
Solution and marking notes, INF3020-V19
exam

Evgenij Thorstensen

1, Intro

Attached to each question are marking notes to help consistent marking.

2, SQL and relational algebra

We have a product database with the following tables. Primary keys are underlined.

Requirements(ProductID, DependencyID, Quantity)
Product(ProductID, Name, AssemblyTime, Category)
Order(OrderID, ProductID, Quantity, PricePerUnit)

The Product table has IDs (int), Names (string), and Categories (int) of a prod-
uct, as well as AssemblyTime in minutes (int) of a product from the components
required. This value does not include the time required to assemble those compo-
nents (see next question).

The Order table tracks orders, with OrderID (int), ProductID (int, references
Product), Quantity (int) ordered, and the price per unit (int).

2.1, SQL, 6p

Question: Write a query to find all orders where it would take more than 24
hours to assemble all products ordered given the direct required products (so no
recursion) sorted by the total price of the order descending. Output the OrderID,
total price, and the time to assemble.

SELECT Order.OrderID , SUM(Product.AssemblyTime)
as totTime ,

SUM(PricePerUnit*Quantity) as totPrice FROM Order
JOIN Product ON Order.ProductID = Product.

ProductID
GROUP BY OrderID
HAVING totTime > 24*60
ORDER BY totPrice DESC;
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Marking notes: This questions tests aggregation, so only having the join correct
gets 1 to 0 points. Missing HAVING or using WHERE instead loses 2 points. Missing
order by loses 1. Correct solutions involving views dealing with the total price and
total time separately are perfectly fine.

2.2, Recursive SQL, 13p

New for this question: The Requirements table stores, for each product, the prod-
ucts required to build it (its dependencies), and the Quantity (int) of each needed.
Both ProductID and DependencyID are foreign keys referencing the Product table.
Dependencies are recursive — product A may need 5 units of product B, and B in
turn needs 7 units of C and 3 of D. Important: Note that Requirements is a many-
to-many relation; several products may have e.g. product A as a dependency, and
A itself could have many different direct dependencies.

Question: Write a recursive query to find all products with total assembly time
(including assembly of dependencies and their dependencies and so on) above 24
hours. Output the time and product id.

Solution: There are two approaches that I can see here. First, a bottom-up version
where we start with products that do not have any dependencies.

--ProdTime will be a view that contains total
time for each product (eventually)

--Start with all products that have no
dependencies.

WITH RECURSIVE ProdTime(pid , totMins) AS (
SELECT Product.ProductID , Product.AssemblyTime

FROM Requirements JOIN Product ON Requirements
.ProductID = Product.ProductID

WHERE Product.ProductID NOT IN (SELECT
DependencyID FROM Requirements)

UNION
--We know the total time of everything in

ProdTime
--Need to now add all products that have any of

these as dependencies , and calculate their
totals.

--Their totals are sum (total for each dependency
times quantity) + assemblytime for the

product
SELECT Requirements.ProductID ,
SUM(Requirements.Quantity*ProdTime.totMins)+

Product.AssemblyTime FROM
ProdTime JOIN Requirements ON Requirements.

DependencyID = ProdDep.pid
JOIN Product ON Requirements.ProductID = Product.

ProductID
GROUP BY Requirements.ProductID
)
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--Now we can select all the ones we need.
SELECT pid , totMins FROM ProdTime WHERE totMins >

24*60;

The other option is to go top-down. We start with the Requirements table, then
add dependencies and their dependencies. However, due to the fact that this rela-
tionship is many-to-many, we need to keep track of the end product for each depen-
dency we add, as different products can have the same dependency. This requires
careful joins.

WITH RECURSIVE Dependencies(ProdID , DepID , TotAtime
, EndProd) AS (

--Start by adding all products as their own
dependency , to include their

--assembly time
SELECT ProductID , ProductID , AssemblyTime ,

ProductID FROM Product
UNION

--Now we recursively add dependencies.
--If P1 has P3 as a dependency , we add the line
--P1 | P3 | quantity*assembly time for P3 |

EndProd
SELECT Dependencies.DepID , Requirements.

