
1

IN1010 Uke 9, vår 2022
Programmeringsmønstre

Design Patterns

Eric Jul

Programmeringsteknologi gruppe

Inst. for informatikk

UiO

Who am I?

 Professor & Head of Programming Technology Group, IfI

 Masters degree 1980 University of Copenhagen in
Computer Science & Math

 Ph.D. CS, University of Washington, 1988

 1981-2009 University of Copenhagen, professor 2000

 2009-2015 Member Bell Labs, Dublin, Ireland

 2009-2016 Professor II, IfI, UiO

 2016- Professor, IfI, UiO

 Research in Distribution/Concurrency/Objects since 1974

 Co-Designer of the Object Oriented Language Emerald
Mobility (consider taking IN5570 ;-))

 Fine-grained Object Mobility

 Self-migration of Operating Systems

2

Who am I?

For fun, I fly glider (Seilfly) - sometimes even inverted ;-)

3

Programmeringsmønstre
Design Patterns

 A design pattern is the re-usable form of a solution to a
design problem.

 An algorithm describe specific steps to achieve something:
e.g., sorting.

 A design pattern is more general: prescribes a way to
build something, but not the details

 Inspired by Christofer Alexander, an architect

 Example from arcitecture: A window.

[WHITEBOARD]

4

Design Patterns History

 The design pattern concept was clear formulated and
presented in the seminal, so-called Gang of Four book in
1995

 Before that many used individual design patterns without
thinking of them as one instance of a general idea

5

The «Bible» of Design Patterns

6

Modelling: Trygve Reenskaug
Professor Emeritus IfI, UiO
Inventor of Model-View-Control, 1979

7

Modelling

Modelling is about mapping some real-world entity into a
simple version where irrelevant details have been removed
and one or more essential aspects are high-lighted.

Often we go from:

real-world entity

to: mental model

to: UML model

to: Java program {}

8

Example:
Modelling A Steam Engine

 Think of a steam engine

 Want to model it: just the temperature

 Build a SIMPLE model of the temperature

 Want to write a program to

 Model the temperature: keep track of updates

 Display the state of the model, i.e., the current temperature

[WHITEBOARD]

9

Split Model and the Printing

 Separate the code for maintaining the model from the
code that does the printing.

 Separation of Concerns principle

Two parts:

 Model part – represents the model itself

 View part – in charge of «viewing», i.e., the printing

[WHITEBOARD]

10

A look at the code for our Steam Engine Example

11

Steam Engine

package steamEngineObserverPackage;

public class SteamEngineC extends SimpleObservableC {

int temp;

public SteamEngineC() {

temp = 20; // arbitrary value (!)

}

public void setTemp(int t) {

temp = t;

System.out.println("New temperature " + temp);

}

public int getTemp() {

return temp;

}

}

12

Steam Engine Revisited

package steamEngineObserverPackage;

public class SteamEngineC extends SimpleObservableC {

int temp;

public SteamEngineC() {

temp = 20; // arbitrary value (!)

}

public void setTemp(int t) {

temp = t;

notifyAllObs();

% System.out.println("New temperature " + temp);

}

public int getTemp() {

return temp;

}

}

13

Observer Pattern UML (from GangOf4)

14

Steam Engine Observable Interface

public interface SimpleObservableI {

public void add(SimpleObserverI o);

public void notifyAllObs();

}

15

Steam Engine Simple Observable Superclass

public class SimpleObservableC implements SimpleObservableI {

Set<SimpleObserverI> obsSet = new HashSet<SimpleObserverI>();

@Override

public void add(SimpleObserverI o) {

obsSet.add(o);

o.update(); // as to display current value

}

@Override

public void notifyAllObs() {

Iterator<SimpleObserverI> i = obsSet.iterator();

while (i.hasNext()) {

SimpleObserverI o = i.next();

o.update();

}

}

}

16

Steam Engine Simple Observer Interface

package steamEngineObserverPackage;

public interface SimpleObserverI {

public void update();

}

17

Steam Engine Print Observer

public class SteamEngineObserverC implements SimpleObserverI {

SteamEngineC mySteamEngine;

