
Table of Contents (IN3020&4020, 2024)

Lecture Part Topic Slide
1 – Intro & recap Introduction and motivation 2
2 – Intro & recap Relational model 33
3 – Intro & recap SQL summary - 1 76
4 – Intro & recap SQL summary - 2 108
5, 6 1: Query processing Relational algebra 146
7, 8 1: Query processing Relational algebra for SQL 198
9, 10 1: Query processing Indexes 234
11, 12 1: Query processing Query compilation and optimisation 291
13–15 1: Query processing Query evaluation 346
16–18 2: Transaction management Transaction processing concepts 405
19–21 2: Transaction management Concurrency control techniques 464
22, 23 2: Transaction management Recovery techniques 538
24 – Database security 594
25 3: NoSQL Overview 631
26–28 3: NoSQL Graph databases 667
29 – DBMS for Big Data: Challenges 765

1

IN3020&4020 – Database Systems (2024)
Part: Intro & Recap
Lecture 1: Introduction and Motivation

15 January

Egor V. Kostylev and Leif Harald Karlsen
IFI, University of Oslo
egork@ifi.uio.no

About us: Egor V. Kostylev

2004–2009: PhD, Lomonosov Moscow State University
Programming Languages

2010–2013: PostDoc, University of Edinburgh
Databases

2013–2020: Lecturer, University of Oxford
+ Knowledge Representation

from Sep. 2020: Associate Professor, University of Oslo
+ Hybrid AI

Language: Jeg snakker (litt) norsk, but the course is in English

How to find me: egork@ifi.uio.no, office 8165 in OJD

3

About us: Leif Harald Karlsen

2014–2018: PhD, University of Oslo
Spatial Databases

2018–2019: Head Engineer, SIRIUS/University of Oslo
Semantic Technologies

2018: Lecturer, Norwegian Business School
Databases

from Aug. 2019: Senior Lecturer, University of Oslo
Databases and Data Engineering

How to find me: leifhka@ifi.uio.no, office 9168 in OJD

4

Lectures

Physical:

– main part of the course, usually 2 a week (other parts
described below)

– an opportunity for a dialogue: interrupt us and ask questions

– we will ask questions sometimes, on the fly or using Menti

Lectures will be recorded:

– videos will be published (very) soon after the lecture

– no promise!

– do not forget about mandatories (see below):
you need to follow the course during the term to succeed

5

What-this-is-about hierarchy

IN2090 – Databaser og datamodellering (Leif Harald Karlsen)

– what databases are and how to use them
– pre-requisite (obligatoriske forkunnskaper) for IN3020
– not for IN4020 (knowledge of the material is expected, but ...)

IN3020&4020 – Database systems

– how databases work inside
– pre-requisite for IN5040
– NOT an advanced SQL course!

IN5040 – Advanced database systems for Big Data
(Vera Hermine Goebel)

– new challenges in data management

6

IN2090 – Databaser og datamodellering

Our general strategy for IN2090 material:

– Not important for us: ignored
– We build upon: presented, but quickly
– We study deeper: repeated in detail (and extended)

Our use of IN2090 synopsis:

1. Data modelling
- relational model (including keys)
- relational algebra
- entity-relation (ER) diagrams
- normal forms and decomposition

2. SQL
- syntax and semantics of Data Query Sub-Language
- security in DBs
- indexing and query processing

7

Databases and Database Management Systems

Database:

– collection of related data—that is, known facts with implicit
meaning—organised in some way (data model)

– In this course: relational databases (mostly), RDF knowledge
graphs, etc.

Database management system (DBMS):

– a software that facilitates defining, constructing, manipulating,
and sharing databases by various users and applications

– In this course: SQL engines (mostly), SPARQL engines, etc.

We often use ‘database’ and ‘DBMS’ interchangeably, as well as
omit ‘relational’ (when this does not cause confusion, which is
usually the case)

8

Why to bother about databases?

CSV + Python:
import csv
import os
filea="a.csv"
fileb="b.csv"
temp="temp.csv"
src1=csv.reader(open(filea,"r"),delimiter=",")
src2=csv.reader(open(fileb,"r"),delimiter=",")
src2_dict={}
for row in src2:

src2_dict[row[0]] = row[1]
with open(temp,"w") as fout:

csvwriter=csv.writer(fout, delimiter=delim)
for row in src1:

if row[1] in src2_dict:
row[3]=src2_dict[row[1]]

csvwriter.writerow(row)
os.rename(temp, filea)

Database + SQL:

UPDATE a
SET c4=b.c2
FROM b
WHERE a.c2=b.c1;

Question: Why the right is better than the left?
9

Why to bother about (dedicated) databases?

CSV + Python:
. . .

for row in src2:
src2_dict[row[0]] = row[1]

. . .

Database + SQL:
UPDATE a
SET c4=b.c2
. . .

Question: Why the right is better than the left?

Answer 1: SQL is easier to learn that Python

Answer 2: SQL is declarative:

– we tell the engine what we want rather than how to compute it
– easier (and shorter) to formulate
– much more space for optimisation:

- rewrite query into a more efficient one
- store data in an easy-to-access way
- efficient treatment of many users with complex transactions

10

Why we concentrate on relational databases?

Relational databases (with SQL):

– are the most popular database architecture
– have good balance between simplicity and efficiency
– natural and intuitive to work with

‘Databases’ usually mean ‘relational databases’

For us, relational databases are just a typical example, and many
challenges and approaches we will study are applicable to other
database architectures

In the end of the course, we will look at other, NoSQL
architectures:

– RDF + SPARQL, Neo4j + Cypher, etc.

11

Inside the database ‘black box’

– What is apparent to us is that we write an SQL query, and the
database does something and comes up with an answer

– But there is a lot that happens behind the scenes, inside the
‘black box’

– This course will show what happens in the ‘black box’, so that
we understand the common challenges and how to deal with them

12

Challenge 1: Query optimisation (example)

SELECT B, C, Y
FROM R, S
WHERE W = X AND A = 3 AND Z = ´a´

⇝ ⇝

13

Challenge 1: Query optimisation (example)

SELECT B, C, Y
FROM R, S
WHERE W = X AND A = 3 AND Z = ´a´

Naive approach:
cross each tuple in R with each in S; select using condition; project

⇝ ⇝

13

Challenge 1: Query optimisation (example)

SELECT B, C, Y
FROM R, S
WHERE W = X AND A = 3 AND Z = ´a´

Question: Can we do it smarter?

⇝ ⇝

13

Challenge 1: Query optimisation (example)

SELECT B, C, Y
FROM R, S
WHERE W = X AND A = 3 AND Z = ´a´

Smarter approach (much smaller tables to manipulate):
select relevant tuples in R and S; cross with selecting; project

⇝ ⇝

14

Challenge 2: Efficient data storage (example)

SELECT *
FROM R
WHERE A = 3

Naive approach: Try each tuple one by one,
select relevant

Question: Can we represent data smarter so
trying all is usually not necessary?

A solution: Sort tuples in the table in advance
according to A, use binary search when
evaluating the query

Problem: Works only for A. What if we also
expect queries for W?

Better solution: Use indexes! (See the course)

15

Challenge 3: Efficient transaction management

Instructions over databases come in sequences, called transactions

– ‘instruction’ may be a query (update, select, etc.) or a finer
piece of a query (e.g., read the tuple by this pointer, add this
tuple at the end of this table, etc.)

– each transaction is expected to be evaluated in full (‘all or
nothing’) to preserve consistency

– transactions may come in parallel (e.g., from different users)

Requirements can be formalised as ACID principles:
Atomicity, Consistency, Isolation, Durability

Approach:
Transaction Management (locking, logging, buffering, etc.)

16

At the end of the course you will know

How DBMS work inside (relational and NoSQL):

– How queries are optimised and evaluated

– How data is stored and managed

– ACID principles

– Transaction management types (i.e., isolation levels)

– Theoretical and practical aspects of database security

17

Syllabus

Three main parts:(different sizes!):

– Intro and SQL recap Egor

1. Query processing in relational databases Egor
- relational algebra, indexes, query optimisation and evaluation

2. Transaction management in relational databases Leif Harald
- ACID, serialisation, concurrency control, isolation levels

(+ DB security)

– Advanced DBMS Architecture (for IN4020) Leif Harald

3. NoSQL DBMS Leif Harald
- knowledge graphs, column-based, etc.

– A bit about emerging technologies and research Leif Harald

18

Lecture schedule – 1 (preliminary, with rough borders)

Date Part Topic
1 15.01 (Mon) Intro+SQL Introduction
2 16.01 (Tue) Intro+SQL Relational Model
3 22.01 (Mon) Intro+SQL SQL recap – 1
4 23.01 (Tue) Intro+SQL SQL recap – 2
5 29.01 (Mon) Part 1: Query Processing Relational Algebra – 1
6 30.01 (Tue) Part 1: Query Processing Relational Algebra – 2
7 05.02 (Mon) Part 1: Query Processing Relational Algebra – 3
8 06.02 (Tue) Part 1: Query Processing Relational Algebra – 4
9 12.02 (Mon) Part 1: Query Processing Indexing – 1
10 13.02 (Tue) Part 1: Query Processing Indexing – 2
11 19.02 (Mon) Part 1: Query Processing Query compilation – 1
12 20.02 (Tue) Part 1: Query Processing Query compilation – 2
13 27.02 (Tue) Part 1: Query Processing Query evaluation – 1
14 04.03 (Mon) Part 1: Query Processing Query evaluation – 2

Mondays: 14:15–16:00 (OJD, Smalltalk)
Tuesdays: 10:15–12:00 (KN, Lille Aud.)

19

Lecture schedule – 2 (preliminary, with rough borders)

Date Part Topic
15 11.03 (Mon) Part 2: TX Management Transaction Concepts – 1
16 12.03 (Tue) Part 2: TX Management Transaction Concepts – 2
17 18.03 (Mon) Part 2: TX Management Transaction Concepts – 3
18 19.03 (Tue) Part 2: TX Management Concurrency Control – 1
19 02.04 (Tue) Part 2: TX Management Concurrency Control – 2
20 08.04 (Mon) Part 2: TX Management Concurrency Control – 3
21 09.04 (Tue) Part 2: TX Management Recovery Protocols – 1
22 15.04 (Mon) Part 2: TX Management Recovery Protocols – 2
23 16.04 (Tue) (Part 2+) Intro do DB Security
24 22.04 (Mon) Part 3: NoSQL NoSQL Overview
25 23.04 (Tue) Part 3: NoSQL Graph Databases – 1
26 29.04 (Mon) Part 3: NoSQL Graph Databases – 2
27 30.04 (Tue) Part 3: NoSQL Graph Databases – 3
28 06.05 (Mon) (no part, for IN4020) DBMS for Big Data
29 07.05 (Tue) Summary and Exam Summary
30 13.05 (Mon) Summary and Exam 2023 Exam analysis

Mondays: 14:15–16:00, Tuesdays: 10:15–12:00 20

Materials

Main materials: Lecture slides and videos

– slides will be published (shortly) before the lecture at the Web
page of the course:

https://www.uio.no/studier/emner/matnat/ifi/IN3020/v24/timeplan/index.html

– slides may have typos: please, let us know
(egork@ifi.uio.no) if you find bugs

– videos will be published (shortly) after the lectures at the page

Secondary materials: Group and mandatory exercises
(+ 2022&23 exams, see below)

21

Materials

Other materials:

1. Fundamentals of Database Systems
by R. Elmasri and S.B. Navathe (7th ed.)

2. Database systems – the complete book
by H. Garcia-Molina, J.D. Ullman, and J. Widom (2nd ed.)

- only some parts are relevant

- not everything is covered

- many things are presented differently

3. Other books and resources:

- Foundations of Databases by Abiteboul, Hull, and Vianu
http://webdam.inria.fr/Alice/ (official)

- Wikipedia, PostgreSQL documentation, etc.

I will start every lecture with a list of relevant materials 22

Elmasri&Navathe chapter map (p. 13)

23

Elmasri&Navathe chapter map (p. 13)

24

Group sessions

We have 3 groups with weekly sessions (each week except this)

- Group 1: Tue 12:15–14:00, Seminarrom Sed
Teacher: Md Mahamodul Islam (mdmi@ifi.uio.no)

- Group 2: Fri 10:15–12:00, Datastue Fortress
Teacher: Mohammad Mainul Hasan (mohah@ifi.uio.no)

- Group 3: Mon (+ 1 week!) 10:15–12:00, Datastue Fortress
Teacher: Erik Snilsberg (eriksni@ifi.uio.no)

Discuss problems (published on previous Monday each week)

- it is desirable that you have a look at them in advance

- roughly covers the previous week material

- a more difficult problem (with a ‘star’, similar to mandatories and exam)

- solutions will be published (after the Friday’s session)

May include some demonstrations with PostgreSQL (see below)

Also discuss completed mandatories (see below) 25

Mandatory exercises

We have 3 mandatories:

Topic Deadline
1 Relational Algebra ??
2 Query Processing ??
3 Transaction Management ??

– Published 2 weeks before the deadline

– Submitted in Devilry

– Check the rules for the mandatory exercises (obligreglement)

– All necessary for the exam

– Extensions are possible if properly justified (illness, etc.)

– Marked within two weeks (or quicker) by group teachers (pass/not pass)

– May be resubmitted if not passed

– Deadlines may be changed (will let you know in advance)

– Short

26

Exam

Exam formal details:

– Time: 30 May 2024, 9am Duration: 4 hours
– Place: Silurveien 2 Sal 3B System: Inspera
– Withdrawal deadline: 1 May

Exam rules and contents:

– no collaboration (standard plagiarism rules)
– lecture slides are available during the exam
– no other materials are available

– you should be able to apply lecture materials
– if you are comfortable with mandatories, you should be fine

with the exam
– 22&23 exams (but not the before) is good training material

(do not recommend to look at 23 before final training) 27

Communication (we need extra effort)

Main entry point: the Web page of the course:
https://www.uio.no/studier/emner/matnat/ifi/IN3020/v24/index.html

– schedule of lectures and group sessions

– relevant links slides, videos, group exercises

– messages (changes, mandatories sheets, links to other relevant systems)

Discussions: Astro Discourse
https://astro-discourse.uio.no/c/in3020-24v (updated link!)
– approved by UiO, have good reputation from other lecturers

– student instructions can be found on Web page of the course

– We should respond within 1 working day

Lectures: I stay for some time after each lecture

28

FAQ

Q1: Is this course theoretical or practical?

A1: Both (or neither): no programming is involved, but we discuss
how real software works (cf. Compilers course)

Q2: Do I need to know how to use SQL systems (PostgreSQL)?

A2: Not necessary, but expected: the mandatories and exam are
‘on-paper’, but we will encourage you to experiment time to
time and demonstrate how to do this

Q3: How different is the course from the last year?

A3: Quite similar: you may look at slides and videos,
but nothing is promised (I may change and adapt some parts)

29

Example DBMS architecture

30

IN3020&4020 – Database Systems (2024)
Part: Intro & Recap
Lecture 2: Relational Model

16 January

Egor V. Kostylev
IFI, University of Oslo
egork@ifi.uio.no

Lectures (reminder)

Physical:

– main part of the course, 2 a week

– an opportunity for a dialogue: interrupt me and ask questions

– I will ask questions sometimes

Lectures will be recorded:

– videos will be published (very) soon after the lecture

– do not forget about mandatories:
you need to follow the course during the term to succeed

34

Materials to read

1. Fundamentals of Database Systems by R. Elmasri and
S.B. Navathe (7th ed.): Chapter 5, Sections 5.1&5.2

2. Database systems – the complete book
by H. Garcia-Molina, J.D. Ullman, and J. Widom (2nd ed.):

Section 2.1, 2.2, 2.5 (+ 3.1, 7.1, 7.2)

3. Foundations of Databases by S. Abiteboul, R. Hull, and
V. Vianu, Chapter 3
http://webdam.inria.fr/Alice/

4. IN2090 – Databaser og datamodellering (Leif Harald Karlsen),
Lecture 3
https://www.uio.no/studier/emner/matnat/ifi/IN2090/h21/timeplan/

5. Wikipedia, etc.

There are slight variations (we will discuss) 35

Lecture plan

1. History of data models

2. Classic relational model (a version of)

3. Integrity constraints (keys and foreign keys)

36

1. History of data models

Data models

Database: collection of related data—that is, known facts with
implicit meaning—organised in some way

Data model: the conceptual representation of data
usually, abstract representation

- concentrates on details important to usual database users

- hides the storage and implementation details that are not
important to these users

37

Brief history (look them up)

Early days (1960’s) of digital data management:

– Mainframe period, 1 ‘big’ machine for (that-time) 1M$

– 512 Kbyte RAM, 50 Mbyte disk

– Other I/O-equipment magnetic & paper tape, punched-card
reader and teletype (thus, unix has funny abbreviations such as
tty for the «terminal»)

– hierarchical and network data models

– ad-hoc own query languages tailored for specific applications,
largely procedural (i.e., not declarative)

38

Hierarchical database (actually, data) model

Underlies IBM’s Information Management System (IMS) DBMS

Used in bill of materials for Apollo space program

Data is represented in a tree-like structure

Edges are parent-child relationships

Own query language (called DL/I, tightly integrated into COBOL)

39

Network database model

Underlies General Electric’s Integrated Data Store (IDS) DBMS

Used by BT Customer Service System (and other projects)

Generalised hierarchical model: several parents of a child are allowed

Performance-oriented with low level of abstraction

Own (difficult to learn) query language

40

Codd’s Relational Model

E. F. Codd, 1970: A relational model of data for large shared data
banks (Commun. ACM 13, 6):

“Future users of large data banks must be protected from
having to know how the data is organized in the machine
(the internal representation). A prompting service which
supplies such information is not a satisfactory solution. Ac-
tivities of users at terminals and most application programs
should remain unaffected when the internal representation
of data is changed and even when some aspects of the ex-
ternal representation are changed."

41

What did Codd mean?

User should not see the internal representation (files, pointers):

– truly abstract data model

Relations as an abstract data structure:

– simple universal data model

Has a declarative query language of Relational Algebra expressions:

– has formal theoretical foundations
– simple and concise
– allows for efficient implementations: a lot of space for

optimisation

Since then ‘databases’ usually mean ‘relational databases’:

– SQL is based on (variants of) relational model and algebra 42

Before we proceed to the details...

Since 2000 back to roots:

– XML is essentially a hierarchical model

– Knowledge Graphs (e.g., RDF) are essentially a network model

Question: Why they lost in the 70s, but regain popularity now?

Answer: Just fancy.

43

Before we proceed to the details...

Since 2000 back to roots:

– XML is essentially a hierarchical model
– Knowledge Graphs (e.g., RDF) are essentially a network model

Question: Why they lost in the 70s, but regain popularity now?

Real answer: we are on a different level:

– we understand much better what different data models (and
query languages) are good for

– these models have universal and declarative query languages
(XQuery, SPARQL, Cypher, etc.)

– the languages are much more efficient than the ones of 60’s in
all components

43

The place of the relation model in DBMS architecture

Abstract model: this is what all the users interact with,
but not how data is stored in reality 44

2. Classical relational model

Relations: intuition and terminology

A relation can be seen as a table of values. Something like this:
Tutorials:

ID site tutorial topic
1 w3schools SQL_2003STD Databases
2 w3schools HTML_5 WebDev
3 w3schools CSS_3 WebDev
4 w3resource SQL_2003STD Databases
5 w3resource MySQL Databases

– Tutorials: relation name
– ID, site, tutorial, topic: attribute names (or just attributes),

collectively: signature
– Relation name + signature: relation schema (or just relation)
– Rows: tuples, records, or instances

collectively: relation state
– Elements of tuples: attribute values (or just attributes as well)

45

Relations: intuition and terminology

A relation can be seen as a table of values. Or this:

– Tutorials: relation name
– ID, site, tutorial, topic: attribute names (or just attributes),

collectively: signature
– Relation name + signature: relation schema (or just relation)
– Rows: tuples, records, or instances

collectively: relation state
– Elements of tuples: attribute values (or just attributes as well)

45

Relations: intuition and terminology

A relation can be seen as a table of values. Something like this:
Tutorials:

ID site tutorial topic
1 w3schools SQL_2003STD Databases
2 w3schools HTML_5 WebDev
3 w3schools CSS_3 WebDev
4 w3resource SQL_2003STD Databases
5 w3resource MySQL Databases

– Tutorials: relation name
– ID, site, tutorial, topic: attribute names (or just attributes),

collectively: signature
– Relation name + signature: relation schema (or just relation)
– Rows: tuples, records, or instances

collectively: relation state
– Elements of tuples: attribute values (or just attributes as well) 45

Relations: properties

Relation

Tutorials:
ID site tutorial topic
1 w3schools SQL_2003STD Databases
2 w3schools HTML_5 WebDev
3 w3schools CSS_3 WebDev
4 w3resource SQL_2003STD Databases
5 w3resource MySQL Databases

– Each attribute has a domain (i.e., a set of potential values):
integers, strings, etc. (often not written explicitly)

– Different attributes may have the same domain

– Attribute values are from the associated domain

46

Relations: properties

Relation

Tutorials:
ID site tutorial topic
1 w3schools SQL_2003STD Databases
2 w3schools HTML_5 WebDev
3 w3schools CSS_3 WebDev
4 w3resource SQL_2003STD Databases
5 w3resource MySQL Databases

– Tuples are unordered and unique (i.e., not identical)

46

Relations: properties

Same relation

Tutorials:
ID site tutorial topic
2 w3schools HTML_5 WebDev
3 w3schools CSS_3 WebDev
1 w3schools SQL_2003STD Databases
4 w3resource SQL_2003STD Databases
5 w3resource MySQL Databases

– Tuples are unordered and unique (i.e., not identical)

46

Relations: properties

Not a relation(!)

Tutorials:
ID site tutorial topic
1 w3schools SQL_2003STD Databases
2 w3schools HTML_5 WebDev
1 w3schools SQL_2003STD Databases
3 w3schools CSS_3 WebDev
4 w3resource SQL_2003STD Databases

– Tuples are unordered and unique (i.e., not identical)

46

Relations: properties

Also same relation

Tutorials:
site ID tutorial topic
w3schools 1 SQL_2003STD Databases
w3schools 2 HTML_5 WebDev
w3schools 3 CSS_3 WebDev
w3resource 4 SQL_2003STD Databases
w3resource 5 MySQL Databases

– Tuples are unordered and unique (i.e., not identical)

– Attributes are also unordered and unique
(not so essential, but convenient for us;
may be different in different formalisations)

46

Formally: relation schema

Domain: a set of values

– may be finite (e.g., countries {Norway ,UK , India, . . .}) or infinite (e.g.,
integers)

– atomic—that is, values have no essential internal structure (e.g., not sets
or tuples themselves)

– usually, has a corresponding datatype in the query language

Attribute (i.e., ‘column name’): a string with an associated domain

– domain of attribute A is written dom(A)

– for example, dom(ID) is natural numbers

Relation schema: a relation name R (just string) and several
attributes A1,A2, . . . ,An

– written as R[A1,A2, . . . ,An] (or R[A2,A1, . . . ,An], order is irrelevant)

– n is called the arity of R (question: can the arity be 0?)

– for example Tutorials[ID, site, tutorial , topic] has arity 4
47

Formally: tuples

Tuple (or record, row, instance) over schema R[A1, . . . ,An]:
assignment of attribute values v1 ∈ dom(A1), . . . , vn ∈ dom(An) to
attributes A1, . . . ,An:

– formally, can be written v1 → A1, . . . , vn → An

– we usually write R⟨v1, . . . , vn⟩ or even ⟨v1, . . . , vn⟩
– example tuples over Tutorials[ID, site, tutorial , topic]:

⟨1,w3schools,SQL_2003STD,Databases⟩
⟨2,w3schools,HTML_5,WebDev⟩

Convenient notation (for later): if t is a tuple over R[A1, . . . ,An]

and {A′
1, . . . ,A

′
m} ⊆ {A1, . . . ,An} then t[A′

1, . . . ,A
′
m] is the

projection of t to {A′
1, . . . ,A

′
m}:

⟨2,w3schools,HTML_5,WebDev⟩[ID, topic] = ⟨2,WebDev⟩
When m = 1, we can write t.A instead of t[A] 48

Formally: relations and databases

Relation state over relation schema R[A1, . . . ,An]: a finite set I of
tuples over R[A1, . . . ,An]

– ‘set’ means no order of elements, no repetitions

– may be written I ⊆ dom(A1)× · · · × dom(An)

(but formally not correct for us due to the order mismatch)

Relation: a relation schema + relation state

Database: finite set of relations (i.e., essentially, tables) with
different names

49

Variants of the relational model

Many technical non-essential variations can be found:

– unordered vs. ordered signature (i.e., attributes, columns)

– named perspective (for attributes) vs. unnamed:
- if the signature is ordered, names of attributes are not

important and may be ignored (not the case for tables!)
- moreover, attribute domains may be abstracted away (i.e., only

one big domain is considered)
- relation schema is just name and arity (written as R2 or R(·, ·))
- inspired by formal logic (which is foundations for databases):

tuples are logical facts R(a, b)

Other details are (very) essential:

– no order, no repetitions of tuples in a relation, etc. (see below)

50

Semantics (the meaning) of databases

Intuitive: tuples represent certain facts that correspond to a
real-world relationships

Tutorials⟨1,w3schools, SQL_2003STD,Databases⟩
means that there is a SQL_2003STD tutorial on Databases topic
on w3schools site with ID 1 (of course, the fact may not hold, but
the database creators claim it)

Closed world assumption is assumed in the relational databases: all
facts not mentioned in the database, are claimed not to hold.
No tuple Tutorials⟨1,w3schools,Mars,Astronomy⟩—no tutorial.

Why to bother? Allows to intuitively answer many queries (e.g.,
queries with NOT EXISTS)

Different in other database models: RDF knowledge graphs, etc. 51

3. Integrity constraints

Key integrity constraints: intuition

Tutorials:
ID site tutorial topic
1 w3schools SQL_2003STD Databases
2 w3schools HTML_5 WebDev
3 w3schools CSS_3 WebDev
4 w3resource SQL_2003STD Databases
5 w3resource MySQL Databases

Attribute ID is special in this relation: has no repeated values

– called a (candidate) key (of the relation)

Question: any other keys in this relation?

Not a coincidence: we want it to be a real ID

– can require ID in schema Tutorials[ID, site, tutorial , topic] so that each
relation over this schema has ID as key (i.e., enforce key constraint)

– use PRIMARY KEY or UNIQUE declaration in SQL

Both notions generalise to attribute sets

52

Key integrity constraints: intuition

Tutorials:
ID site tutorial topic
1 w3schools SQL_2003STD Databases
2 w3schools HTML_5 WebDev
3 w3schools CSS_3 WebDev
4 w3resource SQL_2003STD Databases
5 w3resource MySQL Databases

Attribute ID is special in this relation: has no repeated values

– called a (candidate) key (of the relation)

Not a coincidence: we want it to be a real ID

– can require ID in schema Tutorials[ID, site, tutorial , topic] so that each
relation over this schema has ID as key (i.e., enforce key constraint)

– use PRIMARY KEY or UNIQUE declaration in SQL

Both notions generalise to attribute sets
52

Candidate and super keys formally

Super key of a relation (schema + state): a subset X of the
attributes of the relation such that if t1 and t2 are two different
tuples then t1[X] ̸= t2[X]

– observation: the relation signature is always a super key

Candidate key of a relation: a minimal super key

– that is, removing any attribute causes the remaining attributes
to no longer be a super key

53

Candidate and super key examples

Tutorials:
ID site tutorial topic
1 w3schools SQL_2003STD Databases
2 w3schools HTML_5 WebDev
3 w3schools CSS_3 WebDev
4 w3resource SQL_2003STD Databases
5 w3resource MySQL Databases

Super keys: {ID}, {ID, site}, {site, tutorial},
{ID, site, tutorial , topic}, etc.

Not super keys: {site}, {tutorial , topic}, etc.

Candidate keys: {ID}, {site, tutorial} Not unique!

Not candidate keys: {ID, site}, {tutorial , topic}, etc.

54

Key constraints formally

Extend our relational model notions:

Relation schema with a key constraint: a relation name R with
attributes A1,A2, . . . ,An, and a key subset of A1,A2, . . . ,An

Relation over R[A1,A2, . . . ,An] satisfies the key constraint if the
key subset is a super key

A relation schema may have one or several key constraints declared;
one is called primary key constraint (or just primary key)

– written as R[A1,A2, . . . ,An], where the underlined attributes
are the key subset (double underline is also used)

– for example Tutorials[ID, site, tutorial , topic]

Question: Do you remember how to create a primary key in SQL?
Other (candidate) key constraint?

55

Primary key examples

Tutorials:
ID site tutorial topic
1 w3schools SQL_2003STD Databases
2 w3schools HTML_5 WebDev
3 w3schools CSS_3 WebDev
4 w3resource SQL_2003STD Databases
5 w3resource MySQL Databases

Relation over Tutorials[ID, site, tutorial , topic] ({ID} is a super key)

Not relation over Tutorials[ID, site, tutorial , topic] ({site} is not a

super key)

Relation over Tutorials[ID, site, tutorial , topic]

Observation: since all attributes are always a super key, we can
assume that if a primary key for a schema is not declared, then it is
silently all the attributes

56

Foreign key (referential) integrity constraints intuition

Tutorials:
ID site tutorial topic
1 w3schools SQL_2003STD Databases
2 w3schools HTML_5 WebDev
3 w3schools CSS_3 WebDev
4 w3resource SQL_2003STD Databases
5 w3resource MySQL Databases

Students:
name tutorialID
Alice 1
Alice 2
Bob 2

Values of attribute tutoriaIID are not arbitrary in relation Students:
all values are assumed to be mentioned in ID of Tutorials

– can declare tutorialID to be a foreign key in
Students[name, tutorialID] referring to the primary key ID of
Tutorials[ID, site, tutorial , topic] so that the two relations in
the database are required to be consistent in this sense

This notion generalises to attribute sets
57

Foreign key (referential) constraints formally

Sorry, a bit technical; but the idea is simple

Attributes B ′
1, . . . ,B

′
k of relation over S [B1, . . . ,Bm] are a foreign

key referring to a candidate key A′
1, . . . ,A

′
k of relation over

R[A1, . . . ,Am] if every tuple t1 over S [B1, . . . ,Bm] refers to a tuple
t2 over R[A1, . . . ,An]—that is, t1[B ′

1, . . . ,B
′
k] = t2[A

′
1, . . . ,A

′
k]

Foreign key constraint is a pair of sets of attributes B ′
1, . . . ,B

′
k and

A′
1, . . . ,A

′
k in relation schemas as above such that A′

1, . . . ,A
′
k is

declared as key and dom(B ′
1) = dom(A′

1), . . . , dom(B ′
k) = dom(A′

k)

Relations over S [B1, . . . ,Bm], R[A1, . . . ,An] satisfy this constraint
if B ′

1, . . . ,B
′
k is a foreign key referring to A′

1, . . . ,A
′
k for relations

A database (set of relations) can come with foreign keys, which
should be satisfied 58

Foreign key (referential) constraints examples

Tutorials:
ID site tutorial topic
1 w3schools SQL_2003STD Databases
2 w3schools HTML_5 WebDev
3 w3schools CSS_3 WebDev
4 w3resource SQL_2003STD Databases
5 w3resource MySQL Databases

Students:
name tutorialID
Alice 1
Alice 2
Bob 2

Satisfy the foreign key constraint where tutorialID of Students
refers to ID of Tutorials

59

Foreign key (referential) constraints examples

Tutorials:
ID site tutorial topic
1 w3schools SQL_2003STD Databases
2 w3schools HTML_5 WebDev
3 w3schools CSS_3 WebDev
4 w3resource SQL_2003STD Databases
5 w3resource MySQL Databases

Students:
name tutorialID
Alice 1
Alice 2
Bob 2
Bob 25

Do not satisfy the foreign key tutorialID of Students referring to ID

of Tutorials

60

Foreign keys observations

Sometimes, foreign keys are allowed to refer only to primary keys

– see our example

Corresponding attributes do not need to have the same name

– see our example

It is allowed to refer to the same table

– imagine a table of employees with an ID and managerID

attributes (the big boss has to manage himself/herself)

61

Complex schema example

Foreign keys are convenient to draw with arrows

In this figure, all foreign keys consist of one attribute (simple case)
62

Who needs to care about keys?

Question: Does a casual database user who writes a query over a
database needs to know about keys?

Answer: Not really

Question: Does a database manager who inputs data into a
database needs to know about keys?

Answer: Yes, of course

Question: Does a DBMS programmer who writes a (SELECT)
query engine needs to bother about keys?

Answer: Yes, because keys are the knowledge that may help a lot
to evaluate queries efficiently, and we will see how

63

What we have learned

1. History of data models

2. Classic relational model (a version of)

3. Integrity constraints (keys and foreign keys)

Next time: SQL introduction (SQL data model, SQL sublanguages)

64

IN3020&4020 – Database Systems (2024)
Part: Intro & Recap
Lecture 3: SQL Summary – 1

22 January

Egor V. Kostylev
IFI, University of Oslo
egork@ifi.uio.no

Materials to read

1. Fundamentals of Database Systems by R. Elmasri and
S.B. Navathe (7th edition): Chapters 6&7

2. Database systems – the complete book by H. Garcia-Molina,
J.D. Ullman, and J. Widom (2nd ed.): Section 6

3. PostgreSQL 14 tutorial: Part II
https://www.postgresql.org/docs/current/sql.html

4. IN2090 – Databaser og datamodellering (Leif Harald Karlsen):
Lectures 5, 6, 10, 11
https://www.uio.no/studier/emner/matnat/ifi/IN2090/h23/timeplan/

5. etc.

The difference between concrete SQL systems and versions are not
essential today: we look at basics

77

Purpose of the lecture

I assume that you know SQL to some extent

– IN2090 (or equivalent) is a prerequisite

Knowledge of all details (esp., practical) are not important for us

– we learn the principles of how SQL works
– not the details of SQL usage

Today’s lecture is largely a sync-up

– by no means a comprehensive SQL tutorial
– if you do not understand what I am talking about,

come back to IN2090 (not much really)
– you can play with PostgreSQL (group sessions for details)

But also has material beyond IN2090

78

Lecture plan

1. Data Model of SQL
(including differences with relational model)

2. SQL Intro

3. SQL DDL and DML

4. SQL DQL (next time)

79

1. Data Model of SQL
(including differences with
relational model)

SQL data model

SQL is based on the relational model, but there are some
differences between its data model and the relational model

Question: What are the main differences?

Answer: two main differences

1. NULLs

2. repeated and ordered tuples in output relations

80

SQL NULLs

In SQL, there is a special value NULL, that can appear in tuples as
usual domain values

The meaning of NULL is manyfold:

– unknown, not applicable, not exists, etc.

The effect on the data model is minor:

– just assume that NULL belongs to all domains of attributes

– special constraint on attributes can forbid NULL values

– usually, NULL is forbidden for primary keys
(but allowed for UNIQUE)

– foreign keys have a special treatment of NULL

81

SQL NULLs

In SQL, there is a special value NULL, that can appear in tuples as
usual domain values

The meaning of NULL is manyfold:

– unknown, not applicable, not exists, etc.

The effect on the query language is dramatic:

– very non-intuitive and causes a lot of confusion for all types of
users (e.g., are two NULLs equal or not?)

– requires a lot of special non-trivial treatment in
implementation and often slows down performance

– we will not pay much attention to NULL since there is nothing
conceptually interesting for our studies of the main principles

81

In the passing on NULLs

In 2009, Sir C. A. R. (or Tony) Hoare said:

“I call it my billion-dollar mistake. It was the invention of
the null reference in 1965. At that time, I was designing
the first comprehensive type system for references in an ob-
ject oriented language (ALGOL W). My goal was to ensure
that all use of references should be absolutely safe, with
checking performed automatically by the compiler. But I
couldn’t resist the temptation to put in a null reference,
simply because it was so easy to implement. This has led
to innumerable errors, vulnerabilities, and system crashes,
which have probably caused a billion dollars of pain and
damage in the last forty years.”

82

Bag (multiset) relations example

Tutorials:
ID site tutorial topic
1 w3schools SQL_2003STD Databases
2 w3schools HTML_5 WebDev
3 w3schools CSS_3 WebDev
4 w3resource SQL_2003STD Databases
5 w3resource MySQL Databases

SQL query SELECT Tutorials.site FROM Tutorials gives

πsiteTutorials:
site
w3schools
w3schools
w3schools
w3resource
w3resource

Input: relation. Output: not relation. Question: Why? 83

Bag (multiset) relations motivation 1

SQL input: relations. SQL output: not necessarily relation.
Question: Why?

Answer 1: duplicate elimination is computationally expensive

– if a user does not care, better to keep the duplicates

– if they care, they can use DISTINCT

SELECT DISTINCT Tutorials.site FROM Tutorials gives

δ(πsiteTutorials):
site
w3schools
w3resource

84

Bag (multiset) relations motivation 2

SQL input: relations. SQL output: not necessarily relation.
Question: Why?

Answer 2: duplicates are essential for aggregate queries

SELECT COUNT(∗) AS cnt FROM
SELECT Tutorials.site FROM Tutorials

γCOUNT (∗)→cnt(πsiteTutorials):
cnt
5

Input & output: relations. Intermediate: not relation

Essential to define (compositional) semantics

– in this particular query, we can rewrite the an equivalent query that
manipulates only relations

– this is not always the case Homework: Can you come up to an example?
85

Bag (multiset) relational model formally

What we need to change in our formalisation? Surprisingly little:

Bag relation state over relation schema R[A1, . . . ,An]: a finite bag
I of tuples over R[A1, . . . ,An]

– ‘bag’ (a.k.a. mulset) means no order of elements, but
repetitions are allowed (observation: every set is a bag)

– {a, b, c} is a set, {{a, a, b, c}} = {{a, b, a, c}} is a bag

Bag relation: a relation schema + bag relation state
Bag database: finite set of bag relations with different names

– usual relations are sometimes called set relations to contrast

Observation: super keys (including candidate keys) are possible
only for set relations

– cannot silently assume that every relation schema has a primary key
(for sets, it is all attributes) 86

Bag relations: examples

Relation (and bag relation)

Tutorials:
ID site tutorial topic
1 w3schools SQL_2003STD Databases
2 w3schools HTML_5 WebDev
3 w3schools CSS_3 WebDev
4 w3resource SQL_2003STD Databases
5 w3resource MySQL Databases

87

Bag relations: examples

Not a relation, but bag relation

Tutorials:
ID site tutorial topic
1 w3schools SQL_2003STD Databases
2 w3schools HTML_5 WebDev
1 w3schools SQL_2003STD Databases
3 w3schools CSS_3 WebDev
4 w3resource SQL_2003STD Databases

87

Bag relations: examples

Same bag relation

Tutorials:
ID site tutorial topic
1 w3schools SQL_2003STD Databases
1 w3schools SQL_2003STD Databases
2 w3schools HTML_5 WebDev
4 w3resource SQL_2003STD Databases
3 w3schools CSS_3 WebDev

87

Ordered tables in SQL

Tutorials:
ID site tutorial topic
1 w3schools SQL_2003STD Databases
2 w3schools HTML_5 WebDev
3 w3schools CSS_3 WebDev
4 w3resource SQL_2003STD Databases
5 w3resource MySQL Databases

SELECT ∗ FROM Tutorials ORDERED BY topic gives
OrderedTutorials:

ID site tutorial topic
1 w3schools SQL_2003STD Databases
4 w3resource SQL_2003STD Databases
5 w3resource MySQL Databases
2 w3schools HTML_5 WebDev
3 w3schools CSS_3 WebDev

Output is the same relation as input,
but it seems that we are missing something... 88

Ordered relations (and ordered bag relations) in SQL

One may argue that ORDER BY only influences the output,
and can be ignored on the intermediate levels of query evaluation

If so, we could essentially abstract away this ‘presentational’ issue

Unfortunately, this is not true; query

SELECT DISTINCT Tutorials.topic FROM

SELECT ∗ FROM Tutorials ORDERED BY topic LIMIT 3

gives only Databases, but

SELECT DISTINCT Tutorials.topic FROM

SELECT ∗ FROM Tutorials ORDERED BY topic DESC LIMIT 3

gives both Databases,WebDev

Do we need to reconsider our data model again?
89

Ordered relations (and ordered bag relations) in SQL

Do we need to reconsider our data model again? Yes :(

But we will not in this course:

– such queries are rare and not very meaningful

– ordered relational model is technical, but straightforward

– this model is not essential for the rest of this course

– we generally concentrate on set relational model as the most
fundamental for databases, mentioning bags when necessary

90

2. SQL Intro

SQL

SQL is a query language for relational databases

– (Arguably) a major reason for the success of relational
databases

– Is a practical rendering of relational algebra (see next lectures)

– Usually reads as ‘sequel’ for historical reasons

– Now popularly known as ‘Structured Query Language’

– Regularly updated ANSI&ISO standards since 1986 (newest is
SQL:2016)

– Many SQL-based DBMS systems (Oracle, MS SQL Server,
MySQL, PostgreSQL)

– The differences between the standards and systems are
generally inessential for this course

91

SQL components

SQL has several sub-languages:

– Data Definition Language (DDL): language for relation
schemas and constraints (CREATE, ALTER, DROP, etc.)

