¢ #7% UNIVERSITETET
20 1osLo

IN2010: Forel

Ragnhild Kobro Runde

7 £9% UNIVERSITETET
10SLO

Sorteringsalgoritmer | IN2016

« Boblesortering (bubble-sort)

« Selection-sort

* Instikksortering (insertion-sort)
« Heapsortering

* Flettesortering (merge-sort)
* Quicksort

« Bgattesortering (bucket-sort)
 Radix-sortering

¢ #7% UNIVERSITETET
2, 10sLo

Selection-sort MW@M

Algorithm SelectionSort(A):
for 1 « 1 to n-1 do
S « 1
for j -« 1+1 to n do
if A[j] < A[s] then

S — j
swap A[i] and A[s]
return A
1 2 3 4 5 6 7 8 9 10

¢ #7% UNIVERSITETET
2, 10sLo

Hvem skal ut?

Boblesortering Selection Sort

LI

RTINS ALY

Innstikksortering Heapsortering

Go to and use the code 51 89 59

http://www.menti.com/

7 £9% UNIVERSITETET
10SLO

Sorteringsalgoritmer | IN2016

« Boblesortering (bubble-sort)

« Selection-sort

* Instikksortering (insertion-sort)
« Heapsortering

* Flettesortering (merge-sort)
* Quicksort

« Bgattesortering (bucket-sort)
 Radix-sortering

Flettesortering Rmﬂ&wt

& 9% UNIVERSITETET
“WF s 10sLO

https://pixabay.com/en/people-group-crowd-line-silhouette-312122/

Generell ide:

Har: To sorterte sekvenser A, og A,

@nsker: En stor sortert sekvens A med alle
elementene fra A; og A,

Metode: Leser det minste elementet fra A, og A, og
legger 1 A. Fortsetter slik til alt ligger 1 A.

7 £9% UNIVERSITETET
10SLO

Flettesortering: Splitt og hersk

Algorithm MergeSort(A): 1. Divide in half .

if (A.size() > 1) [Split list equally]
A; — A[1l...n/2]
A, — A[n/2+1...n]
MergeSort(A,)

MergeSort(A,)
A — merge(A{,A,)

return A

2. Recur. 2. Recur.

Flettesortering: eksempel

Fase 1. Splitt

(85 24 63 45 17 31 96 350

N
(5524645) (173196 50)

N

Flettesortering: eksempel

Fase 2: Hersk

(1724314550638596)

(24 45 63 85) (n 3150 9% j

¢ #7% UNIVERSITETET
2, 10sLo

Analyse av flettesortering

(8524634517319650] (1724314550638596)

/\
(85 24 62{3 (>% 50 j (24 45 63 85)
/N /N N

(85 24] @3 45) (17 31) [96 50] @4 85) @5 63) (17 31) GO 96)

O @6

& §9% UNIVERSITETET
0F - 10sLO

Quicksort: generell ide

1. Finn et «middels stort» element fra mengden som
skal sorteres. Dette kalles pivot-elementet.

2. Del resten av elementene i to:
1. De som er mindre enn pivot-elementet
2. De som er stgrre enn pivot-elementet

3. Sorter disse mengdene hver for seg (ved hjelp av
guicksort).

4. Returner sorteringen av de «sma» elementene,
etterfulgt av pivot-elementet, etterfulgt av
sorteringen av de «store» elementene.

1 2 3 4 5 6 7 8 9 10

¢ #7% UNIVERSITETET
2, 10sLo

InPlaceQuickSort

v

Algorithm inPlaceQuickSort(S,a,b):
if a > b then return // 0 or 1 element

1 « inPlacePartition(S,a,b)
inPlaceQuickSort(S,a,1-1)
inPlaceQuickSort(S, 1+1,b)

¢ #7% UNIVERSITETET
2, 10sLo

InPlacePartition

Algorithm inPlacePartition(S,a,b):
let r be the index of the pivot
swap S[r] and S[b]

p — S[b]

1 <« a

r — b-1

while 1 < r do

while T < r and S[1] < p do
T « 1+1

while r > 1 and S[r] > p do
r— r-1

if 1 < r then
swap S[1] and S[r]
swap s[1] and s[b]
return 1

€ £9% UNIVERSITETET
“¥F s 10SLO

Quicksort: Hvordan velge pi{}ot?

|deelt: Et pivot-element som deler mengden i to like
store halvdeler.

Mulige valg:
» Det fgrste/siste elementet | arrayen.
« Ettilfeldig element i arrayen.

« Midten-av-tre partisjonering: Ser pa det farste,
midterste og siste elementet | arrayen og velger det
mellomste av disse som pivot.

¢ #7% UNIVERSITETET
0¥, 10sL0

Analyse av quicksort

Quicksort

By C. A. R. Hoare

A description is given of a new method of sorting in the random-access store of a computer.

The

method compares very favourably with other known methods in speed, in economy of storage, and

in ease of programming.

Certain refinements of the method, which may be useful in the optimiz-

ation of inner loops, are described in the second part of the paper.

