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Please observe the following:

� Write in legible English (unreadable means no points).

� Motivate your answers, explain your calculations, and clearly state any assumptions
made. Insufficient justifications will lose points. Questions where no calculations
are required are clearly marked.

� State clearly to which question each answer belongs.

Good Luck!
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Question 1 (Reproducibility): (2 Point(s))

A null hypothesis test at significance level p is constructed by using a test statistic π : X → [0, 1)
mapping from the space of possible data to the interval [0, 1), so that the test rejects the null hypothesis
whenever π(x) < p.

1.1. Select the correct answer (no explanation needed):

a) The probability that the test will falsely reject the null hypothesis is p.

b) The probability that the test will falsely reject the alternative hypothesis is p.

c) Given the data x, the probability that the null hypothesis is true is π(x).

d) Given the data x, the probability that the null hypothesis is false is π(x).

Solution: (a) The probability that the test will falsely reject the null hypothesis is p.

1.2. Being confident about what the test statistic π should mean, you want to use in your own decision
problem (e.g. where you want to verify which attributes are significant factors in a classification
problem). However, you are still somewhat uncertain about how it would work in practice. Describe
a simple synthetic experiment where you can test π’s properties.

Solution: The simplest test is to first generate some data from the null hypothesis assumed by the
statistic, and then see how often you reject the null hypothesis. In the classification example, you can
generate data where the labels are completely random, and see how often the statistic gives a value
< p for different features.

Then you need to also generate some data from an alternative hypothesis. For example, you can create
a logistic regression model where only some of the features are contributing to the classification, and
then see how often the statistic picks those out.

Question 2 (Graphical models): (1 Point(s))

Factorise the following graphical model of x = (x1, x2, x3, xr) with joint distribution P (x). (No
explanation needed)

x1

x2

x3

x4

Solution:
P (x) = P (x1)P (x2 | x1)P (x3 | x1)P (x4 | x2)

Question 3 (Privacy): (2 Point(s))

Can a k-anonymity algorithm be ε-differentially private? Explain why or why not, e.g. through a
construction or contradiction.

Solution: To have a DP version of k-anonymity we must first we consider all attributes as quasi-
identifiers. Secondly, the transformation must be stochastic, and no information about the randomness
used must be leaked.
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k-anonymity doesn’t satisfy the second condition. One can think of a version of k-anonymity where
we randomise the quantisation of attributes, so that independent runs of the algorithm will produce
different anonymised datasets. However, when we publish the anonymised version we must also explic-
itly say how we quantised the attributes, so we reveal the randomness and the remaining computation
is deterministic.

There are three ways to do a DP version of k-anonymity, but it would not meet the original definition.
The first is to use local DP and perform k-anonymity on the DP sample of the data. The second is to
perform k-anonymity and then release DP counts of the number of people in each category (remember
there are at least k people in each category). The final is to use randomised k-anonymity, but not
release the exact quantisation.

Question 4 (Causality): (2 Point(s))

In the diagram below, we have a policy π, an action a, and an outcome variable y.

x

a

π z

y

� Is z a confounding variable, a sufficient covariate, or a nuisance variable?

� Amend the graph so that (x, z) jointly become a sufficient covariate. (No explanation needed)

Solution: z is a confounder, as it affects the outcome variable, but is not an input to the
action. Consequently, the policy maker cannot use knowledge of z to make predictions.

In the following version of the graph, z links to a. Neither z or x are sufficient by themselves,
but jointly they affect y and are both an input to a.

x

a

π z

y

Question 5 (Markov decision processes): (1 Point(s))

The following diagram shows a Markov decision process where the circles denote states, the squares
denote action notes, and the rhomboids reward nodes. The probability of reaching a state by taking
different actions is given on the connecting edges. The process ends after two steps and the utility is
defined as the total reward Ut = rt + rt+1. Calculate the expected value of the first state at st for the
optimal policy, i.e. the one maximising expected utility.
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st at rt st+1 rt+1

1

0

0

1

0.2

0.8

0.4

0.6

Solution: The top state has value 0 and the bottom has value 1. Hence the top action has value
0.6 + 1 and the bottom 0.8. Hence the top action is the best, and the optimal policy chooses it.

Then the value of the first state is 1.6.

