
UNIVERSITETET I OSLO
Det matematisk-naturvitenskapelige fakultet

Examination in: IN1900 — Introduction to
programming with scientific
applications

Day of examination: Tuesday, October 10, 2017

Examination hours: 9.00 – 13.00

This examination set consists of 9 pages.

Appendices: None

Permitted aids: None

Make sure that your copy of the examination set is
complete before you start solving the problems.

• Read through the complete exercise set before you start solving the
individual exercises. If you miss information in an exercise, you can
provide your own reasonable assumptions as long as you explain that
in detail.

• The maximum possible score on the exam is 28 points. The maximum
number of points is listed for each question. For questions with sub-
questions ((a),(b), etc), each sub-question has the same score.

(Continued on page 2.)

Examination in IN1900, Tuesday, October 10, 2017 Page 2

Problem 1.

7 What is printed in the terminal window when the programs below are run?

(a)

a = 4

b = a

a = a+b

print(a)

(b)

A = [[-1,0,1],[0,0,0],[10,9,8]]

print(A[1][-1])

(c)

x = 6

y = -2

c = x >= 10 or y != -2

(d)

import numpy as np

a = [1,2,3]

a_np = np.array(a)

print(a*2)

print(a_np*2)

(e)

S = 0

for i in range(3):

S += i**2

print(S)

(Continued on page 3.)

Examination in IN1900, Tuesday, October 10, 2017 Page 3

(f)

import sys

A = [[’-1’,’0’,’1’],[’0’,’0’,’0’],[’10’,’9’,’8’]]

try:

b = int(A[2])

except IndexError:

print(’A has length %d’ %len(A))

sys.exit(1)

except TypeError:

print(’Cannot convert %s to int’ %A[2])

sys.exit(1)

(g)

def poly(x,k):

s = 0

for i in range(k+1):

s = s+x**i

return s

def test_poly():

k = 2

x = 2.0

tol = 1e-14

success = abs(poly(x,k)-7.0) < tol

assert success

test_poly()

Solution:

a:

8

b:

(Continued on page 4.)

Examination in IN1900, Tuesday, October 10, 2017 Page 4

0

c:

False

d:

[1, 2, 3, 1, 2, 3]

[2 4 6]

e:

5

f:

Cannot convert [’10’, ’9’, ’8’] to int

g:

(Nothing is printed since the test passes)

Problem 2.

6

(a) You have a file named data.txt that contains weather data for 25
december at Blindern, in the format listed below. The file starts with
data from 1950 and continues to 2008 (the table below does not show
the entire file).

Station, year, mean-temp, min-temp, max-temp

18700 1950 -5.9 -8.3 -2.6

18700 1951 6.0 4.5 7.3 0

18700 1952 -1.4 -1.8 -0.2

18700 1953 -0.2 -1.2 6.0 0

18700 1954 -8.5 -9.9 -3.8

18700 1955 -4.0 -7.7 -0.4

18700 1956 -4.9 -5.8 -4.7

18700 1957 -0.4 -1.7 1.9 0

18700 1958 -0.2 -1.0 0.9 7

18700 1959 2.1 0.8 3.5 0

18700 1960 -3.6 -9.7 -2.6

18700 1961 -6.0 -9.0 -2.1

18700 1962 -9.5 -11.3 -7.7

(Continued on page 5.)

Examination in IN1900, Tuesday, October 10, 2017 Page 5

18700 1963 -2.7 -4.1 -0.9

18700 1964 -8.0 -9.5 -6.0

18700 1965 -2.0 -3.5 -1.0

18700 1966 -6.2 -10.6 -1.4

18700 1967 -6.5 -9.3 -5.2

18700 1968 -1.5 -2.8 0.1

Write a program that reads data from the file data.txt and makes four
lists of data from the columns ’year’, mean-temp, max-temp and min-
temp. Include necessary imports.

(b) Extend the program from question 2a, and plot the three temperatures
’mean temp’, ’min temp’ and ’max temp’ as a function of year. The
axes of the plot shall be marked with ’Year’ and ’Temperature’, and
there shall be a legend to explain each curve. Include necessary imports.

You may assume that you write the code for the plot in the same file
as the code in question 2a, so the four lists are already available.

Solution:

a:

infile = open(’data.txt’,’r’)

infile.readline()

year = []

mean_t = []

min_t = []

max_t = []

for line in infile:

words = line.split()

year.append(int(words[1]))

mean_t.append(float(words[2]))

min_t.append(float(words[3]))

max_t.append(float(words[4]))

(Continued on page 6.)

