1.1

Front page

UNIVERSITY OF OSLO
Faculty of mathematics and natural sciences

Examination in: IN1900/INF1100 — Introduction to programming for scientific
applications

Day of examination: December 18th 2017
Examination hours: 9.00-13.00

Attachments: 1 (ForwardEuler.pdf)
Permitted aids: None

* Read through the complete exercise set before you start solving the
individual exercises. If you miss information in an exercise, you can provide
your own reasonable assumptions as long as you explain them in detail.

¢ All code in the question texts is written in Python 3. You can write your
answers in either Python 2 or Python 3, but you should avoid using a mix.

* Most of the exercises result in short code where there is little need for
comments, unless you do something complicated or non-standard. In that
case, comments should convey the idea behind the program constructions
such that it becomes easy to evaluate the solution.

e Many exercises ask you to “write a function”. A main program calling the
function is then not required, unless it is explicitly stated. You may, in these
types of exercises, also assume that necessary modules are already
imported outside the function. On the other hand, if you are asked to write a
complete program, explicit import of modules must be a part of the solution.

e The maximum possible score on this exam is 84 points. There are 24
questions in total, and the number of points is specified for each individual
exercise.

What is printed?

What is printed when the following code is run?

s=-2
for k in range(2, 5, 2):
s +=2

print(s)

1.2

1.3

Select an alternative:

Maximum marks: 2

What is printed?

What is printed in the terminal window when the following code is run?
a=1[8,9,10, 11]

b = a[1:-1]

a[1]1=10

print(b[0])

Select an alternative:

11

10

Maximum marks: 2

What is printed?

What is printed in the terminal window when the following code is run? The
argument end ="' in the print calls is Python 3 syntax, and replaces the usual line
shift after a print call with a space character.

foriin range(2, 5):

print(iend ="")
for j in range(i-1, i+1):
ifil=j:

print(j, end ="")

Select an alternative:

2211
1223
2132
2121

213243

1.4 What is printed?

Maximum marks: 2

What is printed when the following code is run? Recall that the function
enumerate(a), if a is a string of length n, will create a list of tuples [(0,a[0]),

(1,a[1]), ..., (n-1,a[n-1])].

def freq_lists(dna_list):
n = len(dna_list[0])
A =[0]*n
T=[0]*n
G =[0]*n
C =[0]"n
for dna in dna_list:
for index, base in enumerate(dna):
if base =="A":
Afindex] +=1
elif base =="'C":
Clindex] +=1
elif base =="'G":
Glindex] +=1
elif base == "T":
T[index] +=1
return A,C,G, T
dna_list = ['GGTAG', '"GGTAC', 'GGTGC']
A, C, G, T =freq_lists(dna_list)
print(A)

1.5

1.6

Select an alternative:

[2,0,0,0]
[0,0,0,1,0]
[C)G,'T,A'GT
[0,0,0,2,0]

[0,0,0,'A",0]

Maximum marks: 4

What is printed?

What is printed in the terminal window when the following code is run?

import numpy as np

def fibonacci(N=3):
x = np.zeros(N+1, int)
x[0] =1
x[1]=1
for nin range(2, N+1):
x[n] = x[n-1] + x[n-2]
return n, x[n]

print(fibonacci(N=2))
Select an alternative:

(1,1,2,3)
(2,2)
[0,1,1,2]

[0,1,1,2,3]

Maximum marks: 2

What is printed?

What is printed in the terminal window when the following code is run? If you
believe nothing is printed, you should explicitly write this, i.e. "Nothing is printed".

def primeTable(k):

1.7

n=5
primelist = [2,3,5,7,11]
print(primelist)
diff = primelist
fori in range(1, k):
for j in range(n-i):
diff[j] = abs(diff[j+1] - diff[j])
print(diff[:n-i])

primeTable(2)

Fill in your answer here

Words: 0

Maximum marks: 4

What is printed?

What is printed in the terminal window when the following code is run?

dna_list = ['GGTAG', '"GGTAC', 'GGTGC']
print(dna_list[len(dna_list)])

Select an alternative:
[GGTAG', 'GGTAC', 'GGTGC1
c
An error message

GGTGC

Maximum marks: 2

1.8 What is printed?

What is printed in the terminal window when the following code is run?

import numpy as np

a = np.linspace(0, 5, 1)
a.append(6.0)

print(a)

Select an alternative:

[0.1.2.3.4.5]
An error message
[0.1.2.3.4.5.6.]

