
1

IN1010 Uke 9, vår 2022
Programmeringsmønstre

Design Patterns

Eric Jul

Programmeringsteknologi gruppe

Inst. for informatikk

UiO

Who am I?

 Professor & Head of Programming Technology Group, IfI

 Masters degree 1980 University of Copenhagen in
Computer Science & Math

 Ph.D. CS, University of Washington, 1988

 1981-2009 University of Copenhagen, professor 2000

 2009-2015 Member Bell Labs, Dublin, Ireland

 2009-2016 Professor II, IfI, UiO

 2016- Professor, IfI, UiO

 Research in Distribution/Concurrency/Objects since 1974

 Co-Designer of the Object Oriented Language Emerald
Mobility (consider taking IN5570 ;-))

 Fine-grained Object Mobility

 Self-migration of Operating Systems

2

Who am I?

For fun, I fly glider (Seilfly) - sometimes even inverted ;-)

3

Programmeringsmønstre
Design Patterns

 A design pattern is the re-usable form of a solution to a
design problem.

 An algorithm describe specific steps to achieve something:
e.g., sorting.

 A design pattern is more general: prescribes a way to
build something, but not the details

 Inspired by Christofer Alexander, an architect

 Example from arcitecture: A window.

[WHITEBOARD]

4

Design Patterns History

 The design pattern concept was clear formulated and
presented in the seminal, so-called Gang of Four book in
1995

 Before that many used individual design patterns without
thinking of them as one instance of a general idea

5

The «Bible» of Design Patterns

6

Modelling: Trygve Reenskaug
Professor Emeritus IfI, UiO
Inventor of Model-View-Control, 1979

7

Modelling

Modelling is about mapping some real-world entity into a
simple version where irrelevant details have been removed
and one or more essential aspects are high-lighted.

Often we go from:

real-world entity

to: mental model

to: UML model

to: Java program {}

8

Example:
Modelling A Steam Engine

 Think of a steam engine

 Want to model it: just the temperature

 Build a SIMPLE model of the temperature

 Want to write a program to

 Model the temperature: keep track of updates

 Display the state of the model, i.e., the current temperature

[WHITEBOARD]

9

Split Model and the Printing

 Separate the code for maintaining the model from the
code that does the printing.

 Separation of Concerns principle

Two parts:

 Model part – represents the model itself

 View part – in charge of «viewing», i.e., the printing

[WHITEBOARD]

10

A look at the code for our Steam Engine Example

11

Steam Engine

package steamEngineObserverPackage;

public class SteamEngineC extends SimpleObservableC {

int temp;

public SteamEngineC() {

temp = 20; // arbitrary value (!)

}

public void setTemp(int t) {

temp = t;

System.out.println("New temperature " + temp);

}

public int getTemp() {

return temp;

}

}

12

Steam Engine Revisited

package steamEngineObserverPackage;

public class SteamEngineC extends SimpleObservableC {

int temp;

public SteamEngineC() {

temp = 20; // arbitrary value (!)

}

public void setTemp(int t) {

temp = t;

notifyAllObs();

% System.out.println("New temperature " + temp);

}

public int getTemp() {

return temp;

}

}

13

Observer Pattern UML (from GangOf4)

14

Steam Engine Observable Interface

public interface SimpleObservableI {

public void add(SimpleObserverI o);

public void notifyAllObs();

}

15

Steam Engine Simple Observable Superclass

public class SimpleObservableC implements SimpleObservableI {

Set<SimpleObserverI> obsSet = new HashSet<SimpleObserverI>();

@Override

public void add(SimpleObserverI o) {

obsSet.add(o);

o.update(); // as to display current value

}

@Override

public void notifyAllObs() {

Iterator<SimpleObserverI> i = obsSet.iterator();

while (i.hasNext()) {

SimpleObserverI o = i.next();

o.update();

}

}

}

16

Steam Engine Simple Observer Interface

package steamEngineObserverPackage;

public interface SimpleObserverI {

public void update();

}

17

Steam Engine Print Observer

public class SteamEngineObserverC implements SimpleObserverI {

SteamEngineC mySteamEngine;