– Data Manipulation Language (DML): language for populating
relational databases (INSERT, DELETE, etc.)

– Data Query Language (DQL): language for querying
relational databases (SELECT)

– Data Control Language (DCL): language for access and user
management (GRANT, REVOKE) – later in the course

– · · ·

DQL is sometimes considered as a part of DML

92

The place of SQL in DBMS architecture

SQL: the language of users for interaction with data
93

3. SQL Data Definition and
Data Manipulation Languages

Data Definition Language (DDL)

CREATE TABLE Tutorials (
ID int PRIMARY KEY,
site text NOT NULL,
tutorial text,
topic text);

CREATE TABLE Students (
name text,
tutorialID int,
startdate date,
FOREIGN KEY tutorialID REFERENCES Tutorials(ID));

Creates database schema consisting of two relation schemas
(with no instances)

Tutorials [ID, site, tutorial, topic]
Students [name, tutorialID, startdate]

with a foreign key (constraint) from the second to the first 94

Data Definition Language (DDL)

ALTER TABLE Students
ADD COLUMN sID int;

ALTER TABLE Students
ADD PRIMARY KEY (sID);

Changes schema to

Students [ID, name, tutorialID, startdate]

DROP TABLE Tutorials CASCADE;

Removes both tables from the database (both because of CASCADE)

95

Main datatypes

Largely system-dependent:

– not every type is implemented by every DBMS
– allocated space may be also different

Basic datatypes:

– numeric: INT (= INTEGER), FLOAT (= REAL), etc.
– char-string: CHAR(n), VARCHAR(n), TEXT, etc.
– Boolean: BOOLEAN (three-valued: TRUE, FALSE, NULL)

Complex datatypes:

– date&time: DATE (e.g., yyyy-mm-dd), TIME, TIMESTAMP, etc.
– enums: ENUM(. . .)
– arrays: INTEGER[n], TEXT[][] (more like lists)

Not particularly important for us
96

Data Manipulation Language (DML)

Schema: Tutorials [ID, site, tutorial, topic]

Manual data input:

INSERT INTO Tutorials
VALUES (1, w3schools, SQL_2003STD, Databases),

(2, w3schools, HTML_5, WebDev),
· · ·
(5, w3resource, MySQL, Databases);

May use SERIAL, DEFAULT in DDL statements to simplify input

Input using DQL (see below):

INSERT INTO Tutorials
SELECT ...

Input may fail due to type mismatch, constraint violation (need
transactions!), etc.

97

Data Manipulation Language (DML)

Schema: Tutorials[ID, site, tutorial, topic]

Tuples may be updated and deleted in a similar way as retrieved
using DQL (see below):

UPDATE Tutorials
SET tutorial = ’Mars’, topic = ’Astronomy’
WHERE ...

DELETE Tutorials
WHERE ...

(DELETE removes tuples from tables, not tables themselves,
cf. DROP TABLE)

May also fail due to constraint violation (need transactions!), etc.

98

3. SQL Data Query Language
3.1. Overview

Data Query Language (DQL): basics

DQL:

– the most important part of SQL (and whole DBMS)
– saying SQL we often mean the DQL sub-language
– realised via SELECT queries with basic syntax

SELECT <attribute list>
FROM <table>
[WHERE <condition>] . . .

– ‘<table>’ is a relation name or another query (we do not need
to write the whole relation here, only the name)

– ‘<attribute list>’ is a list of attributes in the schema of the
relation referred by ‘<table>’

Question: What is the semantics?

Answer: SQL query inputs a database (set of relations) and outputs
a bag(!) relation according to some rules (see examples below) 99

Query example

Schema (underline is a primary key here):

Tutorials[ID, site, tutorial, topic]
Students[name, tutorialID, startdate]

Query (select-project-join):

SELECT s.name, t.tutorial ← projection
FROM Students s JOIN Tutorial t ← join

ON s.tutorialID = t.ID
WHERE t.topic = ‘Databases’; ← selection

retrieves all student-tutorial pairs on topic databases

100

IN3020&4020 – Database Systems (2024)
Part: Intro & Recap
Lecture 4: SQL Summary – 2

23 January

Egor V. Kostylev
IFI, University of Oslo
egork@ifi.uio.no

Materials to read

1. Fundamentals of Database Systems by R. Elmasri and
S.B. Navathe (7th edition): Chapters 6&7

2. Database systems – the complete book by H. Garcia-Molina,
J.D. Ullman, and J. Widom (2nd ed.): Section 6

3. PostgreSQL 14 tutorial: Part II
https://www.postgresql.org/docs/current/sql.html

4. IN2090 – Databaser og datamodellering (Leif Harald Karlsen):
Lectures 5, 6, 10, 11
https://www.uio.no/studier/emner/matnat/ifi/IN2090/h21/timeplan/

5. etc.

The difference between concrete SQL systems and versions are not
essential today: we look at basics

109

Purpose of the lecture

I assume that you know SQL to some extent

– IN2090 (or equivalent) is a prerequisite

Knowledge of all details (esp., practical) are not important for us

– we learn the principles of how SQL works
– not the details of SQL usage

Today’s lecture is largely a sync-up

– by no means a comprehensive SQL tutorial
– if you do not understand what I am talking about,

come back to IN2090 (not much really)
– you can play with PostgreSQL (group sessions for details)

But also has material beyond IN2090

110

Lecture plan

1. Data Model of SQL (last time)

2. SQL Intro (last time)

3. SQL DDL and DML (last time)

4. SQL DQL
– query syntax and semantics
– constructs and keywords
– basic and advanced examples
– . . .

111

4. SQL Data Query Language
4.1. Overview

Data Query Language (DQL): basics

DQL:

– the most important part of SQL (and whole DBMS)
– saying SQL we often mean the DQL sub-language
– realised via SELECT queries with basic syntax

SELECT <attribute list>
FROM <table>
[WHERE <condition>] . . .

– ‘<table>’ is a relation name or another query (but we do not
need to write the whole relation here, only the name)

– ‘<attribute list>’ is a list of attributes in the schema of the
relation referred by ‘<table>’

Question: What is the semantics?

Answer (for SQL): SQL query inputs a database (set of relations)
and outputs a bag(!) relation according to some rules (see below) 112

Query example

Schema (underline is a primary key here):

Tutorials [ID, site, tutorial, topic]
Students [name, tutorialID, startdate]

Query (select-project-join):

SELECT s.name, t.tutorial ← projection
FROM Students s JOIN Tutorials t ← join

ON s.tutorialID = t.ID
WHERE t.topic = ‘Databases’; ← selection

retrieves all student-tutorial pairs on topic databases

113

4.2 SELECT clause

SELECT clause comments

SELECT s.name, t.tutorial
· · ·
– Selects columns from the (bag) relation constructed below
– Corresponds to projection in relational algebra (see next

lectures), so s.name, t.tutorial are called projected attributes
– Relation name qualification (s., etc.) may be omitted if no

ambiguity
– Shortcut * may be used for all attributes
– By default, returns a bag relation (with possible duplicates)
– DISTINCT can be used for duplicate elimination
– ORDER BY, LIMIT, etc. can be used at the end of the query for

arranging tuples in the output
– Can do value invention:

SELECT s.ID + 5, d AS Day(t.startdate)
114

3.3. FROM clause

FROM clause comments

· · ·
FROM Students s JOIN Tutorials t ON s.tutorialID = t.ID
· · ·

– constructs a relation from other relations

– in general, can contain an arbitrary query (e.g., another
SELECT query)

– in the most simple case, FROM clause is a relation name

– (possibly nested) operations can be used: JOIN, UNION,
INTERSECT, etc.

– the most common is JOIN operation (and its variations)

115

JOIN (syn. INNER JOIN): example

Combines tuples from two relations in all possible ways that agree
on declared attributes

Tutorials [INNER] JOIN Topics ON Tutorials.topicID = Topics.ID

on

Tutorials:
ID site tutorial topicID
1 w3schools SQL_2003STD 1
2 w3schools HTML_5 2
3 w3schools CSS_3 3
4 w3resource SQL_2003STD 1

Topics:
ID topic
1 Databases
2 WebDev

gives

Tutorials ⋊⋉ Topics:
Tutorials.ID site tutorial topicID Topics.ID topic
1 w3schools SQL_2003STD 1 1 Databases
2 w3schools HTML_5 2 2 WebDev
4 w3resource SQL_2003STD 1 1 Databases

116

OUTER JOINs : example

Combines tuples from two relations in all possible ways that agree
on declared attributes; if left (or right) does not match anything,
filled with nulls

Tutorials LEFT [OUTER] JOIN Topics ON Tutorials.topicID=Topics.ID

Topics RIGHT [OUTER] JOIN Tutorials ON Tutorials.topicID=Topics.ID

on

Tutorials:
ID site tutorial topicID
1 w3schools SQL_2003STD 1
2 w3schools HTML_5 2
3 w3schools CSS_3 3
4 w3resource SQL_2003STD 1

Topics:
ID topic
1 Databases
2 WebDev
25 Asronomy

gives

Tutorials ▷◁ Topics:
Tutorials.ID site tutorial topicID Topics.ID topic
1 w3schools SQL_2003STD 1 1 Databases
2 w3schools HTML_5 2 2 WebDev
3 w3schools CSS_3 3 NULL NULL
4 w3resource SQL_2003STD 1 1 Databases 117

Joins (confusing) visualisation

Question: What does the area in the circles represent?
118

Self-join exercise

It is common to join a table with itself (directly or indirectly).

Schema: Employees [Id, Name] and Managers [empId, mgrId]

Query: ‘Give the names of each employee and his/her manager’

A (very) naive wrong solution:

SELECT e.Name, e.Name
FROM Employees e JOIN Managers

ON empId=Id AND mgrId=Id;

We need two ‘copies’ of Employees

119

Self-join exercise

It is common to join a table with itself (directly or indirectly).

Schema: Employees [Id, Name] and Managers [empId, mgrId]

Query: ‘Give the names of each employee and his/her manager’

A correct solution:

SELECT e.Name, s.Name
FROM Employees e JOIN Managers

ON empId=e.Id JOIN Employees s
ON s.Id = mgrId;

120

Set- (bag-) theoretic operations

Relations (i.e., tables) are sets (or bags) of tuples

We can apply usual set-theoretic operations to them:

– set-theoretic (duplicates eliminated): UNION, EXCEPT,
INTERSECT

– bag-theoretic (duplicates preserved): UNION ALL, EXCEPT
ALL, INTERSECT ALL

Example:

SELECT * FROM Employees UNION Interns;

Notes:

– complex queries can be used as arguments
– arguments must have the same schema

121

Subqueries

We can use subqueries in the WHERE clause:

SELECT ... FROM
... (SELECT ... FROM Table WHERE ...) ...;

Subqueries can be correlated:

SELECT * FROM Tab1 JOIN
(SELECT Tab2.a FROM Tab2 WHERE Tab1.b+5 > Tab2.c) ON Tab1.a=Tab2.a;

Silly query in this case, may be a lot more difficult

Often rewritable into usual joins, but not always

Homework: Try to come to an example

Hint: play with bags

122

WITH-subqueries and views

Subqueries can be used inside other queries
(we will see more examples)

We can give them names for convenience:

WITH SubqueryName1 AS (SELECT ...),
SubqueryName2 AS (SELECT ...)

SELECT ... SubqueryName1 ... SubqueryName1 ... ;

If a subquery is used in several queries, we can give it a name only
once—that is, create a virtual relation:

CREATE VIEW View1 AS (SELECT ...);

We can then use View1 in other queries as usual tables (relations)

But no table is created in reality, it is still just a name of a subquery

123

Recursive SQL

Typical recursive query (<reqursive-query> can use Relation):

WITH RECURSIVE Relation (Att1, ..., Attn) AS (
<non-reqursive-query> UNION [ALL] <reqursive-query>

) SELECT ... FROM Relation ...;

Evaluation procedure:

1. Relation is initialised with the evaluation of
<non-reqursive-query>

2. <reqursive-query> is evaluated on the current state of
Relation, union is taken the current state of Relation, and the
result is loaded into Relation

3. Step 2 is repeated until there is no change
(i.e., fix-point state is reached)

4. Outer SELECT is evaluated on the fix-point state of Relation

Observations:

– corresponds to fix-point extension of first-order logic
– cannot be expressed via other operators
– Relation is getting bigger (more tuples) at each step

– Homework question: Does this process always stop?

124

Recursive SQL

Typical recursive query (<reqursive-query> can use Relation):

WITH RECURSIVE Relation (Att1, ..., Attn) AS (
<non-reqursive-query> UNION [ALL] <reqursive-query>

) SELECT ... FROM Relation ...;

Observations:

– corresponds to fix-point extension of first-order logic

– cannot be expressed via other operators

– Relation is getting bigger (more tuples) at each step

– Homework question: Does this process always stop?

124

Recursive SQL (classic) example

Schema: FlightRoutes [fromCity, toCity]

Query: Find all cities you can fly to from Oslo
(with any number of flight changes)

Solution:
WITH RECURSIVE Destinations (destCity) AS (

SELECT f.toCity, FROM FlightRoutes f
WHERE f.fromCity = ’Oslo’

UNION
SELECT rf.toCity FROM Destinations d

JOIN FlightRoutes rf ON d.destCity = rf.fromCity
) SELECT * FROM Destinations;

Question: Why does this always terminate? Answer: Outputs only
cities mentioned in the database

Cannot be done with usual join queries, because the number of
stops is not bound in advance 125

3.4. WHERE clause

WHERE clause comments

· · ·
WHERE t.topic = ‘Databases’;

– Selects tuples (rows) from the relation constructed in the
FROM clause according to the condition in the clause

– Corresponds to selection in relational algebra
– The condition can mention both constant values (e.g.,

‘Databases’), which are the same for every tested tuple, and
attributes (e.g., t.topic), which are instantiated by the
attribute value for each tuple

– Values can be combined to expressions by functions (+,
external, etc.), Boolean operators (<, LIKE, etc.), logical
operators (AND, OR, NOT), case expressions
(CASE WHEN . . . THEN . . . ELSE . . . END), etc.

– The condition can also mention subqueries (see below)
– Special care should be given to NULL (next slide) 126

The NULL problem

NULL in an value with special properties

– It is illegal to use NULL explicitly as part of an expression

– Usual comparison of NULL with any value evaluates to FALSE

– Both NULL = NULL and NOT (NULL = NULL) are FALSE
(formally, three-valued logic is involved)

– Special comparison operators can be used:
X IS NULL, X IS NOT NULL, X IS DISTINCT FROM Y
(work with NULL as expected)

– Own rules for grouping & aggregation with NULL (see below)

127

Managing NULL: some useful concepts

COALESCE(Expr1, Expr2, ...) returns the first argument that is not
NULL, and NULL if all are NULL

– Typical use: COALESCE(Address, ‘not given’)

NULLIF(Expr1, Expr2) returns NULL if the arguments evaluate the
same, or Expr1 otherwise

128

Conditions with subqueries: EXISTS expression

EXISTS(SELECT ...): Boolean (TRUE/FALSE) condition that
checks existence of answers of the subquery

– evaluates to TRUE if the query gives non-empty result

Example:

SELECT p.name FROM Persons p
WHERE EXISTS(SELECT ...);

Question: Does it look a bit silly?
Can you come to an example of ... so the query makes sense?

Answer: The subquery can be correlated with the outside
(as usual subqueries)

SELECT p.name FROM Persons p
WHERE EXISTS(SELECT * FROM Addresses a WHERE p.name = a.name);

129

Conditions with subqueries: SOME

SOME(SELECT ...) (syn.: ANY(SELECT ...)) looks for matching
values in the subquery:

– example query (best explanation)
SELECT p.name FROM Persons p

WHERE p.savings > SOME(
SELECT pq.savings FROM Persons pq WHERE pq.age = 30));

– meaning: all people with savings more than at least one
30-years-old person

Can be used against multiple attributes via ROW:
... WHERE ROW(Tab.a,Tab.b) > SOME(two-column table here)

IN is a special case of SOME:

– . . . IN(SELECT ...) synonym of ... = SOME(SELECT ...)

130

Conditions with subqueries: ALL

From the previous slide for comparison:

– example query:
SELECT p.name FROM Persons p

WHERE p.savings > SOME(
SELECT pq.savings FROM Persons pq WHERE pq.age = 30));

– meaning: all people with savings more than at least one
30-years-old person

ALL(SELECT ...) ‘symmetric’ to ALL:
– example query (best explanation):

SELECT p.name FROM Persons p
WHERE p.savings > ALL(

SELECT pq.savings FROM Persons pq WHERE pq.age = 30));

– meaning: all people with savings more than all 30-years-olds

131

Test our skills

Schema: Projects [prID, prName, customerID, prStartDate, . . .]
Customers [cID, cName, cAddress, . . .]
Employees [eID, eName, eTitle, eStartDate, . . .]
Timesheets [eID, tDate, prID, hours, . . .]

Query: Find names and titles of all employees who worked on at least one

project started after 2014 and was ordered by customer ‘Alice’

‘Divide-and-Conquer’ solution:

– All projects with the correct conditions:
WITH CorrectProjects AS (
SELECT p.prID FROM Projects p JOIN Customers c ON p.customerID=c.cID

WHERE p.prStartDate>’2014-12-31’ AND c.cName=‘Alice’),

– Who was on which projects
WITH EmployeeOnProjects AS (
SELECT e.eName,e.eTitle,t.prID FROM Employees e JOIN Timesheets t ON t.eID=e.eID)

– Put the two together
SELECT eop.eName,eop.eTitle
FROM EmployeeOnProjects eop JOIN CorrectProjects cp ON eop.prID=cp.prID;

132

Test our skills: more challenging

Schema: Projects [prID, prName, customerID, prStartDate, . . .]
Customers [cID, cName, cAddress, . . .]
Employees [eID, eName, eTitle, eStartDate, . . .]
Timesheets [eID, tDate, prID, hours, . . .]

