IN-STK5100 – Reinforcement Learning and Decision Making Under Uncertainty

Schedule, syllabus and examination date

Choose semester

Changes in the course due to coronavirus

Autumn 2020 the exams of most courses at the MN Faculty will be conducted as digital home exams or oral exams, using the normal grading scale. The semester page for your course will be updated with any changes in the form of examination.

See general guidelines for examination at the MN Faculty autumn 2020.

Course content

This course gives a firm foundation to reinforcement learning and decision theory from mainly a statistical, but also a philosophical perspective. The aim of the course is two-fold. Firstly, to give a thorough understanding of statistical decision making, Markov decision processes, automatic experiment design, and the relation of statistical decision making to human decision making. Secondly, to relate the theory to practical problems in reinforcement learning and artificial intelligence through algorithm design, implementation and a group project in reinforcement learning.

Learning outcome

After taking the course, you will:

  • Understand the principles of decision theory.
  • Understand the basics of Bayesian inference
  • Understand Markov Decision Processes
  • Understand Dynamic Programming
  • Be able to design and implement Reinforcement Learning algorithms

Admission to the course

Students who are admitted to study programmes at UiO must each semester register which courses and exams they wish to sign up for in Studentweb.

If you are not already enrolled as a student at UiO, please see our information about admission requirements and procedures.

The course is limited to 30 students (IN-STK5100 and IN-STK9100 together). If the number of enrolled students is higher than the limit, they will be ranked as follows:

  1. PhD candidates who have the topic approved in their study plan
  2. Master´s students at the master´s program Data Science who has the course approved in their study plan
  3. Master´s students at the Faculty of Mathematics and Natural Sciences who have the course approved in their study plan
  4. Master´s students at the Faculty of Mathematics and Natural Sciences
  5. Other

This is a challenging course, so it is highly recommended that you know at least 

  • Elementary Python programming skills (IN1000, IN1900 or equivalent experience)
  • Basic linear algebra and calculus (MAT1100/MAT1120, MAT1110 or equivalent)
  • Elementary probability and statistics (STK1000, STK1100)
  • A more advanced course like IN-STK5000 – Adaptive methods for data-based decision making is advantageous

Overlapping courses

Teaching

The course will consist of

  • 4 hours of lectures/lab per week, for 8 weeks
  • Then 2 hours of lab (project work) per week

Completion of mandatory assignments is required. Read more about requirements for submission of assignments, group work and legal cooperation under guidelines for mandatory assignments.

Examination

All mandatory assignments must be approved before you can take the final digital exam

The grade will be assessed based on the following:

  • Group Project: 60% of the final grade

  • Digital Exam: 40% of the final grade

 All parts must have a pass grade, and all parts must be passed in the same semester.

It will also be counted as one of your three attempts to sit the exam for this course, if you sit the exam for one of the following courses: IN-STK9100 – Reinforcement Learning and Decision Making Under Uncertainty

Examination support material

Any written material

Grading scale

Grades are awarded on a scale from A to F, where A is the best grade and F is a fail. Read more about the grading system.

Special examination arrangements, use of sources, explanations and appeals

See more about examinations at UiO

Last updated from FS (Common Student System) Nov. 29, 2020 3:15:06 PM

Facts about this course

Credits
10
Level
Master
Teaching
Spring
Examination
Spring
Teaching language
English