DependencyID ,
(Requirements.Quantity*Product.AssemblyTime),

Dependencies.EndProd
FROM Dependencies JOIN Requirements ON

Dependencies.DepID = Requirements.ProductID
JOIN Product ON Product.ProductID = Requirements.

DependencyID)
--To get total assembly time for end products , we

aggregate on this column
SELECT EndProd , SUM(TotATime) as TotTime FROM

Dependencies GROUP BY EndProd HAVING TotTime >
24*60;

Marking notes: Simple but incorrect top-down solutions that double-count due
to the many-to-many problem are worth up to 8 points if they are otherwise correct
and demonstrate recursive SQL skills. Smaller errors in WHERE/arithmetic to find
totals should not cost more than 4 points.

2.3, Relational algebra, 6p

Question: Write an SQL query equivalent to the following relational algebra ex-
pression:

γ{R.id,SU M(S.x)→sumx}(σR.y<300(R ./R.id=S.id S))

Solution: This is a simple aggregation, a direct translation suffices.
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SELECT R.id , SUM(S.x) AS sumx FROM R JOIN S ON R.
id = S.id

WHERE R.y < 300 GROUP BY R.id;

Marking notes: Mistakes related to the aggregation (γ) operator up to 2 points
loss, same for join and filter condition.

1 Transactions

3.1, Serializability, 3p

Question: What does it mean for a transaction schedule to be serializable?

Solution: A serializable transaction schedule is one that is equivalent to (produces
the same result as) a serial schedule, i.e. one where transactions are executed one
at a time.

Marking notes: No specific notes.

3.2, Conflict serializability, 5p

Question: Consider the following transaction schedule:

r1(A); r3(B); w3(B); r2(A); w2(A); w1(A);

Is this schedule conflict serializable? Explain your answer.

Solution: The standard approach is to draw a precendence graph. The precen-
dences here are T1→ T2 (T1 reads A before T2 writes A) and also T2→ T1 (T2 writes
A before T1 writes A). Therefore, the precedence graph has a cycle, and hence this
schedule is not conflict serializable.

Marking notes: A good explanation matters here. The graph itself is not required,
but the notion of precedence and a cycle in the precedences is. Precedences that
are not in the schedule but in the answer should lead to 1-2 points loss.

3.3, 2PL protocol, 6p

Question: Consider the following transaction schedule:

r1(A); r1(B); r2(B); w2(A); w1(C); c1; c2

Explain what will happen when this schedule is executed under the two-phase
locking (2PL) protocol with shared (S), exclusive (X), and upgrade (U) locks. Which
locks are requested and taken when, who has to wait, and so on. The lock matrix
is below (omitted, but the lock matrix in question is the pessimistic one, where
holding an upgrade lock disallows others to take shared locks).
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Solution: T1 takes shared locks on A and B, and reads them. T2 requests a shared
lock on B; this is granted per lock matrix. Now T2 requests an exclusive lock on A;
this is denied due to T1 having a shared lock, and T2 waits. T1 takes an exclusive
lock on C, gets it, and commits. Now T2 gets the exclusive lock on A, writes, and
commits.

Marking notes: The key is the wait. Note that T1 cannot have released the shared
lock on B prior to T2 acting, since T1 must first take the lock on C. Mistakes around
waiting, lose up to 3 points. Too early lock release (violating the two phase rule),
lose up to 3 points.

3.4, 2PL, explanation, 5p

Question: Explain, in your own words, why the two phase locking protocol (2PL)
with shared (S) and exclusive (X) locks guarantees serializability.

Solution: The first transaction to write an element gets an exclusive lock on that
element, and every other transaction must wait to both read and write that ele-
ment until this first transaction is done. The resulting outcome is therefore that this
transaction goes first, then the rest do their actions. The only concurrent actions
that can happen are thus reads, which do not affect the result.