Part One: Theory

The sorting method described in this paper is based on
the principle of resolving a problem into two simpler
subproblems. Each of these subproblems may be
resolved to produce yet simpler problems. The process
is repeated until all the resulting problems are found to
be trivial. These trivial problems may then be solved
by known methods. thus obtaining a solution of the
original more complex problem.

Partition

The problem of sorting a mass of items, occupying
consecutive locations in the store of a computer, may be
reduced to that of sorting two lesser segments of data,
provided that it is known that the keys of each of the
items held in locations lower than a certain dividing line
are less than the keys of all the items held in locations
above this dividing line. In this case the two segments
may be sorted separately, and as a result the whole mass
of data will be sorted.

In practice, the existence of such a dividing line will
be rare, and even if it did exist its position would be
unknown. It is, however, quite easy to rearrange the
items in such a way that a dividing line is brought into
existence, and its position is known. The method of
doing this has been given the name pariition. The
description given below is adapted for a computer
which has an exchange instruction: a method more
suited for computers without such an instruction will be
given in the second part of this paper.

The first step of the partition process is to choose a
particular key value which is known to be within the
range of the keys of the items in the segment which is
to be sorted. A simple method of ensuring this is to
choose the actual key value of one of the items in the
segment. The chosen key wvalue will be called the
hound. The aim is now to produce a situation in which
the keys of all items below a certain dividing line are
equal to or less than the bound, while the keys of all
items above the dividing line are equal to or greater
than the bound. Fortunately, we do not need to know
the position of the dividing line in advance: its position
is determined only at the end of the partition process.

The items to be sorted are scanned by two pointers:
one of them, the lower poinser, starts at the item with
lowest address, and moves upward in the store, while
the other, the upper pointer, starts at the item with the

10

highest address and moves downward. The lower
pointer starts first. If the item to which it refers has a
key which is equal to or less than the bound, it moves
up to point to the item in the next higher group of
locations. It continues to move up until it finds an
item with key value greater than the bound. In this
case the lower pointer stops, and the upper pointer
starts 1ts scan. If the item to which it refers has a key
which is equal to or greater than the bound, it moves
down to point to the item in the next lower locations.
It continues to move down until it finds an item with
key value less than the bound. Now the two items to
which the pointers refer are obviously in the wrong
positions, and they must be exchanged. After the
exchange. each pointer is stepped one item in its appro-
priate direction. and the lower pointer resumes its
upward scan of the data. The process continues until
the pointers cross each other, so that the lower pointer
refers to an item in higher-addressed locations than the
item referred to by the upper pointer. In this case the
exchange of items is suppressed, the dividing line is
drawn between the two pointers, and the partition
process is at an end.

An awkward situation is liable to arise if the value of
the bound is the greatest or the least of all the key values
in the segment, or if all the key values are equal. The
danger is that the dividing line, according to the rule
given above, will have to be placed outside the segment
which was supposed to be partitioned. and therefore the
whole segment has to be partitioned again. An infinite
cycle may result unless special measures are taken.
This may be prevented by the use of a method which
ensures that at least one item is placed in its correct
position as a result of cach application of the partitioning
process, If the item from which the value of the bound
has been taken turns out te be in the lower of the two
resulting segments. it is known to have a key value which
is equal to or greater than that of all the other items of
this segment. It may therefore be exchanged with the
item which occupies the highest-addressed locations in
the segment, and the size of the lower resulting segment
may be reduced by one. The same applies. nraris
mwiandis, in the case where the item which gave the
bound is in the upper segment. Thus the sum of the
numbers of items in the two segments, resulting from
the partitioning process, is always one less than the
number of items in the original segment. so that it is

The Computer Journal, 5(1), pp. 10-16, 1962.

https://amturing.acm.org/photo/hoare 4622167.cfm

7 £9% UNIVERSITETET
10SLO

Sorteringsalgoritmer | IN2016

« Boblesortering (bubble-sort)

« Selection-sort

* Instikksortering (insertion-sort)
« Heapsortering

* Flettesortering (merge-sort)
* Quicksort

« Bgattesortering (bucket-sort)
 Radix-sortering

UNIVERSITETET
I OSLO

Battesortering

¢ #7% UNIVERSITETET
2, 10sLo

Battesortering

En verdibasert sorteringsmetode.

Algorithm bucketSort(S):

let B be an array of N lists, intitially empty
for each item x 1in S do

let k be the key of x

remove x from S and insert it at the end of B[k]
for i « 0 to N-1 do

for each item x in B[1] do

remove x from B[1] and insert it at the end of S

¢ #7% UNIVERSITETET
“F; 10sLO

Radix-sortering

Generalisering av bgttesortering.

|de: Sorterer fgrst etter det minst signifikante sifferet,
deretter det nestminste osv.

Eksempel: 10 heltall i intervallet O til 999.

0 1 2 3 4 5 6 7 8 9

0 1 512|343 | 64 | 125|216 | 27 | 8 | 729

RS O

4 ##% UNIVERSITETET
w9, 1osLo

Litt om oblig 3

§ £2% UNIVERSITETET
« ¥ 10SLO

Neste forelesning: 26. oktober (Stein Michael Storleer)

HASHING