Query: Find names and titles of all employees who worked on all projects

started after 2014 and was ordered by customer ‘Alice’

Solution:

– All projects with the correct conditions:
WITH CorrectProjects AS (
SELECT p.prID FROM Projects p JOIN Customers c ON p.customerID=c.cID

WHERE p.prStartDate>’2014-12-31’ AND c.cName=‘Alice’),

– Employees that do not have any (correct project they did not worked on):
SELECT e.eName,e.eTitle FROM Employees e WHERE NOT EXISTS (

SELECT * FROM CorrectProjects cp WHERE NOT EXISTS (
SELECT * FROM Timesheets t WHERE t.prID=cp.prID AND t.eID=e.eID));

133

Test our skills: more challenging

Query: Find names and titles of all employees who worked on all projects

started after 2014 and was ordered by customer ‘Alice’

Solution:

– All projects with the correct conditions:
WITH CorrectProjects AS (
SELECT p.prID FROM Projects p JOIN Customers c ON p.customerID=c.cID

WHERE p.prStartDate>’2014-12-31’ AND c.cName=‘Alice’),

– Employees that do not have any (correct project they did not worked on):
SELECT e.eName, e.eTitle FROM Employees e WHERE NOT EXISTS (

SELECT * FROM CorrectProjects cp WHERE NOT EXISTS (
SELECT * FROM Timesheets t WHERE t.prID=cp.prID AND t.eID=e.eID));

Observations:

– Innermost SELECT is executed again for each employee and
each project (twice correlated query)

– Thus, can be slow
– Could use other mechanisms (counting, LEFT JOIN, etc.) 134

3.5. Aggregation

Aggregation

A mechanism to accumulate values from many tuples into one using
an aggregation function (COUNT, COUNT(*), MAX, MIN, SUM, etc.)
Example:
SELECT p.Name, COUNT(m.Id) AS mCount
FROM Persons p JOIN Movies m ON p.Id=m.ActorId WHERE m.DirectorId=1234
GROUP BY p.Id, p.Name

HAVING mCount > 10;

Question: What is the difference between WHERE and HAVING?

Evaluated in steps:

1. FROM-WHERE (i.e., the query ‘inside’, without SELECT)
2. the tuples divided into groups, one group for each tuple of grouping

attributes (i.e., those in GROUP BY)
3. aggregated values are calculated for each group, giving a new table with

one tuple per group
4. the whole thing is filtered through the HAVING condition clause
5. the attributes in SELECT are projected

Comments on aggregation:

– all non-aggregates in the SELECT clause need to be in the
GROUP BY clause

– aggregates can not be used in WHERE (only in HAVING)
– without GROUP BY, we always have exactly 1 row:

aggregates for the whole table

135

Aggregation

A mechanism to accumulate values from many tuples into one using
an aggregation function (COUNT, COUNT(*), MAX, MIN, SUM, etc.)
Example:
SELECT p.Name, COUNT(m.Id) AS mCount
FROM Persons p JOIN Movies m ON p.Id=m.ActorId WHERE m.DirectorId=1234
GROUP BY p.Id, p.Name

HAVING mCount > 10;

Question: What is the difference between WHERE and HAVING?

Comments on aggregation:

– all non-aggregates in the SELECT clause need to be in the
GROUP BY clause

– aggregates can not be used in WHERE (only in HAVING)
– without GROUP BY, we always have exactly 1 row:

aggregates for the whole table
135

NULLs in aggregation

NULL-values are ignored in aggregation

– even in the case of COUNT

– exception is COUNT(*)

Aggregation functions will return NULL if evaluated over an empty
set of values (after the NULLs are eliminated)

– exception is COUNT and COUNT(*)

136

Test our skills: more challenging with aggregates

Schema: Projects [prID, prName, customerID, prStartDate, . . .]
Customers [cID, cName, cAddress, . . .]
Employees [eID, eName, eTitle, eStartDate, . . .]
Timesheets [eID, tDate, prID, hours, . . .]

Query: Find names and titles of all employees who worked on all projects
started after 2014 and was ordered by customer ‘Alice’

Solution with aggregates:

– All projects with the correct conditions:
WITH CorrectProjects AS (
SELECT p.prID FROM Projects p JOIN Customers c ON p.customerID=c.cID

WHERE p.prStartDate>’2014-12-31’ AND c.cName=‘Alice’),

– Who was on correct projects:
WITH UniqueEmployeesOnCorrectProjects AS (
SELECT DISTINCT e.eID,e.eName, e.eTitle,t.prID FROM Employee e
JOIN Timesheets t ON t.eID=e.eID JOIN CorrectProjects cp ON cp.prID=t.prID

– Put the two together:
SELECT uecp.eName, uecp.eTitle FROM UniqueEmployeesOnCorrectProjects uecp
GROUP BY uecp.eID, uecp.eName, uecp.eTitle
HAVING COUNT(uecp.prID) = SOME(SELECT COUNT(*) FROM CorrectProjects); 137

What have we learned?

A summary of the main database query language:

SQL

138

IN3020&4020 – Database Systems (2024)
Part 1: Query Processing
Lectures 5, 6: Relational Algebra

29, 30 January

Egor V. Kostylev
IFI, University of Oslo
egork@ifi.uio.no

We start new part: Query Processing

Syllabus of the course:

– (Extended) Intro and SQL recap ✓

Part 1. Query processing in relational databases

Part 2. Transaction management in relational databases

Part 3. NoSQL DBMS

SQL query processing relies on two key ingredients:
Relational Algebra and Indexes

We study these ingredients first (almost in isolation)
and then put all things together

147

Materials to read about Relational Algebra

1. Fundamentals of Database Systems by R. Elmasri and
S.B. Navathe (7th edition): Chapter 8 (maybe, not the best)

2. Foundation of Databases by S. Abiteboul, R. Hull & V. Vianu:
Part B (more details)
available at http://webdam.inria.fr/Alice/

3. Database Systems: the Complete Book by H. Garcia-Molina,
J. Ullman & J. Widom (2nd edition): Section 2.4

4. IN2090 – Databaser og datamodellering (Leif Harald Karlsen,
Dimitru Roman): Lectures 3 (basics)
https://www.uio.no/studier/emner/matnat/ifi/IN2090/h21/timeplan/

5. (English) Wikipedia has a good introduction

6. etc.

148

Materials to Play With

• Many good places with interactive exercises:
– w3resource (https://www.w3resource.com/)
– w3schools (https://www.w3schools.com/sql/)
– Web pages of systems (MySQL, PostgreSQL, Oracle, etc.)

• They use SQL rather than RA

• Should not be a problem: for simple examples
– syntactic translation is direct
– semantic differences are immaterial

149

Lecture Plan

1. Role of RA in SQL engines

2. Algebras and algebraic laws

3. Relational Algebra intro

4. Core RA operations

5. Algebraic laws for core operations

6. (Some) expressible operations

150

1. Role of RA in SQL engines

SQL query processor in action

SELECT DISTINCT title FROM StarsIn WHERE starName IN
(SELECT name FROM MovieStar WHERE birthDate LIKE ‘%1960′);

⇝
parsing

(parse tree)
⇝
preprocessing

πtitle(σstarName=name(StarIn×πname(σbirthDate LIKE ‘%1960′(MovieStar))))
⇝
optimisation

πtitle(StarIn ⋊⋉starName=name πname(σbirthDate LIKE ‘%1960′(MovieStar)))
⇝
evaluation over tables (a lot of things)

(Result) 151

The place of RA in DBMS architecture

152

2. Algebras and Algebraic Laws

Algebra (a.k.a. algebraic structure)

Definition (Algebra)

– Domain D: collection of values

– Operations: functions from Dk to D (k is arity of the function)

– Expressions:
- Atomic: elements of D
- Complex: operations applied to other expressions

(e.g., f (3, g(5)))

– Expressions evaluate to elements of D

– Infix notation is often used for binary (k = 2) operations:
- for example, instead of +(3, 5) we write 3 + 5
- brackets or conventions used: (3 + 5)× 2 vs. 3 + 5× 2

153

Example: Integer arithmetic

– Domain: Integers . . ., −3, −2, −1, 0, 1, 2, 3, . . .

– Operations: usual +, −, ×, / (all binary)

– Expression examples:
2 + 5 evaluates to 7
((2− 4)× 5) + (8 / 2) evaluates to −6
8 / 3 evaluates to undefined

154

Example: Regular expressions (the algebra of)

– Domain: Sets of strings over an alphabet (set of symbols) Σ

– Operations:
binary (k = 2): ◦ (or nothing, concatenation), | (alternation)
unary (k = 1): ∗ (Kleene star)

– Expression examples (for Σ = {a, b}):
ab∗ evaluates to {a, ab, abb, abbb, . . .}
(a | b)∗ab evaluates to all words ending with ab

(Note: here, a and b are abbreviations for {a} and {b})

– Expressible operations:
? (e? := ϵ | e for every domain element e)
+ (e+ := ee∗ for every domain element e)

155

Algebraic Laws

Definition (Algebra, reminder)

– Domain D: collection of values

– operations: functions from Dk to D (k is arity of the function)

Algebraic Law: an identity (or equivalence) that holds in an algebra

Examples:

– x + y = y + x , (x × y) / y = x (for all integers x , y)
are laws for Integer Algebra

– (e1e2)e3 = e1(e2e3), e+ = ee∗ (for all sets of strings)
are laws for RegExpr Algebra

156

Named Algebraic Laws

Common laws may have names:

– binary op is commutative if e1 op e2 = e2 op e1 (for all e1, e2)
– binary op is associative if (e1 op e2) op e3 = e1 op (e2 op e3)

– binary op is idempotent if e op e = e

example: max(a, a) = a for integers

– unary op is idempotent if op(op(e)) = op(e)
(not a coincidence, but no need for you to know why)
example: (e∗)∗ = e∗ for sets of words

– binary op is left-distributive over binary op′ if
e1 op (e2 op′ e3) = (e1 op e2) op′ (e1 op e3)

example: a× (b + c) = (a× b) + (a× c) for integers
when op is commutative, we have just distributivity

157

3. Relational Algebra Intro

Variants of Relational Algebra

– There are many RAs. Two RA may be
- Equivalent: some operations are expressible via each other

(e.g., × is expressible via ⋊⋉ and back in the presence of σ and ρ)
- One strictly more expressive than another: one has operations

non-expressible in the other
- Have different domains (e.g., named/unnamed, sets/bags)

– Full SQL requires a very expressive variant of RA for bags
(Turing complete!)

– We start with a basic RA for sets under named perspective
(as suggested by Codd)

– Why (except historic importance)?
- every set is a bag
- all set operations may be simulated by bag operations
- fundamental core, which also covers most of real SQL queries

158

(Our) Relational Algebra domain

Question: What is the domain of RA?

– Domain: (Set) relations (i.e., tables) up to their names
– Relation components (reminder):

- Relation name: just a string (this we abstract away)
- Signature: set of attribute names with domains (i.e., datatypes)
- Set (no repetitions!) of relation tuples (a.k.a. records, rows):

assignments of values to attribute names conforming signature

– Example:

Tutorials:
ID site tutorial topic
1 w3schools SQL_2003STD Databases
2 w3schools HTML_5 WebDev
3 w3schools CSS_3 WebDev
4 w3resource SQL_2003STD Databases
5 w3resource MySQL Databases 159

(Our) Relational Algebra domain

Question: What is the domain of RA?

– Domain: (Set) relations (i.e., tables) up to their names
– Relation components (reminder):

- Relation name: just a string (this we abstract away)
- Signature: set of attribute names with domains (i.e., datatypes)
- Set (no repetitions!) of relation tuples (a.k.a. records, rows):

assignments of values to attribute names conforming signature

– Same example:

R:
ID site tutorial topic
1 w3schools SQL_2003STD Databases
2 w3schools HTML_5 WebDev
3 w3schools CSS_3 WebDev
4 w3resource SQL_2003STD Databases
5 w3resource MySQL Databases 159

(Our) Relational Algebra operations

– Domain: Relations (up to their names)
– Core operations:

- (set) union ∪
- (set) difference \
- selection σC

- projection πAtts

- Cartesian product × (a.k.a. cross product, cross join)
- renaming ϱN (technical, often not mentioned)

– Some unary, some binary, usually not always applicable
– Some parametrised: families of operations rather than single

– Expressible operations:
- (set) intersection ∩
- other joins: natural ⋊⋉, theta- ⋊⋉θ, semi- ⋉ & ⋊, etc.
- division ÷
- . . .

160

4. Core RA operations

Union: binary, no parameters (example)

Set-theoretic union of tuples in same-structured relations:

Tutorials1:
ID site tutorial topic
1 w3schools SQL_2003STD Databases
2 w3schools HTML_5 WebDev
3 w3schools CSS_3 WebDev

∪Tutorials2:
ID site tutorial topic
3 w3schools CSS_3 WebDev
4 w3resource SQL_2003STD Databases
5 w3resource MySQL Databases

=

Tutorials1 ∪ Tutorials2:
ID site tutorial topic
1 w3schools SQL_2003STD Databases
2 w3schools HTML_5 WebDev
3 w3schools CSS_3 WebDev
4 w3resource SQL_2003STD Databases
5 w3resource MySQL Databases

161

Union: binary, no parameters (definition)

Set-theoretic union of tuples in same-structured relations

Union (formal definition)

– Let R and S be two relations

– Union R ∪ S is the relation that
- defined when R and S have the same signature (i.e., same

attribute names and their datatypes)
- has this signature
- contains each tuple that is either in R or in S (or both)

Set-theoretic union: repetitions are removed!

162

Difference: binary, no parameters (example)

Set-theoretic difference of tuples in same-structured relations:

Tutorials1:
ID site tutorial topic
1 w3schools SQL_2003STD Databases
2 w3schools HTML_5 WebDev
3 w3schools CSS_3 WebDev

\
Tutorials2:

ID site tutorial topic
3 w3schools CSS_3 WebDev
4 w3resource SQL_2003STD Databases
5 w3resource MySQL Databases

=
Tutorials1 \ Tutorials2:

ID site tutorial topic
1 w3schools SQL_2003STD Databases
2 w3schools HTML_5 WebDev

163

Difference: binary, no parameters (definition)

Set-theoretic difference of tuples in same-structured relations

Difference (formal definition)

– Let R and S be two relations

– Difference R \ S is the relation that
- defined when R and S have the same signature (i.e., attribute

names together with their datatypes)
- has the same signature
- contains each tuple that is in R but not in S

No repetitions anyway (by construction)

164

Selection: unary, one parameter (example)

Selects tuples from a relation satisfying condition in the parameter:

σID>2 & topic=‘Databases’

Tutorials:
ID site tutorial topic
1 w3schools SQL_2003STD Databases
2 w3schools HTML_5 WebDev
3 w3schools CSS_3 WebDev
4 w3resource SQL_2003STD Databases
5 w3resource MySQL Databases

=
σID>2 & topic=‘Databases’(Tutorials):

ID site tutorial topic
4 w3resource SQL_2003STD Databases
5 w3resource MySQL Databases

165

Selection: unary, one parameter (definition)

Selects tuples from a relation satisfying condition in the parameter

Selection (formal definition)

– Let R be a relation

– Let C be a condition—that is, Boolean (i.e., using &, ∨, ¬)
combination of atoms

- e1 = e2, e1 ̸= e2, where e1 and e2 are attribute names of R or
some values (numbers, strings, etc.)

- domain specific operations over attribute names and values,
e.g., e1 > e2, e LIKE RegExp (no subqueries (!!), etc.)

– Selection σC (R) is the relation that
- is defined when C mentions only attribute names of R and

all operations in C are well-typed
- has the same signature as R

- contains all tuples in R satisfying C
166

Projection: unary, one parameter (example)

Selects columns from a relation, as specified in the parameter

πsite, topic

Tutorials:
ID site tutorial topic
1 w3schools SQL_2003STD Databases
2 w3schools HTML_5 WebDev
3 w3schools CSS_3 WebDev
4 w3resource SQL_2003STD Databases
5 w3resource MySQL Databases

=

πsite, topic(Tutorials):

site topic
w3schools Databases
w3schools WebDev
w3resource Databases

167

Projection: unary, one parameter (definition)

Selects columns from a relation, as specified in the parameter

Projection (formal definition)

– Let R be a relation

– Let Atts be a list of attribute names

– Projection πAtts(R) is the relation that
- is defined when Atts mentions only attribute names of R
- has signature Atts (with domains from R)
- contains projections (i.e., restrictions) of all tuples in R to Atts

Repetitions are removed!

168

Cartesian product: binary, no parameters (example)

Combines tuples from two relations in all possible ways:

Tutorials:
ID site tutorial
1 w3schools SQL_2003STD
2 w3schools HTML_5
3 w3schools CSS_3
4 w3resource SQL_2003STD
5 w3resource MySQL

×
Topics:

topicID topic
1 Databases
2 WebDev

=

Tutorials × Topics:
ID site tutorial topicID topic
1 w3schools SQL_2003STD 1 Databases
2 w3schools HTML_5 1 Databases
3 w3schools CSS_3 1 Databases
4 w3resource SQL_2003STD 1 Databases
5 w3resource MySQL 1 Databases
1 w3schools SQL_2003STD 2 WebDev
2 w3schools HTML_5 2 WebDev
3 w3schools CSS_3 2 WebDev
4 w3resource SQL_2003STD 2 WebDev
5 w3resource MySQL 2 WebDev 169

Cartesian product: binary, no parameters (definition)

Combines tuples from two relations in all possible ways

Cartesian (or Cross) Product (formal definition)

– Let R and S be two relations

– Cartesian product R × S is the relation that
- is defined when R and S have no(!) common attribute name
- has the union of signatures of R and S as signature
- contains all possible combinations of tuples in a tuple in R

with a tuple in S

– Note: first operation that has more in output than in input
– Maybe really large
– Makes little sense, not used in practice much
– Useful to present natural join ⋊⋉ (see below)

170

Renaming: unary, one parameter

Renames attributes in a relation as specified in the parameter:

ρtopic→area

ProjTutorials:

site topic
w3schools Databases
w3schools WebDev
w3resource Databases

=

ρtopic→area(ProjTutorials):

site area
w3schools Databases
w3schools WebDev
w3resource Databases

Renaming (formal definition)

– Let R be a relation

– Let N be a list A1 → A′
1, . . . ,An → A′

n, where
A1, . . . ,An,A

′
1, . . . ,A

′
n are all different attribute names

– Renaming ρN(R) is the relation that
- is defined when A1, . . . ,An are attribute names of R and

A′
1, . . . ,A

′
n are not

- is the same as R except that A1, . . . ,An renamed to A′
1, . . . ,A

′
n

171

Independent set of operations

Core Set RA
Selection σC , Projection πL, Cartesian Product ×,
Union ∪, Difference \, Renaming ρN

– Can express everything in Codd’s algebra (but not all SQL!)

– These are independent operations: dropping any of them
makes the language weaker

– There are other useful expressible operations: intersection ∩,
natural join ⋊⋉, division ÷, etc.

- there are effective algorithms for them
- it is often simpler to formulate queries using them

– We discuss them after algebraic laws for core operations

172

5. Algebraic laws
for core RA operations

RA Algebraic Laws: initial observations

The power of RA is largely in its rich set of algebraic laws

– allows to convert complex queries to equivalent but simpler
ones (before evaluating them)

– ‘simple’ here means not ‘short’ or ‘neat-looking’, but
‘expected to be evaluated quicker’

– we will discuss how to decide what is simpler (in this sense)
than other later on

– there are (too) many laws, and we consider only most
prominent examples

– start now with core operations, later touch expressible ones

173

Laws for set-theoretic operations

Union is commutative, associative, and idempotent:
R ∪ S = S ∪ R (R ∪ S) ∪ T = R ∪ (S ∪ T) R ∪ R = R

(for all relations R, S ,T)

Difference is right-distributive over union:
(R ∪ S) \ T = (R \ T) ∪ (S \ T)

Question: Is it left-distributive: R \ (S ∪ T) =? (R \ S) ∪ (R \ T)?

