
Ch.6: Array computing and curve
plotting (Part 1)

Joakim Sundnes1,2

1Simula Research Laboratory
2University of Oslo, Dept. of Informatics

Sep 14, 2020

0.1 Plan for week 38
Monday 14 september

• Live programming of ex 4.4, 4.5, 4.13

• Intro to NumPy arrays and plotting

• Ex 5.7, 5.9

Wednesday 16 september

• Live programming of ex 5.10, 5.11, 5.13

• Plotting with matplotlib

• Making movies and animations from plots

0.2 Goal: learn to visualize functions

0.3 We need to learn about a new object: array

• Curves y = f(x) are visualized by drawing straight lines between points
along the curve

• Need to store the coordinates of the points along the curve in lists or arrays
x and y

• Arrays ≈ lists, but computationally much more efficient

• To compute the y coordinates (in an array) we need to learn about array
computations or vectorization

• Array computations are useful for much more than plotting curves!

0.4 The minimal need-to-know about vectors

• Vectors are known from high school mathematics, e.g.,
point (x, y) in the plane, point (x, y, z) in space

• In general, a vector v is an n-tuple of numbers:
v = (v0, . . . , vn−1)

• Vectors can be represented by lists: vi is stored as v[i],
but we shall use arrays instead

2

0.5 Arrays can have more than one index
Just as nested lists, arrays can have multiple indices: Ai,j , Ai,j,k

Example: table of numbers, one index for the row, one for the column

 0 12 −1 5
−1 −1 −1 0
11 5 5 −2

 A =

 A0,0 · · · A0,n−1
...

. . .
...

Am−1,0 · · · Am−1,n−1

• The no of indices in an array is the rank or number of dimensions

• Vector = one-dimensional array, or rank 1 array

• In Python code, we use Numerical Python arrays instead of nested lists
to represent mathematical arrays (because this is computationally more
efficient)

0.6 Storing (x,y) points on a curve in lists
Collect points on a function curve y = f(x) in lists:

def f(x):
return x**3

n = 5 # no of points
dx = 1.0/(n-1) # x spacing in [0,1]

for i in range(n):
x.append(i*dx)
y.append(f(x))

Turn lists into Numerical Python (NumPy) arrays:
>>> import numpy as np # module for arrays
>>> x = np.array(xlist) # turn list xlist into array
>>> y = np.array(ylist)

0.7 Make arrays directly (instead of lists)
Or drop the lists and make NumPy arrays directly:

>>> n = 5 # number of points
>>> x = np.linspace(0, 1, n) # n points in [0, 1]
>>> y = np.zeros(n) # n zeros (float data type)
>>> for i in range(n):
... y[i] = f(x[i])
...

3

0.8 Arrays are not as flexible as list, but computationally
much more efficient

• List elements can be any Python objects

• Array elements can only be of one object type

• Arrays are very efficient to store in memory and compute with
if the element type is float, int, or complex

• Rule: use arrays for sequences of numbers!

0.9 We can work with entire arrays at once - instead of
one element at a time

Compute the sine of an array:

from math import sin

for i in range(len(x)):
y[i] = sin(x[i])

However, if x is array, y can be computed by

import numpy as np
y = np.sin(x) # x: array, y: array

The loop is now inside np.sin and implemented in very efficient C code.

Vectorization gives:

• shorter, more readable code, closer to the mathematics

• much faster code

0.10 A function f(x) written for a number x usually works
for array x too

from numpy import sin, exp, linspace

def f(x):
return x**3 + sin(x)*exp(-3*x)

x = 1.2 # float object
y = f(x) # y is float

x = linspace(0, 3, 10001) # 10000 intervals in [0,3]
y = f(x) # y is array

4

0.11 NOTE: math is for numbers and numpy for arrays
>>> import math, numpy
>>> x = numpy.linspace(0, 1, 11)
>>> math.sin(x[3])
0.2955202066613396
>>> math.sin(x)
...
TypeError: only length-1 arrays can be converted to Python scalars
>>> numpy.sin(x)
array([0. , 0.09983, 0.19866, 0.29552, 0.38941,

0.47942, 0.56464, 0.64421, 0.71735, 0.78332,
0.84147])

0.12 Very important application: vectorized code for com-
puting points along a curve

f(x) = x2e− 1
2 x sin(x− 1

3π), x ∈ [0, 4π]

Vectorized computation of n+ 1 points along the curve.
import numpy as np

n = 100
x = np.linspace(0, 4*pi, n+1)
y = 2.5 + x**2*np.exp(-0.5*x)*np.sin(x-pi/3)

0.13 New term: vectorization

• Scalar : a number

• Vector or array: sequence of numbers (vector in mathematics)

• We speak about scalar computations (one number at a time) versus vec-
torized computations (operations on entire arrays, no Python loops)

• Vectorized functions can operate on arrays (vectors)

• Vectorization is the process of turning a non-vectorized algorithm with
(Python) loops into a vectorized version without (Python) loops

• Mathematical functions in Python without if tests automatically work for
both scalar and vector (array) arguments (i.e., no vectorization is needed
by the programmer)

0.14 Small quiz:
What is output from the following code? Why?

5

import numpy as np

l = [0,0.25,0.5,0.75,1]
a = np.array(l)

print(l*2)
print(a*2)

6

	Plan for week 38
	Goal: learn to visualize functions
	We need to learn about a new object: array
	The minimal need-to-know about vectors
	The minimal need-to-know about arrays
	Storing (x,y) points on a curve in lists
	Make arrays directly (instead of lists)
	Arrays are not as flexible as list, but computationally much more efficient
	We can work with entire arrays at once - instead of one element at a time
	A function f(x) written for a number x usually works for array x too
	NOTE: math is for numbers and numpy for arrays
	Very important application: vectorized code for computing points along a curve
	New term: vectorization
	Small quiz:

