
IN1900 Wednesday 19/8: formulas and variables
(Chapter 2)

Joakim Sundnes, Simula Research Laboratory and University of Oslo, Dept. of Informatics

Date: Aug 14, 2020

What will you learn in IN1900?
General computer programming:

Thinking like a programmer
Translating mathematics to code
Generic concepts common to all languages
Debugging, testing etc.

Python (syntax)
Tools for programming (editor, terminal window)

Plan for august 19
"Live programming" of exercise 1.1 and 1.3 from "A primer on..." by H.P. Langtangen.
Slides/lecture: More new topics from Chapter 2 of "An introduction to..." by J. Sundnes

Key topics for august 19
How to write and run a program
Variables and types
Statements
Assignment
Syntax and comments
Importing modules
Formatting output



Chapter 2 is about evaluating formulas
Why?

Everybody understands the problem
Many fundamental concepts are introduced

variables
arithmetic expressions
objects
printing text and numbers

Example 1: evaluate a formula
Height of a ball in vertical motion:

where

 is the height (position) as function of time 
 is the initial velocity at 

 is the acceleration of gravity

Task: Given ,  and , compute  and print it to the screen.

!(") = " − #$0
1
2 "2

! "
$0 " = 0
#

= 5$0 # = 9.81 " = 0.6 !

How to write and run the program
A program is plain text, written in a plain text editor
Use Atom, Gedit, Emacs, Vim or Spyder (not MS Word!)

Step 1. Write the program in a text editor, here the single line

print(5*0.6 - 0.5*9.81*0.6**2)

Step 2. Save the program to a file (say) ball.py . ( .py  denotes Python.)

Step 3. Move to a terminal window and go to the folder containing the program file.

Step 4. Run the program:

    Terminal> python ball.py

The program prints out 1.2342  in the terminal window.



Alternative ways of programming Python
The interactive Python shell. We have already seen this. It allows us to type Python code and test the
result directly. Very useful for testing Python functionality, but not suitable for actual programming.
Jupyter notebooks. This is a special document combining text with actual code. These slides are
written as a a Jupyter notebook (often called an iPython notebook). The windows containing code in
a notebook are run just as code you put in a file and run in the terminal window, and output from the
code appears just below the window. More about this later.

Our standard way of programming is still to wite a .py  file in an editor!

Arithmetic expressions are evaluated as you have learned in
mathematics

Example: , in Python written as 5/9 + 2*a**4/2
Same rules as in mathematics: proceed term by term (additions/subtractions) from the left, compute
powers first, then multiplication and division, in each term
Use parentheses to override these default rules - or use parentheses to explicitly tell how the rules
work: (5/9) + (2*(a**4))/2

+ 2 /25
9 %4

Store numbers in variables to make a program more
readable
Our example program looked like

In [1]: print(5*0.6 - 0.5*9.81*0.6**2)

But from mathematics you are used to variables, e.g.,

= 5, # = 9.81, " = 0.6, ! = " − #$0 $0
1
2 "2

We can use variables in a program too, and this makes the last program easier to read and understand:

In [2]: v0 = 5
g = 9.81
t = 0.6
y = v0*t - 0.5*g*t**2
print(y)

1.2342

1.2342



This program spans several lines of text and use variables, otherwise the program performs the same
calculations and gives the same output as the previous program

Defining variables in Python
A variable is a named entity for an item of data in our program
Variables can have different types, i.e. integer, float (decimal number), text string, etc.
Technically, a variable is a name for a location in the computers memory, where the data is stored

In Python, variables are defined simply by writing their name and giving a value:

In [3]: v0 = 5
g = 9.81

The type of the variable is determined automatically by Python, based on the right hand side.

There is great flexibility in choosing variable names
In mathematics we usually use one letter for a variable
The name of a variable in a program can contain the letters a-z, A-Z, underscore _  and the digits 0-
9, but cannot start with a digit
Variable names are case-sensitive (e.g., a  is different from A )

In [4]: initial_velocity = 5
accel_of_gravity = 9.81
TIME = 0.6
VerticalPositionOfBall = initial_velocity*TIME - \
                         0.5*accel_of_gravity*TIME**2
print(VerticalPositionOfBall)

Some words are reserved in Python
Certain words have a special meaning in Python and cannot be used as variable names. These are 
and , as , assert , break , class , continue , def , del , elif , else , except , exec ,
finally , for , from , global , if , import , in , is , lambda , not , or , pass , 
print , raise , return , try , with , while , and yield .

1.2342



A program consists of statements

In [5]: a = 1      # 1st statement (assignment statement)
b = 2      # 2nd statement (assignment statement)
c = a + b  # 3rd statement (assignment statement)
print(c)    # 4th statement (print statement)

Normal rule: one statement per line, but multiple statements per line is possible with a semicolon in
between the statements:

In [6]: a = 1;  b = 2;  c = a + b;  print(c)

Assignment statements evaluate right-hand side and assign
the result to the variable on the left-hand side ¶

In [7]: myvar = 10
myvar = 3*myvar   # = 30
myvar

Example 2: a formula for temperature conversion
Given  as a temperature in Celsius degrees, compute the corresponding Fahrenheit degrees :& = 21 '

' = & + 329
5

The Python program

In [8]: C = 21
F = (9/5)*C + 32
print(F)

3

3

Out[7]: 30

69.80000000000001



WARNING: Python 2 gives a different answer!
    Terminal> python2 c2f_v1.py
    53

Many programming languages give the same error; Java, C, C++, ...