[6.0.1.2.3.4.5.]

Maximum marks: 2

1.9 What is correct?

One of the following statements is correct. Which one?

Select an alternative:

A test function returns 0 if the test passes.
A test function should always include a return statement.

If a test function runs silently (without an error message), the function being
tested is incorrect.

A test function can have multiple assert statements.

A test function should always have at least one argument.

Maximum marks: 2

110 What is correct?

One of the following statements is correct. Which one?
Select an alternative:

Vectorization means to avoid explicit for-loops in the code.
Adding two Numpy arrays of length n will result in an array of length 2n.
Numpy arrays can only be used for storing numbers.

The call numpy.sin(2) will give an error message, since 2 is not an array.

Maximum marks: 2

111 Lists

Which of the following expressions does not result in a list of length 5?

Select an alternative:
[2,3]+[0,2,3]
list(range(2))+list(range(3))
[01*5

[e**2 for e in range(1,5)]

Maximum marks: 2

112 What is printed?

What is printed in the terminal window when the following code is run?

class Hello:
def __call__(self, arg):
return "Hello, %s" % arg

def __str__(self):
return "Hello, world!"

def main():
a = Hello()
print(a('students'))
print(a)

main()

Fill in your answer here

Words: 0

Maximum marks: 2

113 What is printed?

What is printed in the terminal window when the following code is run? If you
believe nothing is printed, you should explicitly write this, i.e. "Nothing is printed".

def harmonic(M):
s=0
for k in range(1, M+1):
s +=1.0/k
return s

def test_harmonic():
M=3
expected =1+ 1.0/2 + 1.0/3
computed = harmonic(M)
success = abs(expected-computed) < 1E-14
message = 'Error detected'
assert success, message

test_harmonic()
Fill in your answer here

Words: 0

Maximum marks: 2

114 What is printed?

What is printed in the terminal window when the following code is run?

def myfunc(a, b):
¢ = a.copy()
forkin b:

if kin c:
c[k] += b[Kk]
else:
c[k] = b[k]
return c

print(myfunc({1:-1, 3:1}, {1:3, 2:2}))

Fill in your answer here

Words: 0

Maximum marks: 2

115 What is printed?

What is printed in the terminal window when the following code is run?

def poly_diff(p):
dp = {}
forjin p:
if j!1=0:
dp[j-1] = j*p[i]
return dp
p ={0:1,1:1,2:1}

print(poly_diff(p))
Select an alternative:

[1.,2]

{0:1,1:1,2:1}
{0:2,1:2,2:1}
{0:1,1:2,2:0}

{0:1,1: 2}

Maximum marks: 2

2.1 Heaviside function

The Heaviside function is defined as:

0, <0
H(w)={1 x>0

Write a Python function heaviside(x), which implements this function.

Fill in your answer here

Maximum marks: 3

2.2 Test function

Write a test function for the function heaviside(x) from the previous exercise. Choose x
values -1.0 and 1.0, and compare the function result with the expected values 0.0 and 1.0.

Fill in your answer here

Maximum marks: 4

2.3 Numerical differentiation

The derivative of a mathematical function f(x) can be estimated with a finite difference
approximation:
~, f&th)—f(z)
fl(m) ~ h
for some small number h.

Implement a Python function diff(f,x,h), which applies this formula to estimate the derivative
of a function fin a point x. The function shall return the function value f(x) and the estimated
derivative. The argument f can be any mathematical function written in Python, that has a
single input argument and a single return value.

Fill in your answer here

Maximum marks: 5

2.4 Tabulated output

Write a Python program that evaluates the accuracy of the function diff(f,x,h) for estimating
the derivate of sin(x). The program shall choose x = 7r/4, h = O.5i for i=1,2,3,4, and
compute the error, which is the absolute value of the difference between the numerical
derivative and the analytical value —cos(7r/4). Finally, the program shall print out x, h, and
the error in a nicely formatted table, as listed below. You can assume that the function
diff(f,x,h) is written in the same file as your program, so you don't need to repeat or import
this function. Include other necessary imports. The output from the program shall look like
this:

0.785 0.500 0.202
0.785 0.250 0.095
0.785 0.125 0.046
0.785 0.062 0.023

Fill in your answer here

Maximum marks: 5

2.5 Prime numbers

A prime number is an integer k > 1 that is only divisible by itself and 1. In other words, to
determine if k is a prime, we only have to show that k is not divisible by any of the integers
2, 3, ..., k-1. To test this in Python, note that k is divisible by j if and only if the Python
expression k % j == 0 is True (for example, 12 is divisible by 6 since 12 % 6 == 0 is True).
Note: there are much more efficient ways of determining if k is a prime number or not, but
we do not consider this here.