Answer: No (come to counter-example by yourself)

Other (unnamed) laws:
R \ (S ∪ T) = (R \ S) \ T = (R \ T) \ S

. . .

174

Laws for Cartesian product

Cartesian product is commutative and associative:
R × S = S × R (R × S)× T = R × (S × T)

(for all relations R,S ,T)

Question: is it idempotent (R × R =? R)?
Answer: Of course no: it is never defined

Cartesian product is distributive over both union and difference:
(R ∪ S)× T = (R × T) ∪ (S × T)

(R \ S)× T = (R × T) \ (S × T)

Other (unnamed) laws:
. . .

175

Laws for selection

Selection is idempotent:
σC (σC (R)) = σC (R) (for every relation R and condition C)

Conditions can be reshuffled and split:
σC1&C2(R) = σC1(σC2(R)) = σC2(σC1(R))

σC1∨C2(R) = σC1(R) ∪ σC2(R)

Selection can be pushed through union, difference, and Cartesian
product (not always!):

σC (R ∪ S) = σC (R) ∪ σC (S)

σC (R \ S) = σC (R) \ σC (S) = σC (R) \ S
σC (R × S) = σC (R)× S if C mentions only attributes of R

. . . (other laws)
176

Laws for projection

Projection is idempotent:
πAtts(πAtts(R)) = πAtts(R) (for relation R and attributes Atts)

Idempotence can be generalised [corrected!]:
πAtts(R) = πAtts(πAtts,Atts′(R))

Projection can be pushed through union and Cartesian product:
πAtts(R ∪ S) = πAtts(R) ∪ πAtts(S)

πAttsR ,AttsS (R × S) = πAttsR (R)× πAttsS (S)

if AttsR are attributes of R and AttsS are attributes of S

. . . (other laws)

177

Laws for renaming

. . .

. . .

Homework: find a couple by yourself

178

6. (Some) expressible operations

Intersection: binary, no parameters

Set-theoretic intersection of tuples in same-structured relations:
Tutorials1:

ID site tutorial topic
1 w3schools SQL_2003STD Databases
2 w3schools HTML_5 WebDev
3 w3schools CSS_3 WebDev

∩Tutorials2:
ID site tutorial topic
3 w3schools CSS_3 WebDev
4 w3resource SQL_2003STD Databases
5 w3resource MySQL Databases

=
Tutorials1 ∩ Tutorials2:

ID site tutorial topic
3 w3schools CSS_3 WebDev

Intersection (formal definition)

Intersection: R ∩ S := R \ (R \ S) for every R and S

(including the undefined cases) 179

Natural Join: binary, no parameters (example)

Combines tuples from two relations in all possible ways that agree
on common attributes:
Tutorials:

ID site tutorial topicID
1 w3schools SQL_2003STD 1
2 w3schools HTML_5 2
3 w3schools CSS_3 2
4 w3resource SQL_2003STD 1
5 w3resource MySQL 1

⋊⋉
Topics:

topicID topic
1 Databases
2 WebDev
2 WebDev1

=

Tutorials ⋊⋉ Topics:
ID site tutorial topicID topic
1 w3schools SQL_2003STD 1 Databases
2 w3schools HTML_5 2 WebDev
2 w3schools HTML_5 2 WebDev1
3 w3schools CSS_3 2 WebDev
3 w3schools CSS_3 2 WebDev1
4 w3resource SQL_2003STD 1 Databases
5 w3resource MySQL 1 Databases

180

Natural Join: binary, no parameters (definition)

Natural Join (formal definition)
Let R and S be two relations:

– A1, . . . ,An and A′
1, . . . ,A

′
m their attributes

– {B1, . . . ,Bk} = {A1, . . . ,An} ∩ {A′
1, . . . ,A

′
m}: common

Natural Join: R ⋊⋉ S := ρN(πL(σC (ρNR
(R)× ρNS

(S)))) where
– NR and NS rename attributes of R and S apart:

NR = {A1 → R.A1, . . . ,An → R.An}
NS = {A′

1 → S .A′
1, . . . ,Am → S .A′

m}
– C is the condition matching common attributes:

C = (R.B1 = S .B1 & · · · & R.Bk = S .Bk)

– L are all attributes of R and S except the repetitions:
L = R.A1, . . . ,R.An, S .B ′

1, . . . , S .B ′
ℓ

where {B ′
1, . . . ,B

′
ℓ} = {A′

1, . . . ,A
′
m} \ {A1, . . . ,An}

– N renames attributes back:
N = {R.A1 → A1, . . . ,R.An → An,S .B

′
1 → B ′

1, . . . ,S .B
′
ℓ → B ′

ℓ} 181

Natural Join (observations)

– Product × is expressible in the presence of natural join ⋊⋉
- Question: Any ideas how?
- Answer: R × S := R ⋊⋉ S for every relations R,S

when R × S is defined
(the difference is that ⋊⋉ is defined in more cases than ×)

– Another core set RA: selection σC , projection πL,
natural join ⋊⋉, union ∪, difference \, renaming ρN

– Natural join is one of the most used operations in practice

– Implementing ⋊⋉ via × is extremely non-effective

– Native algorithms for ⋊⋉ are common (we will see)

182

Theta Join: binary, one parameter (example)

Normal join + selection:

Tutorials:
ID site tutorial topicID
1 w3schools SQL_2003STD 1
2 w3schools HTML_5 2
3 w3schools CSS_3 2
4 w3resource SQL_2003STD 1
5 w3resource MySQL 1

⋊⋉ID>topicID

Topics:
topicID topic
1 Databases
2 WebDev

=

Tutorials ⋊⋉ID>topicID Topics:
ID site tutorial topicID topic
3 w3schools CSS_3 2 WebDev
4 w3resource SQL_2003STD 1 Databases
5 w3resource MySQL 1 Databases

(This is not very meaningful query,
but the operation is very useful in practice)

183

Theta Join: binary, one parameter (definition)

Theta Join (formal definition)

Theta Join: R ⋊⋉θ S := σθ(R ⋊⋉ S) for relations R and S ,
and condition θ = RAtt1 op1 SAtt1 & · · · & RAttk opk SAttk

where RAtti and SAtti are attributes of R and S , and
opi ∈ {=, ̸=, >,<,≥,≤}
(including the undefined cases)

– Question: Why to bother? Why only these conditions?
– Answer:

- one the one hand, very common in practice
- one the other, we can design specialised efficient algorithms

– Equi-Join: theta join with = as all opi (e.g., R ⋊⋉RAtt=SAtt S)
- essentially, naturally join with incorporated renaming
- even more common and own algorithms

184

Semi-joins, anti-joins: binary, no parameters

Semi-Joins (formal definition)

Left Semi-Join: R ⋉ S := πRAtts(R ⋊⋉ S) for relations R and S

where RAtts are attributes of R
Right Semi-Join: R ⋊ S := πSAtts(R ⋊⋉ S) for relations R and S

where SAtts are attributes of S (symmetric: R ⋊ S = S ⋉ R)

– Left Semi-Join: all tuples in R that join with tuples in S

Anti-Joins (formal definition)

Left Anti-Join: R ▷ S := R \ (R ⋉ S) for relations R and S

Right Anti-Join: R ◁ S := . . . (symmetric: R ◁ S = S ▷ R)

– Left Anti-Join: all tuples in R that do not join with tuples in S

Question: Where are Outer Joins? Answer: Next time: not in
classical relational algebra, need NULLs

185

Division: binary, no parameters (example 1)

‘Inverse’ of Cartesian Product:
TutTimesTop:

ID site tutorial topicID topic
1 w3schools SQL_2003STD 1 Databases
2 w3schools HTML_5 1 Databases
3 w3schools CSS_3 1 Databases
4 w3resource SQL_2003STD 1 Databases
5 w3resource MySQL 1 Databases
1 w3schools SQL_2003STD 2 WebDev
2 w3schools HTML_5 2 WebDev
3 w3schools CSS_3 2 WebDev
4 w3resource SQL_2003STD 2 WebDev
5 w3resource MySQL 2 WebDev

÷
Topics:

topicID topic
1 Databases
2 WebDev

=

TutTimesTop ÷ Topics:
ID site tutorial
1 w3schools SQL_2003STD
2 w3schools HTML_5
3 w3schools CSS_3
4 w3resource SQL_2003STD
5 w3resource MySQL 186

Division: binary, no parameters (example 2)

‘Inverse’ of Cartesian Product:
TutTimesTop’:

ID site tutorial topicID topic
1 w3schools SQL_2003STD 1 Databases

3 w3schools CSS_3 1 Databases
4 w3resource SQL_2003STD 1 Databases
5 w3resource MySQL 1 Databases
1 w3schools SQL_2003STD 2 WebDev
2 w3schools HTML_5 2 WebDev

4 w3resource PostgreSQL 2 WebDev
5 w3resource MySQL 2 WebDev
5 w3resource PostgreSQL 2 WevDev

÷
Topics:

topicID topic
1 Databases
2 WebDev

=
TutTimesTop ÷ Topics:

ID site tutorial
1 w3schools SQL_2003STD
5 w3resource MySQL

187

Division: binary, no parameters (definition)

Division (formal definition)

Division: R ÷ S := πAtts(R) \ πAtts((πAtts(R)× S) \ R) for
relations R and S , where Atts is the attributes of R not
mentioned in S (including the undefined cases)

– Defined only when each attribute of S is an attribute of R
(follows from the definition)

– Equivalently, can be defined as:
R ÷ S is all tuples t from πAtts(R) such that {t} × S ⊆ R

– As expected, (R × S)÷ S = R for every R and S

– However, (R ÷ S)× S may be different from R

– (cf. Euclidian division, a.k.a. division with reminder for
integers)

188

(Some) algebraic laws for expressible operations

Our definitions of the expressible operations are essentially laws:
e.g., R ÷ S = πAtts(R) \ πAtts((πAtts(R)× S) \ R)

Intersection ∩ is commutative, associative, and idempotent, as well
as distribute over union ∪

Natural join is commutative, associative, and idempotent:
R ⋊⋉ S = S ⋊⋉ R (R ⋊⋉ S) ⋊⋉ T = R ⋊⋉ (S ⋊⋉ T) R ⋊⋉ R = R

(the most important laws in practice)

Selection can be pushed through join (not always!):
σC (R ⋊⋉ S) = σC (R) ⋊⋉ S if C mentions only attributes of R

(also very important)

. . . (other laws)

189

What have we learned?

Classic Relational Algebra:
core and expressible operations, algebraic laws

190

IN3020&4020 – Database Systems (2024)
Part 1: Query Processing
Lectures 7, 8: Relational Algebra for SQL

5, 6 February

Egor V. Kostylev
IFI, University of Oslo
egork@ifi.uio.no

Materials to read about Relational Algebra (same)

1. Fundamentals of Database Systems by R. Elmasri and
S.B. Navathe (7th edition): Chapter 8 (maybe, not the best)

2. Foundation of Databases by S. Abiteboul, R. Hull & V. Vianu:
Part B (more details)
available at http://webdam.inria.fr/Alice/

3. Database Systems: the Complete Book by H. Garcia-Molina,
J. Ullman & J. Widom (2nd edition): Section 2.4

4. IN2090 – Databaser og datamodellering (Leif Harald Karlsen,
Dimitru Roman): Lectures 3 (basics)
https://www.uio.no/studier/emner/matnat/ifi/IN2090/h21/timeplan/

5. (English) Wikipedia has a good introduction

6. etc.

199

Materials to Play With (same)

• Many good places with interactive exercises:
– w3resource (https://www.w3resource.com/)
– w3schools (https://www.w3schools.com/sql/)
– Web pages of systems (MySQL, PostgreSQL, Oracle, etc.)

• They use SQL rather than RA

• Should not be a problem: for simple examples
– syntactic translation is direct
– semantic differences are immaterial

200

Lecture Plan

1. What is missing in the classic set RA to cover SQL?

2. More functionality for sets

3. Bag Relational Algebra intro

4. Extending and re-defining known operations

5. Bag-specific operations

6. Algebraic laws and integrity constraints

201

1. What is missing in
the classic set RA to cover SQL?

Variants of Relational Algebra

– There are many RAs. Two RA may be
- Equivalent: some operations are expressible via each other

(e.g., × is expressible via ⋊⋉ and back in the presence of σ and ρ)
- One strictly more expressive than another: one has operations

non-expressible in the other
- Have different domains (e.g., named/unnamed, sets/bags)

– We considered basic RA for sets under named perspective
(as suggested by Codd)

– Full SQL requires a very expressive variant of RA for ordered
bags (Turing complete!)

– We will look at a version of RA for (unordered) bags:
- enough to capture most of SQL
- but not all

202

Set Relational Algebra we know

– Domain: (Set) Relations
– Core operations:

- (set) union ∪
- (set) difference \
- selection σC

- projection πAtts

- Cartesian product × (a.k.a. cross product, cross join)
- renaming ϱN (technical, often not mentioned)

– Some unary, some binary, usually not always applicable
– Some parametrised: families of operations rather than single

– Expressible operations:
- (set) intersection ∩
- other joins: natural ⋊⋉, theta- ⋊⋉θ, semi- ⋉ & ⋊, etc.
- division ÷
- . . .

203

Algebra for Full SQL

What is missing in our core RA to cover all SQL functionality?

1. Value invention (SELECT R.A+5 FROM R)

2. NULLs (in particular, for OUTER JOINs):

3. Recursion (WITH RECURSIVE) not covered

4. Bag relations and aggregates (SELECT SUM(R.A) FROM R)

5. Ordered relations (ORDER BY, LIMIT) not covered

.

204

2. More functionality for sets

Generalised Projection: unary, one parameter (example)

Projection + renaming + value invention using expressions

πsite, topic→area, ID+5→IDplus

Tutorials:
ID site tutorial topic
1 w3schools SQL_2003STD Databases
2 w3schools HTML_5 WebDev
3 w3schools CSS_3 WebDev
4 w3resource SQL_2003STD Databases
5 w3resource MySQL Databases

=

πsite, topic→area, ID+5→IDplus(Tutorials):

IDplus site area
6 w3schools Databases
7 w3schools WebDev
8 w3schools WebDev
9 w3resource Databases
10 w3resource Databases

205

Generalised Projection: unary, one parameter (definition)

Selects and modifies attributes, as specified in the parameter

Generalised Projection (formal definition)

– Let R be a relation

– Let N be a list of attributes A and maps Exp → A′, where Exp is an
expression over attributes and values, and A, A′ are attributes

– Generalised Projection πN(R) is the relation that

- is defined when all A′ are different and not attributes of R,
all other mentioned attributes (incl., A) are in the schema of R,
and all types are matched

- with schema consisting of all A and A′

- contains all tuples constructed from tuples in R as specified by N

– Repetitions are removed

– Just renaming when Exp is an attribute

– Exp may be a constant (not mentioning attributes), including NULL

– Can create bigger table than input 206

Left Outer Join: binary, no parameters (example)

Combines tuples from two relations in all possible ways that agree
on common attributes, and extend left dangling tuples with NULLs

Tutorials:
ID site tutorial topicID
1 w3schools SQL_2003STD 1
2 w3schools HTML_5 2
3 w3schools CSS_3 3
4 w3resource SQL_2003STD 1

▷◁

Topics:
topicID topic
1 Databases
2 WebDev
25 Asronomy

=

Tutorials ▷◁ Topics:
ID site tutorial topicID topic
1 w3schools SQL_2003STD 1 Databases
2 w3schools HTML_5 2 WebDev
3 w3schools CSS_3 3 NULL
4 w3resource SQL_2003STD 1 Databases

207

Outer Joins: binary, no parameters (definition)

Natural Join + dangling tuples extended with NULLs

Outer Joins (native formal definition)

– Let R and S be two relations

– Left Outer Join R ▷◁ S is the relation that

- all common attributes of R and S have the same domains
- has the union of schemas of R and S as schema
- contains all possible combinations of a tuple in R with a tuple in S

that agree on common attributes and all dangling tuples in R

extended with NULLs
- a dangling tuple in R is a tuple that does not agree with any tuple

in R on common attributes

– Right Outer Join R ▷◁ S := S ▷◁ R

– Full Outer Join R ▷◁ S := (R ▷◁ S) ∪ (R ▷◁ S)

Expressible via the core RA + Generalised Projection
(see the first mandatory) 208

Algebraic Laws

Generalised Projection and outer joins have their laws. For example:

Generalised Projection can be pushed through union and Cartesian
product:
πN(R ∪ S) = πN(R) ∪ πN(S)

πNR ,NS
(R × S) = πNR

(R)× πNS
(S)

if NR mentions only attributes of R
and NS mentions only attributes of S

Left outer join is idempotent: R ▷◁ R = R (= R ⋊⋉ R)

But not commutative: R ▷◁ S ̸= S ▷◁ R (unless R = S)
And not associative: (R ▷◁ S) ▷◁ T ̸= R ▷◁ (S ▷◁ T)

There are many more

209

3. Bag Relational Algebra intro

Bag Relational Algebra domain

– Domain: Bag relations (i.e., bag tables)
– Bag relation components (reminder):

- Relation name: just a string
- Schema: set of attribute names with domains (i.e., datatypes)
- Bag (possible repetitions!) of tuples:

assignments of values to attribute names conforming schema

– Example:

Tutorials:
ID site tutorial topic
1 w3schools SQL_2003STD Databases
2 w3schools HTML_5 WebDev
1 w3schools SQL_2003STD Databases
4 w3resource SQL_2003STD Databases
5 w3resource MySQL Databases

210

Bag Relational Algebra operations

– Domain: Bag Relations

– Every Set Relation is a Bag Relation
– All set RA operations generalise to bags:

- some are just extensions to bags that are not sets—that is, if
input relations are sets than the result is as before:

difference \, intersection ∩, selection σC , Cart. product ×,
division ÷, renaming ϱN , joins (⋊⋉,⋊⋉θ,⋉,⋊, ◁, ▷, ▷◁, ▷◁ , ▷◁)

- others need re-definition even for sets (marked by sup-script b):
union ∪b, (generalised) projection πb

N

(we also keep the set versions ∪ and πN ,
which are undefined on bags that are not sets)

– Several new operations:
- duplicate elimination δ, grouping+aggregation γL, . . .