Question 6 (Probability and expected utility): (4 Point(s))

Consider the following basketball matches. Firstly, a match between Helsinki Hippopotami and
Gothenburg Geese and secondly a match between the Stockholm Spaniels and the Oslo Occelots.

a) Assume that the outcomes of the matches are independent. You estimate that Helsinki has a
60% chance of beating Gothenburg, so P (H) = 0.6 while Stockholm has a 70% chance of winning
over Oslo, so P (S) = 0.7. There are two bookies, which allow you to bet on the outcome of the
matches. The first bookie gives you odds 3/2 that both Helsinki and Stockholm win. The second
bookie gives you odds 2/1 for a Helsinkini and Stockholm win. (An odds of 3/2 for an event
means that you gain 3 NOK for each 2 NOK you bet if the event occurs. So if you bet that both
Helsinki and Stockholm win with the first bookie, and they do, then you get your 1 NOK back
and you also gain 3/2 = 1.5 NOK. Similarly, you can gain 2 NOK if you place the same bet
with the second bookie and you win.) Given your assumptions, which of the two bookies gives
you the highest expected amount of money for the bet that Helsinki and Stockholm both win?
Show your calculations in detail.

Solution: First of all, the chance of the bet comes off is P (HS) = P (H)P (S) = 0.42 due to
independence. The expected gain in the first case is

1.5 · P (HS)− 1 · (1− P (HS)) = 0.63− 0.68 = −0.65

In the second case, it is

2 · P (HS)− 1 · (1− P (HS)) = 0.84− 0.68 = 0.16

So it is obviously better to take the second bookie’s offer if you want to maximise expected
money gain.

b) However, you realise that the Stockholm match is after the Gothenburg match. Due to well-
known problems with corruption in sports, there is then a chance that Stockholm would be
bribed into losing too, since the match would not be important to them anymore. Specifically,
you guess that if Gothenburg loses, then Stockholm has a lower chance of winning: 50%, i.e.
that P (S | H) = 0.5. However, if Gothenburg wins, then you still estimate that Stockholm
wins with probability 70%, i.e. that P (S | ¬H) = 0.7. What is Stockholm’s chance of winning
without knowing the outcome of the Gothenburg match, i.e. what is P (S) if your assumptions
are true?

Solution: We simply write the marginal probability

P (S) = P (S | H)P (H) + P (S | ¬H)P (¬H) = 0.5× 0.6 + 0.7× 0.4 = 0.58
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Question 7 (Graphical models and conditional probabilitiy): (4 Point(s))

Many patients arriving at an emergency room, suffer from chest pain. This may indicate acute
coronary syndrome (ACS). Patients suffering from ACS that go untreated may die with probability
2% in the next few days. Successful diagnosis results lowers the short-term mortality rate to 0.2%.
Consequently, a prompt diagnosis is essential.

Approximately 50% of patients presenting with chest pain turn out to suffer from ACS (either acute
myocardial infraction or unstable angina pectoris). Approximately 10% suffer from lung cancer.

Of ACS sufferers in general, 2⁄3 are smokers and 1⁄3 non-smokers. Only 1⁄4 of non-ACS sufferers are
smokers.

In addition, 90% of lung cancer patients are smokers. Only 1⁄4 of non-cancer patients are smokers.

Assumption 1. A patient may suffer from none, either or both conditions!

Assumption 2. When the smoking history of the patient is known, the development of cancer or ACS
are independent.

One can perform an ECG to test for ACS. An ECG test has sensitivity of 66.6% (i.e. it correctly
detects 2⁄3 of all patients that suffer from ACS), and a specificity of 75% (i.e. 1⁄4 of patients that do
not have ACS, still test positive).

An X-ray can diagnose lung cancer with a sensitivity of 90% and a specificity of 90%.

Assumption 3. Repeated applications of a test produce the same result for the same patient, i.e. that
randomness is only due to patient variability.

Assumption 4. The existence of lung cancer does not affect the probability that the ECG will be
positive. Conversely, the existence of ACS does not affect the probability that the X-ray will be positive.

In this exercise, we only worry about making inferences from different tests results.

a) What does the above description imply about the dependencies between the patient condition,
smoking and test results? Draw a graphical model for the above problem, clearly differentiat-
ing between observed and hidden random variables, assuming both ECG and X-ray tests are
performed.