The error is caused by (unintended) integer division
9/5 is not 1.8 but 1 in many computer languages (!)
If  and  are integers,  implies integer division: the largest integer  such that 
Examples: , , , 
In mathematics, 9/5 is a real number (1.8) - this is called float division in Python and is the division
we want

% ( %/( ) )( ≤ %
1/5 = 0 2/5 = 0 7/5 = 1 12/5 = 2

Python 2 and many other languages will do integer division if both operands are integers
One of the operands (  or ) in  must be a real number ("float") to get float division
A float in Python has a dot (or decimals): 9.0  or 9.  is float
No dot implies integer: 9  is an integer
9.0/5  yields 1.8 , 9/5.  yields 1.8 , 9/5  yields 1

% ( %/(

Corrected version (works in Python 2 and 3):

In [9]: C = 21
F = (9.0/5)*C + 32

Good habit to use decimal numbers to define floats, although it is not necessary in Python 3. This will
reduce the likelihood of errors if the code is later ported to another language.

Variables refer to objects. Objects have types.
Variables refer to objects. We can check the type of a variable with the function type :



In [10]: a = 5       # a refers to an integer (int) object
b = 9       # b refers to an integer (int) object
c = 9.0    # c refers to a real number (float) object
d = b*a     # d refers to an int*int => int object
e = b/a     # e refers to int/int => float object
print(d, e)
print(type(d),type(e))

We can convert between object types:

In [11]: a = 3              # a is int
b = float(a)       # b is float 3.0
c = 3.9            # c is float
d = int(c)         # d is int 3
d = round(c)       # d is float 4.0
d = int(round(c))  # d is int 4
d = str(c)         # d is str '3.9'
e = '-4.2'         # e is str
f = float(e)       # f is float -4.2

Question for discussion
What is happening in these Python lines?

In [12]: a = '10'
b = 10
print(a*10)
print(b*10)

Not all variables are numbers
We have already used strings:

45 1.8
<class 'int'> <class 'float'>

10101010101010101010
100



In [13]: a = 3                 # a is int
c = 3.9               # c is float
h = 'Hello!'          # h is string (str)
print(type(a))        # Output: <class 'int'>
print(type(c))        # Output: <class 'float'>
print(type(h))        # Output: <class 'str'>
print(type('IN1900')) # Output: <class 'str'>

Many other types, which we will see later.

Syntax is the exact specification of instructions to the
computer
Programs must have correct syntax, i.e., correct use of the computer language grammar rules, and no
misprints!

This is a program with two syntax errors:

In [14]: myvar = 5.2
prinnt(Myvar)

Only the first encountered error is reported and the program is stopped (correct the error and continue
with next error)

Blanks may or may not be important in Python programs
These statements are equivalent (blanks do not matter):

In [ ]: v0=3
v0  =  3
v0=   3
v0 = 3

<class 'int'>
<class 'float'>
<class 'str'>
<class 'str'>

------------------------------------------------------------------
---------
NameError                                 Traceback (most recent c
all last)
<ipython-input-14-42f6d3aefda7> in <module>
      1 myvar = 5.2
----> 2 prinnt(Myvar)

NameError: name 'prinnt' is not defined



Use blanks to make the code nice and readable for humans.

Blanks at the start of a line do matter:

In [ ]: v0 = 3
    g = 9.81  #invalid, gives an error message

In Python, such blanks are used to group blocks of code together (more about this in Ch. 2)

Comments are useful to explain how you think in
programs
Program with comments:

In [ ]: # program for computing the height of a ball
# in vertical motion
v0 = 5    # initial velocity
g = 9.81  # acceleration of gravity
t = 0.6   # time
y = v0*t - 0.5*g*t**2  # vertical position
print(y)
"""
Comments can also be put inside a triple quoted
string
"""

Note:

Everything after #  on a line is a comment and ignored by Python
Comments are used to explain what the computer instructions mean, what variables mean, how the
programmer reasoned when she wrote the program, etc.
Bad comments say no more than the code: a = 5  # set a to 5

Example 3: What if we need a more advanced math formula?

What if we need to compute , , , etc. in a program?
Such functions are available in Python's math  module
In general: lots of useful functionality in Python is available in modules - but modules must be
imported in our programs

Task: Evaluate  for , and print the result to the screen.

sin * cos * ln *

+ = sin * cos * + 4 ln * * = 1.2



Three alternative ways:

In [ ]: from math import sin, cos, log
x = 1.2
Q = sin(x)*cos(x)+4*log(x)  #log is ln (base e)
print(Q)

In [ ]: import math
x = 1.2
Q = math.sin(x)*math.cos(x)+math.log(x)

In [ ]: from math import *
x = 1.2
Q = sin(x)*cos(x)+4*log(x)

Question for discussion
Why three different methods? Why not simply use this one all the time, to minimize typing?