Examination in IN1900, Tuesday, October 10, 2017 Page 6

b:

import matplotlib.pyplot as plt

plt.plot(year,mean_t,label= ’mean’)

plt.plot(year,min_t, label=’min’)

plt.plot(year,max_t,label=’max’)

plt.legend()

plt.xlabel(’Year’)

plt.ylabel(’T (degrees)’)

plt.show()

Problem 3.

9

(a) Write a python-function piecewise(x,a,b) that implements the
function:

f(x) =


0.0 for x ≤ a
x−a
b−a

for a < x ≤ b

1.0 for x > b

Here x, a, and b are scalar values (numbers, not arrays or lists).

(b) Write a test function test_piecewise() that tests the function
from question 3a. Set a = 0 and b = 1, and choose three different
values for x; -1.0, 0.5, and 1.5. The result of these three arguments
shall be compared with the expected values 0.0, 0.5 and 1.0.

You can assume that the function piecewise() is available in the
same file as the test function, so you don’t have to write it again.

(c) Write a program that reads the values x, a, and b from the com-
mand line, calls the function from 3a with these parameters, and
prints the result to the screen. Include a try-except block that

(Continued on page 7.)

Examination in IN1900, Tuesday, October 10, 2017 Page 7

handles the two cases that there are not enough input arguments,
and that the input arguments have the wrong format. In both
cases the program shall print an error message and exit. The er-
ror message shall be different for the two types of errors. Include
necessary imports.

You can assume that the function from 3a is available in the same
file as your program, so you don’t have to import it or write it
again.

Solution:

a:

def piecewise(x,a,b):

if x < a:

return 0.0

elif x < b:

return (x-a)/(b-a)

else:

return 1.0

b:

"""

There are many different ways to test several values

in a single test function. Here are two of the simpler

alternatives, both would give full score on the exam.

"""

def test_piecewise():

a = 0.0; b = 1.0;

x1 = -1; x2 = 0.5; x3 = 1.5

e1 = 0.0; e2 = 0.5; e3 = 1.0

tol = 1.0e-10

success1 = abs(piecewise(x1,a,b) - e1) < tol

success2 = abs(piecewise(x2,a,b) - e2) < tol

success3 = abs(pieceswise(x3,a,b) - e3) < tol

assert success1 and success2 and success3

def test_piecewise():

a = 0.0; b = 1.0;

(Continued on page 8.)

Examination in IN1900, Tuesday, October 10, 2017 Page 8

x1 = -1.0; x2 = 0.5; x3 = 1.5

e1 = 0.0; e2 = 0.5; e3 = 1.0

tol = 1.0e-10

c1 = piecewise(x1,a,b)

c2 = piecewise(x2,a,b)

c3 = piecewise(x3,a,b)

success = abs(c1 - e1) < tol and abs(c2 - e2) < tol \

and abs(c3 - e3) < tol

msg = """

Test failed, computed %g, %g, %g,

expected %g, %g, %g""" %(c1,c2,c3, e1,e2,e3)

assert success, msg

c:

import sys

try:

x, a, b = sys.argv[1:]

x = float(x)

a = float(a)

b = float(b)

except IndexError:

print(’You need to provide three command line arguments.’)

sys.exit(1)

except ValueError:

print(’The command line arguments must be numbers.’)

sys.exit(1)

print(piecewise(x,a,b))

Problem 4.

6

(Continued on page 9.)

Examination in IN1900, Tuesday, October 10, 2017 Page 9

(a) Write a Python function pi_approx(n), which implements
the sum

sn = 4
n∑

k=1

(−1)k+1

2k − 1

Write code for calling the function for n = 10 og n = 100 and
printing the result to the screen.

(b) Write a program that generates a list of n-values from 1 to
50, calls the function from 4a for all the values, and plots the
function values as a function of n. Include necessary imports.
You can assume that the function from 4a is available in the
same file as your program, so you don’t have to import it or
write it again.

a:

def pi_approx(n):

a = 0

for k in range(1,n+1):

a += (-1)**(k+1)/(2*k-1)

return 4*a

print(pi_approx(10), pi_approx(100))

b:

"""You can use lists or arrays,

but in this case lists are simpler."""

n_list = range(1,51)

a_list = []

for i in n_list:

a_list.append(pi_approx(i))

plt.plot(n_list,a_list)

plt.show()

END