SteamEngineObserverC(SteamEngineC myEngine) {

mySteamEngine = myEngine;

myEngine.add(this);

}

public void update() {

System.out.println("Current Steam Temperature is " +

mySteamEngine.getTemp());

}

}

18

Steam Engine Alarm Observer

public class SteamEngineObserverAlarm implements SimpleObserverI {

int myAlarmTemp;

SteamEngineC mySteamEngine;

SteamEngineObserverAlarm(SteamEngineC myEngine, int

initialAlarmTemp) {

mySteamEngine = myEngine;

myAlarmTemp = initialAlarmTemp;

myEngine.add(this);

}

public void update() {

if (mySteamEngine.getTemp() > initialAlarmTemp) {

System.out.println("**** ALARM ****");

}

}

}

19

Steam Engine Simple Test

public class TestSteamEngine {

public static void main(String arg[]) {

SimpleObserverI myObs, myObs2, myAlarmObs;

SteamEngineC myEngine;

myEngine = new SteamEngineC();

myObs = new SteamEngineObserverC(myEngine);

myAlarmObs = new SteamEngineObserverAlarm(myEngine, 85);

for(int i = 30; i <= 100; i += 10) {

myEngine.setTemp(i);

}

}

}

20

Observer available in Java Library

Observer is used so often that it is one of the Design
Patterns that is built into the Java system.

21

A note on Overriding and the use of @override

The annotation «@override» in Java is placed just before
every method that overrides a method in a superclass.

Strictly speaking, it is not necessary, however, it is
considered good practise to use it.

By doing so, we achieve:

 Better error messages, e.g., if you missspell a method name,
you will get an error message.

 Better documentation: you explicitly say that this is a
method that overrides a virtual method in a superclass.

If interested, you can find more on this here:
https://beginnersbook.com/2014/07/override-annotation-in-java/

22

https://beginnersbook.com/2014/07/override-annotation-in-java/

A Design Pattern that you have ALREADY SEEN:
Iterator

(Beware: a very common Design Pattern developed
independently by many, so method names vary.)

Example: we have already seen it in slide 16

23

Another Design Pattern: Proxy
Example: Displaying a large image loaded from a file

public interface Image {

void display();

}

[WHITEBOARD]

24

Displaying a large image loaded from a file

public class RealImage implements Image {

private String fileName;

public RealImage(String fileName){

this.fileName = fileName; loadFromDisk(fileName);

}

public void display() {

System.out.println("Displaying " + fileName);

}

private void loadFromDisk(String fileName){

System.out.println("Loading " + fileName);

}

}

25

Proxy Object: loads file on demand

public class ProxyImage implements Image{

private RealImage realImage;

private String fileName;

public ProxyImage(String fileName){

this.fileName = fileName;

}

public void display(){

if(realImage == null){

realImage = new RealImage(fileName);

}

realImage.display();

}

}

26

Proxy Patterns

In this particular case, proxy is used to implement lazy evaluation.

Proxy can also be used for:

 Remote method calls where the proxy encapsulates all the work as to do
the remote call, e.g., Java RMI code.

 Access control.

27

References

The original Gang of Four Design Patterns seminal book:
https://www.oreilly.com/library/view/design-patterns-elements/0201633612/

Presented at the OOPSLA conference in Portland, Oregon, USA
in October 1994.

A quick start guide to Design Patterns in Java:
https://www.tutorialspoint.com/design_pattern/design_pattern_quick_guide.htm

Proxy example:
https://www.tutorialspoint.com/design_pattern/proxy_pattern.htm

28

https://www.oreilly.com/library/view/design-patterns-elements/0201633612/
https://www.tutorialspoint.com/design_pattern/design_pattern_quick_guide.htm
https://www.tutorialspoint.com/design_pattern/proxy_pattern.htm

Summary

In today’s lecture:

 Intro to Design Patterns

 Presentation of three different design patterns:

 Example of using Observer part of MVC: Steam Engine

 Iterator

 Proxy

29

Feedback

 Did you learn anything?

1. Very little

2. Some

3. Good

4. A lot

5. An awful lot

 Was it hard?

1. Too easy

2. A little Easy

3. Fine

4. A little hard

5. Too hard

30