In [ ]: from math import *

Hint: we will often import multiple modules in a single program, sometimes even multiple modules
containing mathematical functions.

Example 4: formatting of output
Output from calculations often contain text and numbers, e.g.,

    At t=0.6 s, y is 1.23 m.

Task: assign values to two variables;  and . Print the values as indicated above, with
one decimal for  and two for .

" = 0.6 ! = 1.2342
" !

Python's f-string gives control over the output

In [ ]: t = 0.6;  y = 1.2342
print(f'At t={t} s, y is {y} m.')



The f -prefix before the string indicates that this is a special type of string variable.
Everything inside the curly brackets is treated as Python expressions, and their result is "inserted"
into the string.
Too many decimals for , but we will get back to this.!

The contents of the curly brackets can be any legal Python expression, which can be evaluated and
return some kind of value. In the example above it was just a single variable, but it could also be a
complete mathematical expression:

In [ ]: t = 0.6
v0 = 5
g = 9.81
print(f'At t={t} s, y is {v0*t - 0.5*g*t**2} m.')

Want more control over the formatting?
We can add a format specifier inside the curly brackets, to control the number of decimals etc:

In [ ]: t = 1.234567
print(f"Default output gives t = {t}.")
print(f"We can set the precision: t = {t:.2}.")
print(f"Or control the number of decimals: t = {t:.2f}.")
print(f"Or control the space used for the output: t = {t:8.2f}.")

The last one is very useful for outputting multiple lines in a table-like style, to ensure that numbers are
properly aligned under eachother.

Back to the original task; print on the following format with two decimals for y:

    At t=0.6 s, y is 1.23 m.

In [ ]: t = 0.6; y = 1.2342

print(f"At t={t} s, y is {y:.2f} m.")

Similar specifiers exists for integers (using d  for digit):

In [ ]: r = 87
print(f"Integer output specified to take up 8 chars of space: r = {
r:8d}")



Formatting multiple lines
Multi-line strings, defined using triple quotes, also work with the f-string formatting:

In [ ]: v0 = 5
g = 9.81
t = 0.6
print(f"""v0 = {v0} m/s
g = {g} m/s^2 
t = {t} s
y = {v0*t - 0.5*g*t**2} m""")

Alternative ways to format output
There are multiple ways to format text and number output in Python:

1. The f-string method considered above is the newest method, which was introduced in Python
version 3.6. This is arguably the quickest and most convenient, and we recommend sticking to this
method for everyone using Python 3.6 or newer.

1. The book describes the so-called printf-formatting, or sometimes called %-formatting. The idea is
the same as with the f-strings, that we create strings with "slots" where we insert variables or
expression. However, the syntax is less intuitive than the f-string. The printf-formatting originates
from the C language, and has the advantage that it works in multiple programming languages.

2. In Python versions from 2.7 to 3.5, the standard way of formatting text was to use a function called 
format , which is built into the string-type ( str ). Again, the idea is exactly the same as for the f-

string, but the syntax is different.

Summary of Chapter 2 (part 1)
Programs must be accurate!
Variables are names for objects
We have met different object types: int , float , str
Choose variable names close to the mathematical symbols in the problem being solved
Arithmetic operations in Python: term by term (+/-) from left to right, power before * and / - as in
mathematics; use parenthesis when there is any doubt
(If you use Python 2: Watch out for unintended integer division!)

Summary of Chapter 2 (part 2)
Mathematical functions like  and  must be imported from the math  module:sin * ln *



In [ ]: from math import sin, log
x = 5
r = sin(3*log(10*x))
print(r)

Use f-strings for full control of output of text and numbers!

Important terms: object, variable, type, statement, assignment.

Summarizing example: throwing a ball (problem)
We throw a ball with velocity , at an angle  with the horizontal, from the point . The
trajectory of the ball is a parabola (we neglect air resistance):

$0 , (* = 0, ! = )!0

! = * tan , − +1
2$0

#*2

,cos2 !0

Program tasks:
initialize input data ( , , , )
import from math
compute 

We give ,  and  in m, ,  in km/h and  in degrees - this requires conversion of 
 to m/s and  to radians

$0 # , !0

!

* ! !0 # = 9.81m/s2 $0 ,
$0 ,

Summarizing example: throwing a ball (solution)



In [ ]: g = 9.81    # m/s**2
v0 = 15     # km/h
theta = 60  # degrees
x = 0.5     # m
y0 = 1      # m

print(f"""v0    = {v0} km/h
theta = {theta} degrees
y0    = {y0} m
x     = {x} m""")

# convert v0 to m/s and theta to radians:
v0 = v0/3.6
from math import pi, tan, cos
theta = theta*pi/180

y = x*tan(theta) - 1/(2*v0)*g*x**2/((cos(theta))**2) + y0

print(f'y = {y:.2} m')