SteamEngineObserverC(SteamEngineC myEngine) {

mySteamEngine = myEngine;

myEngine.add(this);

}

public void update() {

System.out.println("Current Steam Temperature is " +

mySteamEngine.getTemp());

}

}

18

Steam Engine Alarm Observer

public class SteamEngineObserverAlarm implements SimpleObserverI {

int myAlarmTemp;

SteamEngineC mySteamEngine;

SteamEngineObserverAlarm(SteamEngineC myEngine, int

initialAlarmTemp) {

mySteamEngine = myEngine;

myAlarmTemp = initialAlarmTemp;

myEngine.add(this);

}

public void update() {

if (mySteamEngine.getTemp() > initialAlarmTemp) {

System.out.println("**** ALARM ****");

}

}

}

19

Steam Engine Simple Test

public class TestSteamEngine {

public static void main(String arg[]) {

SimpleObserverI myObs, myObs2, myAlarmObs;

SteamEngineC myEngine;

myEngine = new SteamEngineC();

myObs = new SteamEngineObserverC(myEngine);

myAlarmObs = new SteamEngineObserverAlarm(myEngine, 85);

for(int i = 30; i <= 100; i += 10) {

myEngine.setTemp(i);

}

}

}

20

Observer available in Java Library

Observer is used so often that it is one of the Design
Patterns that is built into the Java system.

21

A note on Overriding and the use of @override

The annotation «@override» in Java is placed just before
every method that overrides a method in a superclass.

Strictly speaking, it is not necessary, however, it is
considered good practise to use it.

By doing so, we achieve:

 Better error messages, e.g., if you missspell a method name,
you will get an error message.

 Better documentation: you explicitly say that this is a
method that overrides a virtual method in a superclass.

If interested, you can find more on this here:
https://beginnersbook.com/2014/07/override-annotation-in-java/

22

https://beginnersbook.com/2014/07/override-annotation-in-java/

A Design Pattern that you have ALREADY SEEN:
Iterator

(Beware: a very common Design Pattern developed
independently by many, so method names vary.)

Example: we have already seen it in slide 16

23

Another Design Pattern: Proxy
Example: Displaying a large image loaded from a file

public interface Image {

void display();

}

[WHITEBOARD]

24

Displaying a large image loaded from a file

public class RealImage implements Image {

private String fileName;

public RealImage(String fileName){

this.fileName = fileName; loadFromDisk(fileName);

}

public void display() {

System.out.println("Displaying " + fileName);

}

private void loadFromDisk(String fileName){

System.out.println("Loading " + fileName);

}

}

25

Proxy Object: loads file on demand

public class ProxyImage implements Image{

private RealImage realImage;

private String fileName;

public ProxyImage(String fileName){

this.fileName = fileName;

}

public void display(){

if(realImage == null){

realImage = new RealImage(fileName);

}

realImage.display();

}

}

26

Proxy Patterns

In this particular case, proxy is used to implement lazy evaluation.

Proxy can also be used for:

 Remote method calls where the proxy encapsulates all the work as to do
the remote call, e.g., Java RMI code.

 Access control.

27

References

The original Gang of Four Design Patterns seminal book:
https://www.oreilly.com/library/view/design-patterns-elements/0201633612/

Presented at the OOPSLA conference in Portland, Oregon, USA
in October 1994.

A quick start guide to Design Patterns in Java:
https://www.tutorialspoint.com/design_pattern/design_pattern_quick_guide.htm

Proxy example:
https://www.tutorialspoint.com/design_pattern/proxy_pattern.htm

28

https://www.oreilly.com/library/view/design-patterns-elements/0201633612/
https://www.tutorialspoint.com/design_pattern/design_pattern_quick_guide.htm
https://www.tutorialspoint.com/design_pattern/proxy_pattern.htm

Summary

In today’s lecture:

 Intro to Design Patterns

 Presentation of three different design patterns:

 Example of using Observer part of MVC: Steam Engine

 Iterator

 Proxy

29

Feedback

 Did you learn anything?

1. Very little

2. Some

3. Good

4. A lot

5. An awful lot

 Was it hard?

1. Too easy

2. A little Easy

3. Fine

4. A little hard

5. Too hard

30