211

4. Extending and re-defining the
known operations

Bag Union: binary, no parameters (example only)

Bag-theoretic union of tuples (multiplicities are added):
Tutorials1:

ID site tutorial topic
1 w3schools SQL_2003STD Databases
1 w3schools SQL_2003STD Databases
3 w3schools CSS_3 WebDev

∪b
Tutorials2:

ID site tutorial topic
3 w3schools CSS_3 WebDev
3 w3schools CSS_3 WebDev
5 w3resource MySQL Databases

=

Tutorials1 ∪b Tutorials2:
ID site tutorial topic
1 w3schools SQL_2003STD Databases
1 w3schools SQL_2003STD Databases
3 w3schools CSS_3 WebDev
3 w3schools CSS_3 WebDev
3 w3schools CSS_3 WebDev
5 w3resource MySQL Databases 212

Difference for bags: binary, no parameters (example only)

Bag-theoretic difference of tuples in same-structured relations
(multiplicities are subtracted; if negative, overwritten by 0)

Tutorials1:
ID site tutorial topic
1 w3schools SQL_2003STD Databases
1 w3schools SQL_2003STD Databases
2 w3schools HTML_5 WebDev

\
Tutorials2:

ID site tutorial topic
1 w3schools SQL_2003STD Databases
2 w3schools HTML_5 WebDev
2 w3schools HTML_5 WebDev
3 w3schools CSS_3 WebDev

=
Tutorials1 \ Tutorials2:

ID site tutorial topic
1 w3schools SQL_2003STD Databases 213

Selection for bags: unary, one parameter (example only)

Selects tuples as in the set case:

σID>2 & topic=‘Databases’

Tutorials:
ID site tutorial topic
1 w3schools SQL_2003STD Databases
2 w3schools HTML_5 WebDev
3 w3schools CSS_3 WebDev
4 w3resource SQL_2003STD Databases
4 w3resource SQL_2003STD Databases
5 w3resource MySQL Databases

=

σID>2 & topic=‘Databases’(Tutorials):

ID site tutorial topic
4 w3resource SQL_2003STD Databases
4 w3resource SQL_2003STD Databases
5 w3resource MySQL Databases

214

Generalised Projection for bags (including renaming):
unary, one parameter (example only)

Also as in set case (outputs the same number of tuples as in input):

πb
site, topic→area, ID+5→IDplus

Tutorials:
ID site tutorial topic
1 w3schools SQL_2003STD Databases
2 w3schools HTML_5 WebDev
3 w3schools CSS_3 WebDev
4 w3resource SQL_2003STD Databases
4 w3resource SQL_2003STD Databases

=

πb
site, topic→area, ID+5→IDplus(Tutorials):

IDplus site area
6 w3schools Databases
7 w3schools WebDev
8 w3schools WebDev
9 w3resource Databases
9 w3resource Databases

215

Natural Join for bags (including Cartesian product):
binary, no parameters (example only)

Combines tuples from two relations in all possible ways that agree
on common attributes (multiplicities are multiplied):

Tutorials:
ID site tutorial topicID
1 w3schools SQL_2003STD 1
1 w3schools SQL_2003STD 1
2 w3schools HTML_5 2
2 w3schools HTML_5 2

⋊⋉

Topics:
topicID topic
1 Databases
1 Databases
2 WebDev
25 Astronomy

=

Tutorials ⋊⋉ Topics:
ID site tutorial topicID topic
1 w3schools SQL_2003STD 1 Databases
1 w3schools SQL_2003STD 1 Databases
1 w3schools SQL_2003STD 1 Databases
1 w3schools SQL_2003STD 1 Databases
2 w3schools HTML_5 2 WebDev
2 w3schools HTML_5 2 WebDev

216

Expressible operations for bags

Many operations are expressed exactly as in the set RA:

Theta Join: R ⋊⋉θ S := σθ(R ⋊⋉ S)

Intersection: R ∩ S := R \ (R \ S)

Others require more elaborate expressions to take care of
multiplicity (not used so much for bags, so do not give them here)

Left Semi-Join: R ⋉ S := . . .

Right Semi-Join: R ⋊ S := . . .

Left Anti-Join: R ▷ S := . . .

Right Anti-Join: R ◁ S := . . .

Left Outer Join: R ▷◁ S := . . .

Right Outer Join: R ▷◁ S := . . .

Full Outer Join: R ▷◁ S := . . .

Division: R ÷ S := . . . 217

5. Bag-specific operations

Duplicate elimination: unary, no parameters (example)

Removes duplicates:

δ

Tutorials:
ID site tutorial topic
1 w3schools SQL_2003STD Databases
2 w3schools HTML_5 WebDev
3 w3schools CSS_3 WebDev
4 w3resource SQL_2003STD Databases
4 w3resource SQL_2003STD Databases
5 w3resource MySQL Databases

=

δ(Tutorials):
ID site tutorial topic
1 w3schools SQL_2003STD Databases
2 w3schools HTML_5 WebDev
3 w3schools CSS_3 WebDev
4 w3resource SQL_2003STD Databases
5 w3resource MySQL Databases

218

Duplicate elimination: unary, no parameters (definition)

Removes duplicates

Duplicate Elimination (formal definition)

– Let R be a relation

– Duplicate elimination δ(R) is the relation that
- is always defined
- has the same schema as R

- contains all tuples in R but without duplicates
(i.e., with all multiplicities 1)

Set operations can be simulated by the bag versions and δ

For example, R ∪ S = δ(R ∪b S) for every set relations R and S

More laws below

219

Grouping+aggregation: unary, one parameter (example)

Groups and aggregates according to the parameter

γ
site, SUM(ID)→sID,

COUNT(topic)→ctopic

Tutorials:
ID site tutorial topic
1 w3schools SQL_2003STD Databases
2 w3schools HTML_5 WebDev
3 w3schools CSS_3 WebDev

4 w3resource SQL_2003STD Databases
5 w3resource MySQL NULL

=
γsite, SUM(ID)→sID, COUNT(topic)→ctopic(Tutorials):

site sID ctopic
w3schools 6 3
w3resource 9 1

Question: Why 3 and 1 in the last column?

Answer: Duplicates count, NULL does not 220

Aggregate functions

An aggregate function takes a bag of values and returns a value

May be also undefined (e.g., due to type mismatch)

There are several aggregate functions relevant to SQL

We consider some examples:

– COUNT(Ω) counts the number of elements in Ω (with multiplicities)
different from NULL:

COUNT({{a, b, b, b,NULL}}) = 4

– COUNT_DISTINCT(Ω) counts the number of distinct elements in Ω

(without multiplicities) different from NULL:
COUNT_DISTINCT({{a, b, b, b,NULL}}) = 2

– MIN(Ω) computes the minimum of non-NULL elements in Ω:
MIN({{1, 2, 3, 3,NULL}}) = 1

– MAX(Ω) computes the maximum of non-NULL elements in Ω:
MAX({{1, 2, 3, 3,NULL}}) = 3

– SUM(Ω) computes the sum of non-NULL elements in Ω:
SUM({{1, 2, 3, 3,NULL}}) = 9

– AVG(Ω) computes the average of non-NULL elements in Ω:
AVG({{1, 2, 3, 3,NULL}}) = 2.25

All undefined if Ω has anything different from numbers and NULL,
evaluate to NULL if Ω has only NULLs (or empty)

221

Aggregate functions

An aggregate function takes a bag of values and returns a value

May be also undefined (e.g., due to type mismatch)

There are several aggregate functions relevant to SQL

We consider some examples:

– MIN(Ω) computes the minimum of non-NULL elements in Ω:
MIN({{1, 2, 3, 3,NULL}}) = 1

– MAX(Ω) computes the maximum of non-NULL elements in Ω:
MAX({{1, 2, 3, 3,NULL}}) = 3

– SUM(Ω) computes the sum of non-NULL elements in Ω:
SUM({{1, 2, 3, 3,NULL}}) = 9

– AVG(Ω) computes the average of non-NULL elements in Ω:
AVG({{1, 2, 3, 3,NULL}}) = 2.25

All undefined if Ω has anything different from numbers and NULL,
evaluate to NULL if Ω has only NULLs (or empty) 221

Grouping+aggregation: unary, one parameter (definition)

Groups and aggregates the values of attributes, as specified in the parameter

Grouping and Aggregation (formal definition)

– Let R be a relation and N a list of attributes Ag and maps Agg(A) → A′,
where Agg is an aggregate function, and Ag , A, A′ are attributes

– Grouping with Aggregation γN(R) is the relation that

- is defined when all A′ are different and not attributes of R,
all other mentioned attributes (incl., Ag and A) are in signature of
R, and all types (incl., in aggregates) are matched

- with signature consisting of all Ag and A′

- contains all tuples constructed from R as follows:
1. tuples in R are grouped by distinct tuples of values of Ag

2. for each group, aggregate Agg(Ω) is computed for every
Agg(A) → A′, where Ω is the bag of values of A in the group

3. one tuple is constructed for each group from all Ag and all A′

as computed values of the aggregates Agg(A) → A′

Becomes projection + duplicate elimination when no aggregates mentioned 222

6. Algebraic Laws and
Integrity Constraints

Algebraic Laws for bags

Almost all the rules mentioned before for sets extend to bags

For example, natural join is commutative and associative:
R ⋊⋉ S = S ⋊⋉ R (R ⋊⋉ S) ⋊⋉ T = R ⋊⋉ (S ⋊⋉ T)

Selection and projection can be pushed through join (not always!):
σC (R ⋊⋉ S) = σC (R) ⋊⋉ S if C mentions only attributes of R

However, there are exceptions (e.g., R ⋊⋉ R ̸= R for bags)

Bag union ∪b and generalised projection πb
N have their own laws,

often different from their set versions ∪ and πN (e.g., R ∪b R ̸= R)

Dupl. elimination δ, and grouping+aggregation γN also have laws:
– δ can be pushed through join, selection, etc.:

δ(R ⋊⋉ S) = δ(R) ⋊⋉ δ(S) δ(σC (R)) = σC (δ(R))

– γN has very few useful laws
(i.e., allow for only very limited optimisation) 223

Integrity Constraints in RA

We can express integrity constraints (primary and foreign keys,
etc.) using RA

Primary key: attributes A1, . . . ,Ak of relation R

Relation R satisfies this primary key if for every tuple t1 in R there
is no other tuple t2 in R such that t1[A1, . . . ,Ak] = t2[A1, . . . ,Ak]

Assuming that R is a set relation, can be written as
σC (R ⋊⋉ ρN(R)) = ∅, where

– N is B1 → B ′
1, . . . ,Bm → B ′

m for B1, . . . ,Bm are all the
attributes of R different from A1, . . . ,Ak

– C is B1 ̸= B ′
1 ∨ · · · ∨ Bm ̸= B ′

m

For arbitrary bag relations also possible, but requires using
aggregates (Homework: try it!)

Foreign key: attributes B1, . . . ,Bk of relation S and attributes
A1, . . . ,Ak of relation R with matching domains

Relations S and R satisfy this foreign key if every tuple t1 in S has
a tuple t2 in R such that t1[B1, . . . ,Bk] = t2[A1, . . . ,Ak]

Can be written as δ(πB1,...,Bk
(S)) ⊆ δ(πA1,...,Ak

(R))

224

Integrity Constraints in RA

We can express integrity constraints (primary and foreign keys,
etc.) using RA

Foreign key: attributes B1, . . . ,Bk of relation S and attributes
A1, . . . ,Ak of relation R with matching domains

Relations S and R satisfy this foreign key if every tuple t1 in S has
a tuple t2 in R such that t1[B1, . . . ,Bk] = t2[A1, . . . ,Ak]

Can be written as δ(πB1,...,Bk
(S)) ⊆ δ(πA1,...,Ak

(R))

224

What have we learned?

What is missing in the classic set RA to cover (most of) SQL

225

IN3020&4020 – Database Systems (2024)
Part 1: Query Processing
Lectures 9, 10: Indexes

12, 13 February

Egor V. Kostylev
IFI, University of Oslo
egork@ifi.uio.no

Big Picture (reminder)

Syllabus of the course:

– (Extended) Intro and SQL recap ✓

Part 1. Query processing in relational databases

Part 2. Transaction management in relational databases

Part 3. NoSQL DBMS

SQL query processing relies on two key ingredients:
Relational Algebra (✓) and Indexes

We study these ingredients first (almost in isolation)
and then put all things together

235

Materials to read about Indexes

1. Fundamentals of Database Systems by R. Elmasri and
S.B. Navathe (7th edition): Chapter 17 (and some of 16)

2. Database Systems: the Complete Book by H. Garcia-Molina,
J. Ullman & J. Widom (2nd edition): Section 14 (+ 8.3 & 8.4)

3. IN2090 – Databaser og datamodellering (Leif Harald Karlsen,
Dimitru Roman): Lectures 13 (basics)
https://www.uio.no/studier/emner/matnat/ifi/IN2090/h21/timeplan/

4. (English) Wikipedia

5. etc.

236

You can see the effect of indexes in PostgreSQL

CREATE TABLE t1(id int);

INSERT INTO t1
SELECT n*random()
FROM generate_series(1, 10000000) AS x(n);

CREATE TABLE t2 AS (SELECT * FROM t1);

CREATE INDEX t1_ind ON t1(id);

\timing on

SELECT * FROM t1 WHERE id = 100; ––> Time: 0.792 ms

SELECT * FROM t2 WHERE id = 100; ––> Time: 303.022 ms

237

Lecture Plan

1. How to store relations?

2. Types of indexes

3. Multi-level indexes (how to implement indexes)

4. Indexes in practice

5. Multi-dimensional indexes (indexes on several attributes)

238

1. How to store relations?

Main goal of a DBMS: answer queries quickly

Ingredients for efficiency:

1. Find a good query plan (i.e., RA expression)

2. Store data (i.e., relations) to maximise the speed of retrieval:

SELECT ∗ FROM R WHERE R.A = 1345 (exact search)
SELECT ∗ FROM R WHERE R.A > 1345 (interval search)
SELECT ∗ FROM R WHERE R.A > 1345 AND R.B= ‘a’

(multi-attribute search)

Challenge: There may be a lot of data (i.e., tuples)

Updates (incl. insertions and deletions) are less critical, but should
also be taken into account

Today: look at how DBMSs manage with Ingredient 2 239

Place of data storage (incl. indexes) in DBMS architecture

240

What memory is available

Storage (memory) hierarchy:

– Primary storage:
CPU main memory, cache memory (Static RAM, DRAM)

– Secondary storage:
Magnetic disks, flash memory, solid-state drives

– Tertiary storage:
Removable media, distributed over the Web, etc.

Data in standard DBMSs is stored in secondary memory:

– good size (∼10–100 TBs now)

– slow access (∼10–100 ms now)

241

Properties of secondary memory

Secondary memory (e.g., magnetic disk):

– Organised in blocks (∼10 KBs)

– Can be accessed using pointers,
which may refer to any point (word) in any block

– However, read & write is possible only for the whole block

– Blocks are consecutive, e.g., we can retrieve
"the block in the middle between two given blocks"
(referring to blocks by their first pointers)

242

Storing a relation

Usually, a block can accommodate several records (i.e., tuples)

There are options to store tuples of a relation in a file:

Continuous, unspanned:

Continuous, spanned:

Linked, unspanned:

Linked, spanned:

243

Storing a relation

Usually, a block can accommodate several records (i.e., tuples)

There are options to store tuples of a relation in a file:

Linked, unspanned:

Linked, spanned:

243

Our assumptions

We assume:

– Generally, continuous, unspanned:

– (Sometimes, linked as well)

– all records (i.e., tuples) take the same size

All these assumptions are for simplicity,
(almost) everything applies to other settings

244

Naive tuple arrangement: (unordered) heap

Heap (or pile) file:

– tuples placed in file in order of insertion

– inserting a new tuple: very efficient
– deletion of a tuple:

- real deletion and squeezing all following blocks (slow)
- real deletion and squeezing only current block (efficient)
- use deletion marker (efficient)

– searching with a given attribute value (. . . WHERE R.A = 1245)
- b reads (where b is the number of used blocks)
- ∼ b/2 reads on average, if A is a candidate key (e.g., primary

key)

Slow. What can we do?

245

Ordered files

File with tuples ordered by the search key R.A:

– inserting a new tuple: may be slow, but may use overflow
blocks (see below)

– deletion of a tuple: similar to heap

– searching with a given key (where b is the number of used
blocks)

- ∼ b/2 on average naively (even for non-keys)
- ≤ ⌈log2 b + 1⌉ using binary search

Better, but still... And what to do with several attributes?

246

Binary search

Let us need to find a tuple with key value k in an ordered relation

– try the middle block; if tuple with k found, success
– if not, identify the half with k above or below the block by

checking whether the smallest key value in the block is smaller
or greater than k

– try the middle block of the half; if tuple with k found, success
– . . .

For example,

– for b = 7, a worst case may be retrieving blocks #4,#2,#3
(e.g., ⌈log2 b + 1⌉ = 3 is materialised)

– for b = 8, a worst case may be #4,#6,#7,#8
(e.g., ⌈log2 b + 1⌉ = 4 is materialised)

247

2. Types of Indexes

Indexes Intro

An index on an attribute A (in a relation R):
a data structure that facilitates (i.e., speeds up) finding the tuples
in R with a certain value of A

Attribute A is called the search key

It is possible to have an index on every attribute (and every set of),
but there is a trade-off:

More indexes for the same relation means

– faster search
– slower updates & more storage

Usually, DBMSs automatically create an index on every primary key

Indexes on other attributes can be created manually 248

Types of Indexes

We will consider:

Primary Index (dense or sparse)

– the tuples are sorted (physically) on the search key

– at most one tuple for a search-key value (e.g., primary key)

Cluster Index (dense or sparse)

– the tuples are sorted (physically) on the search key

– any number of tuples for a search-key value

Secondary Index (dense only)

– the tuples are not sorted on the search key

– may be used in addition to other indexes on the same relation

249

Primary Dense Index

Primary Dense Index on the primary (or candidate) key attribute A

in a relation R stored as sorted by A:
– sorted table with two “attributes”:

primary key value, pointer to the tuple with this value
– each tuple in R has a pair in the index

Example:

Benefit: index itself is also stored in secondary memory,
but with much fewer blocks 250

Primary Sparse Index

Primary Sparse Index on the primary key attribute A in a relation R

stored as sorted by A:
– sorted table with two “attributes”:

primary key value, pointer to the tuple with this value
– only the first tuple in each block of R has a pair in the index

Example:

Benefit: index itself is also stored in secondary memory,
but with even fewer blocks 251

Retrieval comparison

Assume that we have:

– 1000000 tuples of 300B each, 4B per search key (primary), 4B per pointer

– 4K block size, 1ms for fetching a block:
- 13 tuples per block (i.e., 76924 unspanned blocks)
- 512 indexes per block (i.e., 1954 blocks for a dense index and 151

blocks for a sparse index)

Using no index, no order:
76924/2 = 38462 block accesses on average (∼ 38.5s!)

Using no index, but order (and binary search; think why +1 here and below):
⌈log2(76924 + 1)⌉ = 17 block accesses at most

Using primary dense index:
⌈log2(1954 + 1)⌉+ 1 = 11 + 1 = 12 block accesses at most

Using primary sparse index:
⌈log2(151 + 1)⌉+ 1 = 8 + 1 = 9 block accesses at most

252

Record deletion with primary sparse index

Deletion (and insertion) of tuples needs care

Delete entry with a = 60:
index doesn’t need an update

Delete entry with a = 40:
index needs to be updated
(see to the right)

One usually prefers to compress the data in the blocks

One can also compress the whole file,
but we may like to keep free slots for future inserts

Dense is similar
253

Record insertion with (sparse) primary index

Insertion (same as deletion) of tuples needs care

If there is space, similar

Insert entry where a = 95:
No space. Insert a new block
overflow: change / no change

for index
normal: change to index,

breaks continuality

Dense is similar

254

Clustering Dense Index

Clustering Dense Index on an attribute A (any!) in a relation R

stored as sorted by A:
– sorted table with two “attributes”:

attribute value, pointer to the tuple with this value
– each tuple in R has a pair in the index

Example:

Not much different from primary dense index 255

Clustering Sparse Index (variant 1)

Clustering sparse index (var. 1) on an attribute A (any!) in a
relation R stored as sorted by A:

– sorted table with two “attributes”:
attribute value, pointer to the tuple with this value

– only one index for each value of A in R has a pair in the index

Example:

Less index and faster search (good for small number of search
values)
But finding all tuples for a value is more complex 256

Clustering Sparse Index (variant 2)

Clustering sparse index (var. 2) on an attribute A (any!) in a
relation R stored as sorted by A:

– sorted table with two “attributes”:
attribute value, pointer to the tuple with this value

– only the first tuple in each block of R has a pair in the index

Example:

Even less index and faster search (if the number of blocks is less
than the number of values)
Finding all tuples for a value is easier 257

Secondary Index

Secondary index on an attribute A in a relation R (not sorted by A):

– sorted table with two “attributes”:
attribute value, pointer to the tuple with this value

– every tuple in each block of R has a pair in the index
Provide secondary means of

accessing tuples

Used when some
other primary access exists

Duplicates are allowed (not in
the figure, may be optimised
by a level of indirection)

Always dense

258

Dense vs Sparse indexes

DENSE SPARSE
Space required One index field per tuple One index field per data block

Block access “Many” “Few”

Access to entry Direct access Must search in the data block

Usage All cases Not on unsorted elements

Updates Always updated if entry Updated only if the first
sequence is changed entry of the data block is changed

259

3. Multi-level Indexes

(Static) Multilevel Index

(Static) Multilevel Index on an attribute A in a relation R

– index on an index
– useful when the main index occupy several blocks

Example:

Second layer makes sense only if sparse
In principle, any number of layers is possible

260

Retrieval comparison

Assume that we have:

– 1000000 tuples of 300B each, 4B per search key, 4B per pointer

– 4K block size, 1ms for fetching a block:

- 13 tuples per block (i.e., 76924 unspanned blocks)
- 512 indexes per block (i.e., 1954 blocks for a dense index and 151

blocks for a sparse index)

No index, no order: 76924/2 = 38462 block accesses

No index, but with order (and binary search): ⌈log2 76925⌉ = 17 block accesses

Primary dense index: ⌈log2 1955⌉+ 1 = 11 + 1 = 12 block accesses

Using primary sparse index: ⌈log2 152⌉+ 1 = 8 + 1 = 9 block accesses

Using two-level index (dense 1st level, sparse 2nd level):
need 1954/512 = 4 blocks for the 2nd level
⌈log2(4 + 1)⌉+ 1 + 1 = 5 block accesses at most

261

(Static) Multilevel Indexes

Looks good, but

Problems:

1. Insertion and deletion are messy and difficult

2. How to decide how many levels we need?

Solution: Dynamic Multilevel Indexes
based on B-trees, B+-trees (B∗-trees, etc.)