Write a Python function is_prime(k) that returns the value True if k is a prime number, and
returns False if k is not a prime number. You can assume that k is a positive integer.

Fill in your answer here

3.1

Maximum marks: 5

Forward Euler function

The following function implements the Forward Euler method for solving an
ordinary differential equation (ODE):

def ForwardEuler(f, U0, T, n):
"""Solve u'=f(u,t), u(0)=U0, with n steps until t=T."""
t = np.zeros(n+1)
u = np.zeros(n+1) # u[k] is the solution at time t[k]
u[0] = UO
tfj0]=0
dt = T/float(n)
for k in range(n):
t[k+1] = t[k] + dt
u[k+1] = u[k] + dt*f(u[k], t[k])
return u, t

We want to use this function to solve the ODE
' (t) = —u,u(0) =1
Which of the following function calls is correct?

Select an alternative:

u, t = ForwardEuler(lambda u, t: -u, U0=1, T=4, n=20)
u, t = ForwardEuler(-u, U0=1, T=4, n=20)
u, t = ForwardEuler(lambda u: -u, U0=1, T=4, n=20)

u, t = ForwardEuler(f=-u, U0=1, T=4, n=20)

Maximum marks: 3

3.2 Forward Euler class

The attached PDF file contains an incomplete class implementation of the ForwardEuler
method. An example of using the class is as follows:

def f(u,t):
return -u

solver = ForwardEuler(f,1.0,10,100)
u,t = solver.solve()

The implementations of the functions solve an advance are missing. Write the code for
these functions here. You can write the functions as they would appear inside the class,
without repeating the actual class definition or the __init___ function.

Fill in your answer here

Maximum marks: 10

3.3 Heun's method

Heun's method is a second order method for solving an ODE system u'(t) = f(u,t). The
method uses the following formula for advancing the solution from step k to step k+1:

u, = ug + Atf(ug, tr)

Upgr = g + 5 F(ury te) + 5L F (s, trp)

Implement Heun's method as a class Heun, which is a subclass of the ForwardEuler class
from the previous question. Inherit as much functionality as possible from the base class,
and implement only the necessary parts. You can assume that the Heun class is written in
the same file as the class ForwardEuler, so you do not need to repeat or import the
ForwardEuler class.

Fill in your answer here

Maximum marks: 5

3.4 Modeling with ODEs

The following ODE system describes interactions between two species; a prey (x) and a
predator (y):

z'(t) = rz — axy
Y (t) = —my + bzy

The parameters r, a, m, and b are all constants. Write a Python function
predator_prey(x0,y0,r,a,m,b,T,n), which uses the Heun class from the previous question
to solve this system from t = O to t = T. The arguments to the function are the initial values
(x0,y0), the model parameters (r,a,m,b), the end time (T), and the number of time steps (n).
The function shall return three arrays containing the time points for the solution and the two
solutions x and y. You can assume that you write the function in the same file as the

Heun class, so you don't have to repeat or import this class.

Also write the code for calling the function to solve the system forr=m=1,a=0.3, b =0.2,
x0=1,y0 =1, T =20 and n= 100, and for plotting the two solutions x and y in the same
plotting window. Include necessary imports.

Fill in your answer here

Maximum marks: 10

import numpy as np
class ForwardEuler:

Class attributes:

t:
u:
k:

array of time values
array of solution values (at time points t)
step number of the most recently computed

solution

f:
uo:

def

def

def

callable object implementing f(u, t)

initial condition (scalar or array)

__init__(self, f,U0, T, n):
if not callable(f):
raise TypeError('f is not a function')
self.f = lambda u, t: np.asarray(fCu, t))
self.t = np.linspace(0,T,n+1)
self.k = @
1f isinstance(U@, (float,int)): # scalar ODE
self.neq = 1
self.u = np.zeros(n+l)
else: # system of ODEs
U@ = np.asarray(U0)
self.neq = UQ.size
self.u = np.zeros((n+l,self.neq))
self.U@ = UOQ

solve(self):

"""Solve the ODE from time @ to T.
Store solution in self.u.

Return self.u and self.t.

advance(self):
"""Advance the solution one time step.

