alpha, beta, tau and sigma – all variables, finish with a 
‘*’). 

- Then we click “trace” to see the development 
 
iii.) We are ready to sample from the distributions specified  

 
- We take 11.000 samples (and let the 1000 first be ‘burn-in’, i.e., 
to stabilise the values somewhat) 
 
These are the results: 

___________________________________________ 
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___________________________________________ 
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The history: 
alpha

iteration
1001 2500 5000 7500 10000

  -20.0

  -10.0

    0.0

   10.0

   20.0

beta

iteration
1001 2500 5000 7500 10000

  -20.0

  -10.0

    0.0

   10.0

sigma

iteration
1001 2500 5000 7500 10000

    0.0

   10.0

   20.0

   30.0

tau

iteration
1001 2500 5000 7500 10000

    0.0

    5.0

   10.0

   15.0

 
 

___________________________________________ 
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Density: 

 
 
node  mean  sd  MC error 2.5% median 97.5% start sample 
alpha 2.99 0.5587 0.005389 1.984 2.991 3.995 1001 10000 
beta 0.7967 0.4207 0.004471 0.0854 0.796 1.486 1001 10000 
sigma 0.9998 0.7714 0.01375 0.4148 0.8221 2.598 1001 10000 
tau 1.89 1.534 0.02352 0.1482 1.48 5.823 1001 10000 

  
We see that the results are almost the same as for the maximum 
likelihood procedure of splus: 
Mean of 2.99 (95% CI: 1.98 to 4.0) but with a high variability. 
Beta of 0.80 (the same). 
-> Some of the variance has been (incorrectly) assigned to an 
observation variance. 

___________________________________________ 
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WinBUGS example II: Community 
dynamics in the coastal zone 
 
Model: 

1
1* tt

T
tt brsas εω +++= −     (ib) 

 
where st-1 = log(St-1). a is autoregressive parameter, b is 
environmental coefficients, ω is environmental data.  

1
tε  is assumed to be normally distributed with expectation zero and 

some variance, say . This is equivalent to writing: 2σ

 

),*(~ 1
1 tt

T
tt brsbNs εω++−      (ib) 

This is the system equation/state equation/process equation. 
 
We furthermore formulate an observation model: 
 

2}exp{ ttt sS ε+=        (iia) 
which can be reformulated as the following. 
 

)},(exp{~ 2
ttt sNS ε     (iia) 

where ε  is given by the estimated standard errors found in Lekve 
K., Boulinier T., Stenseth N.C., Gjøsæter J., Fromentin J.-M., 
Hines J.E. & Nichols J.D. 2002. Spatio-temporal dynamics of 
species richness in coastal fish communities. Proc. R. Soc. Lond. 
B, 269, 1781-1789. 

2
t

___________________________________________ 
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In BUGS language, this is the following 
 
# model with environment in process model: 
“C:\Kyrre\Studier\Cr\SPMOD\Oecologia\Oecol2nd\OecBug\armodel1b” 
model 

{ 

 s[1] ~ dnorm(0, var); 

 for (i in 2:N) 

  { 

    muS[i] <- r + b * s[i-1]+ psi*naot1[i] +tau*temp[i]+rho*wind[i]  # Observation equation 
    s[i] ~ dnorm(muS[i], var)      # System equation for first obs. 
  } 

 

 for (i in 1:N) 

  { 

   Shat[i]  ~ dnorm(ant[i], estvar[i])I(0,)    # System equation for next obs. 
   log(ant[i]) <- s[i] 

 } 

 

# Putting distributions on all parameters 
r~dnorm(0,0.000001) 

sd <- 1/sqrt(var) 

var~dgamma(0.001,0.001) 

b ~ dnorm(0,0.0001) 

psi ~ dnorm(0,0.0001) 

tau ~ dnorm(0,0.0001) 

rho ~ dnorm(0,0.0001) 

a <- 1-b 

R0 <- exp(r) 

for (i in 1:N) 

{ 

S[i] <- exp(s[i]) 

} 

meanS <- mean(S[]) 

} 
 

 

# Data (Kragerø)  
# Initialising values (two files) 

___________________________________________ 
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list(var = 6, psi = 1, tau=0.5, rho=1, b = 1,  r=1, 

s = c(1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1)) 

list(var = 2, psi = 0.5, tau=1, rho=0.5, b=0.2,  r=0.5,  

s = c(0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0)) 
 

-> Using two chains: 110.000 iterations (time two chains: starting on 60.001): 
Thinning every 10. simulation => sample size of 10.000 

 

 
 
 

Selected results: 
 

node  mean  sd  MC error 5.0% median 95.0% start sample 

R0 7.915 9.062 0.3297 1.477 5.561 21.69 60001 10000 

a 0.6226 0.297 0.01095 0.1415 0.6212 1.12 60001 10000 

meanS 16.66 0.1049 0.001064 16.49 16.66 16.83 60001 10000 

psi 0.08219 0.1143 0.001159 -0.1044 0.08236 0.2698 60001 10000 

rho 0.1977 0.1337 0.001453 -0.0187 0.1977 0.4194 60001 10000 

sd 0.5879 0.07516 8.095E-4 0.4777 0.5817 0.7232 60001 10000 

tau -0.1557 0.1438 0.001589 -0.3915 -0.1567 0.08139 60001 10000 

 

 

___________________________________________ 

C:\Kyrre\studier\drgrad\Kurs\Timeseries\lecture 10 031022.doc, KL, 22.10.03, page 27 of 27 



Lecture 10, page 28 

 
 
We see that  

- The estimated coefficients are “well behaved”: Most of them 
are symmetrically distributed around some value. 

- There is low variability in the overall number of species. 
- Several of the environmental variables are different from 0: 

psi on NAO, rho on wind 
- Not significant autoregressive parameter 
- Etc.  

___________________________________________ 
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___________________________________________ 
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Assessment 
 
A Bayesian approach 
• Appealing concepts of probability etc. 
• Useful for estimating both observation and system variability 

(much due software advances)  
• Very useful for complex problems with not known distributions 

(e.g., in DNA-analysis) 
• Known likelihoods => Recursions can be explicitly determined 

(e.g., BTS) 
• Unknown likelihoods => Simulation (BUGS) 
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