� A: ACS

� C: Lung cancer.

� S: Smoking

� E: Positive ECG result.

� X: Positive X-ray result.

b) What is the probability that the patient suffers from ACS if S = true?

c) What is the probability that the patient suffers from ACS if the ECG result is negative?

d) What is the probability that the patient suffers from ACS if the X-ray result is negative and the
patient is a smoker?

Solution: Part 1. According to our information, only the presence of ACS affects the results
of ECG, and only the presence of lung cancer affects the results of the X-ray. Consequently P (E |
A,C) = P (E | A) and P (X | A,C) = P (X | C). At the same time, smoking is linked with both ACS
and cancer.
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S

A

C

E

X

Part 2. Bayes theorem says, P (A | S) = P (S|A)P (A)
P (S) , where

P (S) = P (S | A{)P (A{) + P (S | A)P (A) (1)

= 1/4 · 1/2 + 2/3 · 1/2 = 11/24 (2)

is the probability of a smoking patient. Then we plug this in to obtain

P (A | S) =
2/6

11/24
=

8

11
≈ 72.7%

So smoking is a strong indicator for heart attack.

Part 3. From Bayes theorem, we have that

P (A | E{) =
P (E{ | A)P (A)

P (E{)
(3)

P (E{) = P (E{ | A{)P (A{) + P (E{ | A)P (A) (4)

We know that P (E{ | A) = 1−P (E | A) = 1−2/3 = 1/3, because the sensitivity is 1⁄3. We also know that
P (E{ | A{) = 3/4, directly from the definition of specificity. Consequently, P (E{) = 1/3 · 1/2 + 3/4 · 1/2 =
13/24. Plugging in, we obtain

P (A | E{) =
1/3

13/24
=

8

13
≈ 61.5%.

So the existence of a positive ECG on its own, is not sufficient evidence for emergency treatment!

Part 4. The X-ray result does not offer any information on the probability of ACS, if we know the
patient is a smoker

P (A | S,X) = P (A | S)

as the two events A,X are independent given S

Question 8 (Income statistics): (4 Point(s))

Consider collecting data of individuals so as to calculate income levels over various cross-sections of
society. In particular, we collect the following attributes:

� Income xi.

� 4-digit Postcode yi.

� Gender zi.

(a) We wish to publish differentially-private statistics about the income of people in the country.
In particular, we wish to publish the average income for two (2) different genders across 10 different
regions, i.e. 20 average incomes in total. Design a strategy so that this data is ε-DP.
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(b) We analyse the data and obtain the following statistics:

Postcode 0xxx 1xxx 2xxx 3xxx 4xxx 5xxx 6xxx 7xxx 8xxx 9xxx Average

Male 306 472 562 223 544 324 66 688 224 485 155
Female 279 380 525 156 558 321 45 703 175 487 120

Average 292 376 543 189 551 322 55 695 209 486 137

Formulate mathematically one (or more) measurable fairness concept which is likely to be violated
given the evidence from these statistics.

Solution: First of all, note that the income is potentially an unbounded number. For that reason, we
can first transform the income so it lies in a bounded interval [0, B]. We then partition the postcodes
into regions

Rk = {1 + 1000(k − 1), . . . , 1000k}.

For each interval k and gender g ∈ {0, 1}, there are nk,g persons in the database. To calculate
the average wage for each category in an εk,g-DP manner, we can use the Laplace mechanism with
sensitivity B/nk,g. So the average wage output for each category will be

ak,g =
1

nk,g

∑
i:yi∈Rk,zi=g

xi + ωk,g, ωk,g ∼ Laplace(B/nk,gεk,g)

Due to composition, the total privacy loss of our mechanism is
∑

k,g εk,g so by setting εk,g = ε/20, we
guarantee that our mechanism is going to be ε-DP.

The statistics show that the expected income for the two genders is different. So, in this case, even
though we do not have a decision variable to take into account, we can formulate the notion of parity:

P(x | z) = P(x).

We also see that the average income varies across neighbourhoods. This also points to a non-equitable
distribution of income across the population. This can be written again in terms of parity:

P(x | y) = P(x).
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