“B” stays for “balanced”

262

Dynamic Multilevel Indexes: B+-trees

B+-tree of order n:

– Balanced: all leaf nodes are at the same level
– each node has at least ⌈(n + 1)/2⌉ and at most n search keys

and +1 pointers (except the root)
– Inner node: all pointers are to sub-trees, key values specify

values in sub-trees as in static case
– Leaf node: data-pointers (dense or sparse) and 1 next-pointer

263

Dynamic Multilevel Indexes: B+-trees

Search with B+-trees:

– from the root to leaves—that is, the number of block accesses is the
height (usually, low; e.g., for n = 340 and 3 levels we can refer to >16M
tuples)

– interval search is also fast

Insertion & deletion with B+-trees:

– need to ensure ⌈(n + 1)/2⌉ and n bounds

– there are special smart algorithms (Check them!)

– the height and number of nodes may change 264

Dynamic Multilevel Indexes: B-trees

B-tree of order n
(same as B+, except that the inner nodes have pointers to data):

– all leaf nodes are at the same level
– each node has at least ⌈(n + 1)/2⌉ and at most n search keys

with pointers and +1 sub-tree pointers (except the root, which
may have less, and leaves, where “sub-tree” pointers are nulls)

– Inner node: interleaving pointers are to sub-trees and data
– Leaf node: only keys and data-pointers (+ sub-tree nulls)

265

Dynamic Multilevel Indexes: B-trees

Search with B-trees:

– from the root to leaves—that is, the number of block accesses is at most
the height (better than for B+, but the height might be larger)

– interval search is also fast

Insertion & deletion with B-trees:

– need to ensure ⌈(n + 1)/2⌉ and n bounds

– there are smart algorithms (harder and slower than for B+; check them!)

– the height and number of nodes may change

266

Another approach: Hash-based index

Hash-based index with hash function h

(essentially, two-level index with one
second-level block, with hash-values instead
of search keys):

– first-level blocks are called buckets

– keys in buckets are not consecutive

– second-level block stores all possible
hash values h(key)

– bounded by the size of a block

Common hash function mod(key , base):

– base is usually a prime number

– ensures good distribution over buckets
267

Hash-based index: Pros and cons

Hash-based index pros:

– fewer block accesses than with B & B+
for exact search (e.g., R.A = 1245)

(hash values are shorter than keys)

– updates are easy when there is space

Hash-based index cons:

– poor for interval search (e.g., R.A > 1245)

– what if there is no space in the bucket on
update?

- overflow buckets
- dynamic hashes (extensible, linear)

(check it out!)

268

4. Indexes in practice

Indexes in DBMSs

Usually, DBMSs automatically create an index on every primary key

Indexes on other attributes can be created manually

The syntax is system dependent; for example:

CREATE INDEX NAME ON relName (attName)

CREATE INDEX NAME ON relName (attName1, . . . , attNameN)
(see the meaning below)

DROP INDEX indexName

Only some (e.g., professional) DBMSs allow us to specify the
details of created index—that is, the type (e.g., B-tree, hashing),
its parameters (e.g., B-tree order, hash function), etc.

269

Indexes in PostgreSQL

Default index type in PostgreSQL is B-tree

https://www.postgresql.org/docs/14/indexes.html:

“B-trees can handle equality and range queries on data that
can be sorted into some ordering”

PostgreSQL also has GiST:
a mechanism for implementing indexes for complex data types.

270

You can see the effect of indexes in PostgreSQL

CREATE TABLE t1(id int);

INSERT INTO t1
SELECT n*random()
FROM generate_series(1, 10000000) AS x(n);

CREATE TABLE t2 AS (SELECT * FROM t1);

CREATE INDEX t1_ind ON t1(id);

\timing on

SELECT * FROM t1 WHERE id = 100; ––> Time: 0.792 ms

SELECT * FROM t2 WHERE id = 100; ––> Time: 303.022 ms

271

5. Multi-dimensional indexes

Multi-attribute search: Intro

What to do with multi-attribute search?

SELECT * FROM R WHERE A = 30 AND B < 5

Naive strategy:

1. Use an index on A to fetch all tuples with A = 30

2. Filter the tuples B < 5

Not very efficient: a lot of unnecessary block accesses

Question: Any ideas how to do it better?

272

Multi-attribute search: Better strategy

SELECT * FROM R WHERE A = 30 AND B < 5

More advanced strategy:

1. find all pointers(!) to tuples with A = 30 using a dense index for A

2. find all pointers(!) to tuples with B < 5 using a dense index for B

3. intersect the sets of pointers and fetch the relevant tuples

But again: two dense indexes does not look like the best solution 273

Multiple-Key Indexes

Multiple-Key index (hierarchical multi-dimensional approach):
an own index for inferior dimensions for every exterior keys

274

Multiple-Key Index: Example

SELECT * FROM R WHERE A = 30 AND B = ‘x’

Search first for A = 30, then for B = ‘x’ in the index for A = 30

275

Multiple-Key indexes: When to use

This index is effective for:

SELECT * FROM R WHERE A = 30 AND B = ‘x’ ✓

SELECT * FROM R WHERE A = 30 AND B > ‘x’ ✓

SELECT * FROM R WHERE A = 10 ✓

SELECT * FROM R WHERE B = ‘x’ ✗

SELECT * FROM R WHERE A >= 30 AND B = ‘x’ ✗

Would work with other dimension order (another index)

But there are many other alternatives:

– Other multidimensional tree-like structures
– Multidimensional hash-like structures
– Bitmap indexes 276

Multidimensional search visualisation

We can visualise two-dimensional search as a map:

SELECT * FROM R WHERE a = 30 AND b = ‘x’
point

SELECT * FROM R WHERE a = 30 AND b >= ‘x’ AND b <= ‘y’
segment

SELECT * FROM R WHERE a >= 30 AND a <= 40 AND b >= ‘x’ AND b <= ‘y’
area

277

(Advanced) Multidimensional tree structures

There are tree-like structures for multidimensional search, inheriting
from B(+)-trees in some ways (balancing, easy updates, etc.):

– k-d trees: a binary search tree in which intermediate nodes are
splitting values for individual dimensions every leaf node is a
block of k-dimensional points

– Quad-trees: a tree data structure where each internal node has
exactly four children (used to partition a two-dimensional space
by recursively subdividing it into four quadrants or regions)

– R-trees: tree data structures used for spatial access methods
(i.e., for indexing multi-dimensional information such as
geographical coordinates, rectangles or polygons)

– . . .

278

k-d trees: idea

k-d trees: a binary search tree in which intermediate nodes are
splitting values for individual dimensions every leaf node is a block
of k-dimensional points (dimensions ‘circulate’ along a branch)

Illustration:

Useful for range and nearest neighbour searches
279

Quad-trees: idea

Quad-tree: a tree data structure where each internal node has
exactly four children (often used to partition a two-dimensional
space by recursively subdividing it into four quadrants or regions)

Illustration:

280

R-trees: idea

Balanced tree, where nodes group close points

– inner node: smallest rectangle containing all subtree points
(may overlap)

– leaf node: point (with a pointer to a tuple)

Search (incl. intersection, contained in, nearest neighbour): easy
Insertion: challenging

281

Multidimensional hash-like structure: Grid files

Grid files:

– ‘Hash’ function hd for each dimension d individually

– ‘Hashes’ to the position number in the d-dimension of the matrix of
bucket pointers: hd(key) = n, where n is the number of [xd , yd) with
key ∈ [xd , yd) in the dimension d

Example (2 dimensions): Find record with (a, b) = (22, 31)

– Apply ‘hashes’ ha(22) = #[20, 30)a = 3, hb(31) = #[0, 100)b = 4

– Retrieve the pointer to the bucket for cell (3, 4) from pointer matrix

Search: easy
Insertion & Deletion: inherit the problems of usual hashes 282

Bitmap indexes

Bitmap index:

– each value of each indexed attribute has a bitmap vector

– each tuple has a component in each vector

Efficient for several attributes with small domains
Take a lot of space, but can be compressed

Search: bit-wise AND
Insertion & Deletion: simple for existing values

283

What have we learned?

Indexes:
The second key DBMS component for efficient query evaluation

284

IN3020&4020 – Database Systems (2024)
Part 1: Query Processing
Lectures 11, 12: Query Compilation and
Optimisation

19, 20 February

Egor V. Kostylev
IFI, University of Oslo
egork@ifi.uio.no

Big Picture (reminder)

Syllabus of the course:

– (Extended) Intro and SQL recap ✓

Part 1. Query processing in relational databases

Part 2. Transaction management in relational databases

Part 3. NoSQL DBMS

SQL query processing relies on two key ingredients:
Relational Algebra (✓) and Indexes (✓)

We have studied these ingredients (almost in isolation)
and now put all things together

292

SQL (DQL) query processor in action

SELECT DISTINCT title FROM StarsIn WHERE starName IN
(SELECT name FROM MovieStar WHERE birthDate LIKE ‘%1960′);

⇝
parsing

(parse tree)
⇝
compilation

πtitle(σstarName=name(StarIn×πname(σbirthDate LIKE ‘%1960′(MovieStar))))
⇝
optimisation

πtitle(StarIn ⋊⋉starName=name πname(σbirthDate LIKE ‘%1960′(MovieStar)))
⇝
evaluation over tables

(Result) 293

SQL (DQL) query processor in action

SELECT DISTINCT title FROM StarsIn WHERE starName IN
(SELECT name FROM MovieStar WHERE birthDate LIKE ‘%1960′);

⇝
parsing

(parse tree)
⇝
compiliation

πtitle(σstarName=name(StarIn×πname(σbirthDate LIKE ‘%1960′(MovieStar))))
⇝
optimisation

πtitle(StarIn ⋊⋉starName=name πname(σbirthDate LIKE ‘%1960′(MovieStar)))
⇝
evaluation over tables (next time)

(Result) 293

The place of parsing and optimisation

294

Materials to read about query compilation and optimisation

1. Fundamentals of Database Systems by R. Elmasri and
S.B. Navathe (7th edition): Chapter 18 (beginning) and 19
(my lectures have different accents)

2. Database Systems: the Complete Book by H. Garcia-Molina,
J. Ullman & J. Widom (2nd edition): Section 16
(closer to my presentation)

3. etc.

295

Lecture Plan

1. Parsing

2. Compilation

3. Optimisation: Overview

4. Optimisation: Cost Function

5. Optimisation: Heuristics

296

1. Parsing

Parsing: overview

Parsing transforms an SQL (SELECT) query to a parse tree—

that is, from SELECT title FROM StarsIn WHERE ... to

Parse tree:

– inner nodes are syntactic categories for parts of the query
– leaves are primitive atoms representing keywords, names,

constants, parentheses, operators, etc.

Parsing is done by standard techniques using a (context-free)
grammar for SQL (see details in a Compiler Book) 297

Excerpt of SQL (DQL) grammar in BNF

<Query> ::= <SFW> | "(" <Query> ")" | <Query> "UNION" <Query> | ...

<SFW> ::= "SELECT" (<SelList>|"*") "FROM" <FromList> ["WHERE" <Condition>]
["GROUP BY" ... ["HAVING" ...]] ["ORDER BY" ...]

<SelList> ::= <Attribute> | <Attribute> "," <SelList> | ...

<FromList> ::= <Relation> | <Relation> "," <FromList> | ...

<Condition> ::= <Condition> "AND" <Condition> | "NOT" <Cond> |
<Attribute> "IN" <Query> | <Attribute> "=" <Attribute> | ...

...

<Attribute>, <Relation> ::= ... (parse to strings of symbols)

...

298

Parsing: Example

SELECT title FROM StarsIn WHERE starName IN

(SELECT name FROM MovieStar WHERE birthDate LIKE ‘%1960’);

parses to

299

Resolving names and type checking

Besides building the tree, several checks is done using
the System Catalog:

– resolving names: checking that all the tables and attributes
exist (and, if successful, linking them)

– type checking: all operations in expressions are well-typed

Both building the tree and the checks can fail

300

2. Compilation

Query compilation: Idea

Converts (i.e., ‘compiles’) the parse tree to an RA expression,
called initial (logical) query plan:

⇝

Note 1: I use tree-like representation for the RA expression
(natural and intuitive)

Note 2: I use the relation names instead of full relations
(for brevity) 301

Query compilation: Subquery-free case

Compilation without subqueries is direct
For example, the parse tree for

SELECT Atts FROM Table1, . . . , TableM WHERE C

with Table1, . . . , TableM without common attributes compiles as

– replace Table1, . . . , TableM with
(. . . (Table1 × Table2) × . . .) × TableM in the tree

– apply selection σC (. . .) to the product
– apply projection πAtts(. . .) to the selection

If Table1, . . . , TableM have common attributes, we need renaming

Note: INNER JOIN ... ON ..., OUTER JOIN ... ON ... make
two copies of join attributes; need care when compiling to ⋊⋉C , ▷◁

302

Query compilation: Subquery-free example

SELECT name FROM MovieStar WHERE birthDate LIKE ‘%1960’

⇝

⇝

303

Compiling queries with subqueires

Recall: FROM clause may mention sub-SELECT

Recall: conditions in WHERE clause can also have subqueries:
SELECT ... WHERE ... EXISTS(SELECT ...) ... ;

SELECT ... WHERE ... (Att1, ..., AttN) op SOME(SELECT ...) ... ;

SELECT ... WHERE ... (Att1, ..., AttN) op ALL(SELECT ...) ... ;

here, op is one of =, >=, >, . . .

SOME(...) has synonym ANY(...)

= SOME(...) has synonym IN(...)

Can be correlated: subquery can use attributes from the outside

Compiling subqueries is more challenging,
especially with correlated attributes (but always possible)

304

Non-correlated IN-subqueries

SELECT title FROM StarsIn WHERE starName IN

(SELECT name FROM MovieStar WHERE birthDate LIKE ‘%1960’);

⇝

⇝

Alternatively:
πtitle(StarsIn ⋉ (πname→starName(σbirthDateLIKE ‘%1960′(MovieStar))))

305

Other non-correlated subqueries

Subqueries with NOT IN are symmetric:

SELECT title FROM StarsIn WHERE starName NOT IN

(SELECT name FROM MovieStar WHERE birthDate LIKE ‘%1960’);
⇝

πtitle(StarsIn ▷ (πname→starName(σbirthDateLIKE ‘%1960′(MovieStar))))

If a condition with a subquery is a sub-condition of a complex Boolean
expression, it can be isolated:

SELECT title FROM StarsIn WHERE (starName NOT IN

(SELECT name FROM MovieStar WHERE birthDate LIKE ‘%1960’)) AND Cond;
⇝

πtitle(σCond(StarsIn) ▷ (πname→starName(σbirthDateLIKE ‘%1960′(MovieStar))))

Other (non-correlated) sub-queries are similar (incl. subqueries in FROM)

306

Correlated subqueires by copying

For correlated subqueries, we may create a copy of the outer table
in the subquery:

SELECT Person.name FROM Person
WHERE EXISTS(SELECT * FROM Address

WHERE Person.name = Address.name);
⇝

πPerson.name(Person⋉ (σPerson.name=Address.name(Person× Address))

307

Correlated subqueires by postponing selection

Alternatively, we may postpone the selection

Example: Movies with average age of starring actors at most 40

⇝

308

3. Optimisation: Overview

Optimisation: Idealistic goal

Given a query plan (RA expression) Expr, our idealistic goal is to
find another query plan Expr’ such that

– Expr and Expr’ give the same answer over the given tables
– Expr’ can be evaluated as quick as possible
– finding Expr’ and ensuring the first two conditions is also quick

There are few serious (in fact, usually crucial) obstacles

– search space for Expr’ is huge (actually, infinite)
– in general, the only way to guarantee that some Expr’ can be

evaluated quicker than some other Expr is to evaluate both
and measure time

– by the way, without the last condition, Expr’ is obvious:
expression constructing the result of Expr (ignoring relations)

309

Optimisation: Pragmatic approach

Given a (logical) query plan (RA expression) Expr, DBMSs
pragmatically find another query plan Expr’ such that

– Expr and Expr’ are equivalent (i.e., same answer for all tables)
– Expr’ is estimated to be quicker than other candidates

(for the given tables)
– finding candidate Expr’ and estimation is quick

This approach is based on two components:

1. good cost function f for query plans that is quick to compute
and reflects evaluation time (i.e., f(Expr’) ≤ f(Expr) in most
cases means that Expr’ is quicker to evaluate than Expr)

2. good heuristic (usually based on RA algebraic laws) that allows
to quickly construct (one or several) candidate Expr’ with
(much) better cost 310

Optimisation: Example

SELECT B, C, Y FROM R, S WHERE W=X AND A=3 AND Z=’a’

311

Candidate 1: Initial query plan

SELECT B, C, Y FROM R, S WHERE W=X AND A=3 AND Z=’a’
compiles to initial plan
πB,C ,Y (σW=X & A=3 & Z=‘a’(R × S))

×⇝ σ,π⇝

Intuitively, cannot be the most efficient 312

Candidate 2: Pushing selection down

Initial plan πB,C ,Y (σW=X & A=3 & Z=‘a’(R × S))

transforms, by pushing selection and theta-join definition laws, to
another plan πB,C ,Y ((σA=3(R) ⋊⋉W=X σZ=‘a’(S)))

σ,σ⇝ ⋊⋉W=X⇝ π⇝

Looks better, especially, if we use indexes on A in R and Z in S

313

Candidate 3: More fine-grained

Candidate 1 (initial): πB,C ,Y (σW=X & A=3 & Z=‘a’(R × S))

Candidate 2: πB,C ,Y ((σA=3(R) ⋊⋉W=X σZ=‘a’(S)))

Candidate 3: πB,C ,Y ((σA=3(R) ⋊⋉W=X σZ=‘a’(S ⋉W=X σA=3(R))))

(here, ⋉W=X is ‘equi-semi-join’, naturally expressible via ρ and ⋉)