Marking notes: A full proof is not necessary. I consider the explanation above
acceptable for full marks.

3.5, UNDO/REDO logging, 5p

Question: Explain how UNDO/REDO logging and recovery works and what ad-
vantages and disadvantages it has compared with REDO logging. You do not need
to describe how checkpointing works.

Solution: In UNDO/REDO logging, both old and new values of an update are
logged, in contrast to REDO, where only the new value is logged. Due to only
knowing the new value with REDO logging, no data may be written to tables on
disk until a transaction commits or aborts; however, disk writes may be postponed
indefinately. In contrast, with U/R logging, data may be written to disk as soon as
they are logged, or postponed indefinately. The disadvantage of U/R logging is that
twice as much needs to be logged.

Marking notes: No specific guidance.

3.6, MVCC, postgres, 10p

Question: In database systems, it is common to enfore isolation levels by a mix
of multi-version concurrency control and explicit locking. This is e.g. the case
in postgres, with an optimistic concurrency policy. Using postgres as an example,
describe how this works. In particular, which operations block (that is, take locks),
which do not, and in what sense is the concurrency handling optimistic?
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Solution: In postgres, and other MVCC systems, read operations do not block
write operations, and vice versa, due to the fact that we have multiple versions of
data elements. Transactions can thus read older versions if that is what they need.
Thus, only writes take locks, and only other writes to the same element need to
wait for locks. The policy is optimistic in the sense that isolation violations can still
happen under MVCC with locks, however, they are guaranteed to be detected and
handled by rolling back a transaction. This is in contrast to pessimistic policies,
which guarantee that violations cannot happen (e.g. 2PL). An example of this is a
transaction executing under repeatable read. Such a transaction must wait for a lock
if some other transaction wrote an element, but if the other transaction commits,
the first one has to rollback (since it read an old value of this element, and may not
see the new value).

Marking notes: Optimism vs. pessimism does not have to super detailed. A good
explanation of MVCC with locks alone, including what blocks, should get 6 points.

3.7, Deadlocks, 6p

Question: In protocols that use locking, such as 2PL, it is possible for a deadlock
to occur. Define the concept, and describe a way of detecting or preventing deadlock
(there are several).

Solution: A deadlock occurs when mutliple transactions (for example two) each
have a lock the other wants. In this situation, neither can proceed. A way of detect-
ing deadlocks is by maintaining a waits-for graph, with transactions as nodes and
edges showing who waits for whose lock. A cycle in this graph indicates deadlock,
and it can be broken by rolling back a transaction.

A different way of preventing deadlock is by using a protocol such as wait-die
or wound-wait, where transactions may only wait on each other in sequence. A
transaction that violates the sequence has to rollback.

Marking notes: Only one way of prevention or detection is enough for full marks.
2 points for describing deadlock correctly, remaining 4 for a way of dealing with
them.

2 Query plans and optimization

4.1, Bitmap index scan, 3p

Question: One of the disk access methods that we have seen is a bitmap index
scan. Explain what it is and how it works.

Solution: A bitmap index scan uses an index to find blocks containing the match-
ing tuples. Instead of reading the blocks directly, a bitmap noting which blocks are
to be read is created. This allows for a semi-sequential scan of the table, and can
also be used to evaluate AND and OR conditions if both referenced columns have
an index.
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Marking notes: 1 point loss if the AND/OR point is not mentioned.

4.2, Query plan, 12p

Question: Consider the following query and query plan. Explain this query exe-
cution plan in your own words. What access methods have been used, how are the
operations (joins etc.) executed, and so forth?

SELECT title , COUNT (*) AS ant
FROM film INNER JOIN filmitem ON film.filmid =

filmitem.filmid
WHERE filmitem.filmtype = ’C’
GROUP BY title
HAVING COUNT (*) > 30
ORDER BY ant DESC;

--
--------------------------------------------------------

Sort (cost =56321.37..56588.05 rows =106670 width
=28) (actual time =3161.018..3161.023 rows =12
loops =1)
Sort Key: (count (*)) DESC
Sort Method: quicksort Memory: 25kB
-> HashAggregate (cost =43412.82..47412.94 rows

=106670 width =28) (actual time
=2977.289..3160.742 rows =12 loops =1)

Group Key: film.title
Filter: (count (*) > 30)
Rows Removed by Filter: 482096
-> Hash Join (cost =27191.69..41012.76

rows =320009 width =20) (actual time
=1223.408..1827.827 rows =549782 loops
=1)

Hash Cond: (film.filmid = filmitem.
filmid)

-> Seq Scan on film (cost
=0.00..12003.61 rows =692361 width
=24) (actual time =0.039..240.938
rows =692361 loops =1)

-> Hash (cost =20272.38..20272.38
rows =553545 width =4) (actual time
=1216.598..1216.598 rows =549782
loops =1)

Buckets: 1048576 Batches: 1
Memory Usage: 27521 kB

-> Seq Scan on filmitem (
cost =0.00..20272.38 rows
=553545 width =4) (actual
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time =0.092..766.344 rows
=549782 loops =1)

Filter: (( filmtype)::
text = ’C’::text)

Rows Removed by Filter:
647848

Planning Time: 1.330 ms
Execution Time: 3180.471 ms
(17 rows)

Solution: Both tables are read using a sequential scan, that is, they are read from
disk in entirety, without using indexes. The filmitem tuples are then filtered on the
WHERE condition, then put into a hash table. The equijoin between filmitem and
film is done by looking up matching filmitem tuples in the hashtable.

The aggregation operation is then done using another hash table, by putting
tuples with the same group by value in the same bucket, then aggregating each
bucket. The resulting tuples are then filtered on the having clause.

Finally, the result is sorted using in-memory quicksort. The estimated number
of tuples is okay until the aggregation filter, where it is way off (106 000 estimated
rows vs 12 actual).

Marking notes: Missing descriptions of what a hash join and hash aggregate does
should lose 2-4 points. Not noticing the misestimate at the top, another 1-2 points
loss.

4.3, Index usage, 4p

Question: Below is the same plan as in the previous question (plan omitted).
Even though there is an index on both film.filmid and filmitem.filmid, they are not
used. Explain why.

Solution: As we can see from the estimated number of tuples in both the filter on
the where clause, as well as number of tuples expected to match in the join, this is
most of both tables. In this case, reading the whole table directly is cheaper than
accessing it via an index, since index access incurs an overhead.

Marking notes: No specific guidance.

4.4, Estimation, 5p

Question: Using T(R) for the number of tuples in a relation, and V(R.x) for the
number of distinct values in an attribute, write down an estimate for the number
of tuples returned by the query

σR.id=35(R ./R.x=S.y S)
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Solution: The estimate for the join is T (R)×T (S)
max(V (R.x),V (S.y)) , and the selectivity factor

for constant selection is 1
V (R.id) . The whole thing is then

T (R)× T (S)
max(V (R.x), V (S.y))

×
1

V (R.id)

Marking notes: It is perfectly ok to write “assuming V (R.x)> V (S.y)” or similar
instead of max. Not including this fact should lose a point.

3 Distributed systems

5.1, CAP theorem, 8p

Question: Explain the CAP theorem in your own words, and what it means for a
distributed system to choose CP or AP in the context of all three being impossible.

Solution: The CAP theorem states that a distributed system cannot guarantee all
of consistency, availability, and partition tolerance at the same time. Consistency
means that nodes do not end up with conflicting information, availability that a
node that is up can respond to queries, and partition tolerance that the whole system
does not go down due to some nodes being unable to communicate.

A system choosing CP guarantees consistency at the cost of availability — nodes
may not accept operations during a partition (“try again later”). A system choosing
AP, on the other hand, continues to accept queries even during a partition, but
different nodes may end up with different information.

Marking notes: Stating CAP without explaining what the three properties are
(loosely is ok) loses up to 3 points. Lack of CP and AP discussion loses up to another
3.
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