σ,⋉⇝ σ,⋊⋉W=X⇝ π⇝

More operations, but quicker

,
especially, if we use indexes on A in R and X (not Z !) in S 314

4. Optimisation: Cost function

Cost function requirements

Recall: We need cost function f such that
f(Expr’) ≤ f(Expr) in most cases means that

plan Expr’ is quicker to evaluate than plan Expr

Evaluation time is spent for

– reading and writing to the secondary memory (e.g., disk I/O)
– evaluating RA operations in the main memory

Real DBMS (advanced) cost functions take into account:

– (potentially different) evaluation time for operations (using
algorithms discussed in the next lecture)

– indexes that decrease the number of reads (we know)
– reusing intermediate results (e.g., as in Candidate 3 above)
– pipelining intermediate results (tuples) from one operation to

another without writing back to the disk 315

Our cost function

We take as our cost function:
the sum of estimates of sizes (in bytes) of the intermediate results
(i.e., subexpressions) of the plan (i.e., the RA expression)

– estimate, because exact may be difficult to compute
(our estimate is computed as described below)

– intermediate, because the inputs and the outputs are the same

– reflects the most important thing above: the number of disk I/O (number
of used blocks is roughly proportional to the size of a relation)

– compositional: knowing estimates for immediate sub-plans, we can
quickly compute the estimate for the plan (e.g., if we know the size
estimates of Expr and Expr’, we can estimate the size of Expr ⋊⋉ Expr’)

– quick to compute

Essentially, we assume that each operation is executed in negligible
time and in isolation, and all the time is spent in reading all
arguments (in whole) of each operation from the disk and writing
the result back 316

Before we go: Example

Numbers are estimates(!) of subquery sizes
(e.g., 16000 may not be the real size of the overall answer,

may be different on two sides, and not counted anyway)

Our cost of the left plan: 2,000+400+32,000 = 34,400

Our cost of the right plan: 2,000+400+16,000,000+32,000 = 16,034,400

Reflects our intuition: good cost function (at least for this case)
317

Notation

Thus, our main metric, for a (base or subquery) relation R :

Size(R) – (estimation of) the size of R in bytes
(i.e., the main component of our cost, which is the sum of sizes)

To estimate Size(R) by induction by the query structure,
we will also maintain secondary metrics:

Tups(R) – (estimation of) the number of tuples in relation R

TupSize(R) – the (average) size of a tuple in R

as a result, we have Size(R) = Tups(R) ∗ TupSize(R)

Vals(R.A) – (estimation of) the number of different values of
attribute A in R

real DBMSs use histograms instead (we will discuss them later) 318

Metrics for the base case: Statistics of physical relations

To compute costs for complex plans by induction, we need to start
with statistics—that is, Size(R), Tups(R), TupSize(R), Vals(R.A),
etc., for the base database relations R

Computing statistics may be expensive, and doing it after each
update may be prohibitively costly

However, we do not need the exact values every time we estimate
the cost of a plan, some inaccuracies is not a problem

System can recompute statistics only time to time
(automatically or manually)

319

Metrics for inductive case: Bag projection

Assuming uniform size of tuples (i.e., no VARCHAR, etc.),
the size and almost all secondary metrics for bag (generalised)
projection πb

L(R) can be calculated accurately from metrics for R ,
(due to bag semantics, one result tuple for each argument tuple):

– Tups(πb
L(R)) = Tups(R)

– TupSize(πb
L(R)) is defined by L

– Size(πb
L(R)) = Tups(πb

L(R)) ∗ TupSize(πb
L(R))

– Vals((πb
L(R)).A) = Vals(R.A) if A is an attribute in R

– Vals((πb
Expr→A, ... (R)).A) depends on Expr ;

by default, can be estimated as
max(Vals(R.A1), . . . ,Vals(R.An)) where A1, . . . ,An are all
different attributes of R mentioned in Expr

(We will cover set projection with duplicate elimination) 320

Metrics for bag projection: Example

Relation R : Statistics of R :
– Tups(R) = 5

– TupSize(R) = 4 + 20 + 4 + 10 = 38
(INT(4) + CHAR(20) + INT(4) + CHAR(10))

– Size(R) = 5 ∗ 38 = 190

– Vals(R.A) = 5, Vals(R.B) = 2,
Vals(R.C) = 4, Vals(R.D) = 3

S = πb
A+10→Aplus,B,A+C→AC (R):

– Tups(S) = 5

– TupSize(S) = 4 + 20 + 4 = 28

– Size(S) = 5 ∗ 28 = 140

– Vals(S .Aplus) = 5, Vals(S .B) = 2 (both exact),
Vals(S .AC) = 5 (estimation, 4 in reality)

321

Metrics for inductive case: Selection (overview)

The size of selection σCond(R) is much more difficult to estimate:

– TupSize(σCond(R)) = TupSize(R) (easy)
– so, Size(σCond(R)) = Tups(σCond(R)) ∗ TupSize(σCond(R))

relies on estimation of Tups(σCond(R))

– we consider different types of Cond separately

– by default, we naively assume uniform and independent
distribution of Vals(R.A) across relevant R.A

– real DMBSs use histograms for much better estimations
– estimation of all Vals((σCond(R)).A) with A mentioned in
Cond can be done similarly to Tups (try it by yourself);
for other attributes A we can take
Vals((σCond(R)).A) = Vals(R.A) ∗ Tups(σCond(R))/Tups(R)

322

Metrics for inductive case: Selection (atomic comparisons)

Estimating Tups(σCond(R)) for atomic Cond :

– equality to a constant:
Tups(σA=c(R)) = Tups(R)/Vals(R.A) (may be not integer!)

– inequality to a constant:
Tups(σA ̸=c(R)) = Tups(R) ∗ (1 − 1/Vals(R.A)) (or just Tups(R))

– comparison to a constant:
Tups(σA<c(R)) = Tups(R)/3 (or just Tups(R)/2)

– equality of attributes:
Tups(σA=B(R)) = (Tups(R)/max(Vals(R.A),Vals(R.B))

– inequality of attributes:
Tups(σA ̸=B(R)) = Tups(R) ∗ (1 − 1/max(Vals(R.A),Vals(R.B)) (or . . .)

– comparison of attributes:
Tups(σA<B(R)) = Tups(R)/3 (or just Tups(R)/2)

– comparisons with functions:
Tups(σf (A1,...,An) op g(B1,...,Bn)(R)) = . . .

323

Metrics for atomic selection: Examples

Relation R : Statistics of R :
– Tups(R) = 5

– TupSize(R) = . . .

– Size(R) = . . .

– Vals(R.A) = 5, Vals(R.B) = 2,
Vals(R.C) = 4, Vals(R.D) = 3

Estimates of the number of tuples:

– Tups(σA=4(R)) = 5/5 = 1 (real: 1),
Tups(σA ̸=4(R)) = 5 ∗ (1 − 1/5) = 4 (4),
Tups(σA<4(R)) = 5/3 = 1.66 (3)

– Tups(σB=‘cat’(R)) = 5/2 = 2.5 (3),
Tups(σB ̸=‘cat’(R)) = 5 ∗ (1 − 1/2) = 2.5 (2)

– Tups(σA=C (R)) = 5/5 = 1 (0),
Tups(σA ̸=C (R)) = 5 ∗ (1 − 1/5) = 4 (5),
Tups(σA<C (R)) = 5/3 = 1.66 (5) 324

Metrics for inductive case: Selection (Boolean combinations)

Estimating Tups(σCond(R)) for Boolean combinations of
conditions:

– AND: Tups(σCond1&Cond2(R)) = Tups(σCond1(σCond2(R))) =

Tups(σCond2(σCond1(R))) = Tups(R) ∗ factorCond1 ∗ factorCond2
(assumes independence)

– NOT: Tups(σ¬Cond′(R)) = Tups(R)− Tups(σCond′(R))

– OR: Tups(σCond1∨Cond2))(R)) = Tups(σ¬(¬Cond1&¬Cond2))(R)) =

Tups(R) ∗ (1 − (1 − factorCond1) ∗ (1 − factorCond2))

(assumes independence)

325

Metrics for selections with Boolean combinations: Examples

Relation R : Statistics of R :
– Tups(R) = 5

– TupSize(R) = . . .

– Size(R) = . . .

– Vals(R.A) = 5, Vals(R.B) = 2,
Vals(R.C) = 4, Vals(R.D) = 3

Estimates of the number of tuples:

– Tups(σA=4& B=‘cat’(R)) = 5 ∗ 1/5 ∗ 1/2 = 0.5 (real: 1),
Tups(σA ̸=4& B ̸=‘cat’(R)) = 5 ∗ 4/5 ∗ 1/2 = 2 (2)

– Tups(σA=4∨ B=‘cat’(R)) = 5 ∗ (1 − (1 − 1/5) ∗ (1 − 1/2)) = 3 (3),
Tups(σA ̸=4∨ B ̸=‘cat’(R)) = 5 ∗ (1 − (1 − 4/5) ∗ (1 − 1/2)) = 4.5 (4)

326

Metrics for inductive case: Natural join (overview)

The size of natural join R ⋊⋉ S (and other joins) is also difficult:

– TupSize(R ⋊⋉ S) is the sum of sizes of distinct attributes in R and S

– so, Size(R ⋊⋉ S) = Tups(R ⋊⋉ S) ∗ TupSize(R ⋊⋉ S) relies on estimation of
Tups(R ⋊⋉ S)

– to estimate Tups(R ⋊⋉ S) and Vals((R ⋊⋉ S).A) for join attributes A we
rely on value containment assumption:
If A is an attribute in R and S such that Vals(R.A)≤Vals(S .A) then
every value of A in R appears in A of S (cf. foreign key)

– to estimate Vals((R ⋊⋉ S).A) for non-join attributes A we rely on value
preservation assumption:
If A is in R but not in S then Vals((R⋊⋉S).A)=Vals(R.A) (and symmetric
for A in S but not in R)

– real DMBSs use histograms for much better estimations

– other joins are expressible, and we can use the defining laws for estimation

327

Metrics for inductive case: Natural join (one join attribute)

Estimating R ⋊⋉ S with one join (i.e., common) attribute A

(using these two assumptions):

– if Vals(R.A)≤Vals(S .A) then each tuple in R will match
approximately Tups(S)/Vals(S .A) tuples in S

– thus, in general, Tups(R ⋊⋉ S) =

Tups(R) ∗ Tups(S)/max(Vals(R.A),Vals(S .A))

– Vals((R ⋊⋉ S).A) = min(Vals(R.A),Vals(S .A))

– Vals((R ⋊⋉ S).A′) = Vals(R.A′) for each non-join A′ in R

– Vals((R ⋊⋉ S).A′) = Vals(S .A′) for each non-join A′ in S

328

Metrics for natural join: Example 1

Relations R and S : Statistics of R and S :
– Tups(R) = 9, Tups(S) = 9

– TupSize(R) = . . ., TupSize(S) = . . .

– Size(R) = . . ., Size(S) = . . .

– Vals(R.A) = 6, Vals(R.X) = 7,
Vals(S .X) = 9, Vals(S .Z) = 3

Estimates (all correct, since essentially primary & foreign keys):

– Tups(R ⋊⋉ S) = Tups(R) ∗ Tups(S)/max(Vals(R.X),Vals(S .X)) = 9
(real: 9)

– Vals((R ⋊⋉ S).X) = min(Vals(R.X),Vals(S .X)) = 7 (7)
– Vals((R ⋊⋉ S).A) = Vals(R.A) = 6 (6)
– Vals((R ⋊⋉ S).Z) = Vals(S .Z) = 3 (3) (these may be different even with

the keys)
329

Metrics for natural join: Example 2

Relations R and S : Statistics of R and S :
– Tups(R) = 9, Tups(S) = 9

– TupSize(R) = . . ., TupSize(S) = . . .

– Size(R) = . . ., Size(S) = . . .

– Vals(R.A) = 6, Vals(R.X) = 7,
Vals(S .X) = 9, Vals(S .Z) = 3

Estimates (no foreign key any more):

– Tups(R ⋊⋉ S) = Tups(R) ∗ Tups(S)/max(Vals(R.X),Vals(S .X)) = 9
(real: 8)

– Vals((R ⋊⋉ S).X) = min(Vals(R.X),Vals(S .X)) = 7 (6)
– Vals((R ⋊⋉ S).A) = Vals(R.A) = 6 (6)
– Vals((R ⋊⋉ S).Z) = Vals(S .Z) = 3 (3)

330

Metrics for inductive case: Natural join (many join attributes)

Estimating R ⋊⋉ S with several join attributes A1, . . . ,An

(using these two assumptions):

– applying the same logic, we have Tups(R ⋊⋉ S) =

Tups(R) ∗ Tups(S)
max(Vals(R.A1),Vals(S .A1)) ∗ . . . ∗max(Vals(R.An),Vals(S .An))

– for n = 0 we have Cartesian product:
Tups(R ⋊⋉ S) = Tups(R) ∗ Tups(S)

– Vals((R ⋊⋉ S).A) is as before:
min(Vals(R.Ai),Vals(S .Ai)) for each join Ai ,
Vals((R ⋊⋉ S).A′) = Vals(R.A′) for non-join A′ (in R)

331

Metrics for inductive case: bag-theoretic operations

Estimating metrics for bag union, intersection and difference:

– TupSize(R ∪b S), TupSize(R ∩ S), TupSize(R\S) are
inherited from the arguments

– Tups(R ∪b S) = Tups(R) + Tups(S) (always),
Vals((R ∪b S).A) = max(Vals(R.A),Vals(S .A)) +

min(Vals(R.A),Vals(S .A))/2 (a possibility for estimation)
– Tups(R ∩ S) = min(Tups(R),Tups(S))/2,
Vals((R ∩ S).A) = min(Vals(R.A),Vals(S .A))/2

(possible estimates)
– Tups(R\S) = Tups(R)− Tups(S)/2,
Vals((R\S).A) = Vals(R.A)− Vals(S .A)/2

(possible estimates)

– set-theoretic union can be estimated via duplicate elimination
(see below) 332

Metrics for inductive case: duplicate elimination and grouping

Estimating metrics for duplicate elimination:

– TupSize(δ(R)) and all Vals((δ(R)).A) are inherited from R

– Tups(δ(R)) is somewhere in between 1 and Tups(R), so we
can estimate as Tups(R)/2

– however, Tups(δ(R)) is also bounded by
Vals(R.A1) ∗ . . . ∗Vals(R.An) for A1, . . . ,An all attributes of R

– so, we can estimate
Tups(δ(R)) = min(Tups(R)/2,Vals(R.A1) ∗ . . . ∗ Vals(R.An))

Estimating metrics for grouping with aggregation:

– similar to duplicate elimination (write it down by yourself)
– the only new case is Vals((γAgg(A)→A′(R)).A′)):

we can take Tups(γAgg(A)→A′(R))/2 (i.e., every aggregate
value appears twice on average) 333

Histograms

We maintained the number Vals(R.A) of distinct values of each attribute A of
each R to estimate the size of selection and joins

Assumed uniform distribution of these values across the tuples in R

Real DBMSs uses more fine-grained histograms:

– simple histogram: number of tuples in R for each value of A

– advanced (when Vals(R.A) is large): number of tuples in R for intervals
of values of A (many techniques to pick the intervals)

– combination is also possible

Histograms allow us to compute the metrics (incl. Size(R)) more accurately

However, they are difficult to propagate estimations of histograms for complex
RA expressions (i.e., not in the the statistics of tables)

Often, a hybrid approach is used: histograms in the statistics, Vals(R.A) with
uniform distribution assumption for sub-plans 334

Plan costs: Come back to the example

σ,⋉⇝ σ,⋊⋉W=X⇝ π⇝

Plan 1 (initial): πB,C ,Y (σW=X & A=3 & Z=‘a’(R × S))

Plan 2: πB,C ,Y ((σA=3(R) ⋊⋉W=X σZ=‘a’(S)))

Plan 3: πB,C ,Y ((σA=3(R) ⋊⋉W=X σZ=‘a’(S ⋉W=X σA=3(R))))

(here, ⋉W=X is ‘equi-semi-join’, naturally expressible via ρ and ⋉)

Cost of Plan 2 (Size(σA=3(R)) + Size(σZ=‘a’(S)) + Size(. . . ⋊⋉W=X . . .)) is
clearly better than cost of Plan 1 (Size(R × S) + Size(σ...(R × S)))

Homework: compute and compare the costs of Plans 2 and 3

335

5. Optimisation: Heuristics

Searching for a plan with good cost

As we discussed, given an initial query plan (RA expression) Expr,
we have a huge search space of plans to compare with

DBMSs pragmatically find another query plan Expr’ such that

– Expr and Expr’ are equivalent (i.e., give the same answer on all possible
data instances)

– Expr’ is estimated to be quicker than other candidates using the cost
function (for us: sum of sizes of intermediate sub-queries in the plan)

They use greedy heuristic:

– starting from the initial Expr, they apply the algebraic laws one by one,
trying to decrease the cost on (almost) each step as much as possible

– stops with a selected plan when there are no more cost improvements

336

Common rules

The algebraic laws that (almost always) decrease our cost:

– Push selections as far down as possible

– If the selection condition consists of several parts (AND or
OR), split into multiple selections and push each one as far
down the tree as possible

– Push projections as far down as possible

– Combine selections and joins (especially, Cartesian products)
to appropriate theta-joins

– Apply idempotence as much as possible

Real DBMS cost functions are more fine-grained, and these rules
may be less universal (e.g., due to indexes)

337

Order of joins

One of the most important practical question for optimisation is the
order to join—that is, how to evaluate

(. . . (R1 ⋊⋉ R2) ⋊⋉ . . . ⋊⋉ Rn−1) ⋊⋉ Rn

Good estimates of intermediate results here are crucial for efficient
evaluation (and the difference may be huge)

In general, the search space (all possible orders of ()) is large

Luckily, such joins are usually not arbitrary: the join graph has
bounded (hyper-)tree width (check it out!)

Following the structure of the corresponding hyper-tree gives us an
efficient join order (good cost)

Even the choice between R1 ⋊⋉ R2 and R2 ⋊⋉ R1 is not trivial: the
join algorithms are not symmetric (but our cost function does not
distinguish these cases)

338

What we learned?

How DBMSs compile queries to RA plans and optimise to
presumably better plans

Next time: how plans are evaluated

339

IN3020&4020 – Database Systems (2024)
Part 1: Query Processing
Lectures 13, 14, 15: Query Evaluation

27 February, 4, 5 March

Egor V. Kostylev
IFI, University of Oslo
egork@ifi.uio.no

Big Picture (reminder)

Syllabus of the course:

– (Extended) Intro and SQL recap ✓

Part 1. Query processing in relational databases

Part 2. Transaction management in relational databases

Part 3. NoSQL DBMS

SQL query processing relies on two key ingredients:
Relational Algebra (✓) and Indexes (✓)

We have studied these ingredients (almost in isolation)
and now put all things together

347

SQL (DQL) query processor in action

SELECT DISTINCT title FROM StarsIn WHERE starName IN
(SELECT name FROM MovieStar WHERE birthDate LIKE ‘%1960′);⇝

parsing

(parse tree)
⇝
compilation

πtitle(σstarName=name(StarIn× πname(σbirthDate LIKE ‘%1960′(MovieStar))))

⇝
optimisation

πtitle(StarIn ⋊⋉starName=name πname(σbirthDate LIKE ‘%1960′(MovieStar)))
⇝
evaluation over tables

(Result) 348

The place of parsing and optimisation

349

Materials to read about query compilation and optimisation

1. Fundamentals of Database Systems by R. Elmasri and
S.B. Navathe (7th edition): Chapter 18
(my lectures have different accents)

2. Database Systems: the Complete Book by H. Garcia-Molina,
J. Ullman & J. Widom (2nd edition): Section 15
(much closer to my presentation)

3. etc.

350

Lecture Plan

1. Overview

2. Executing Basic Operations

3. Executing RA Operations

3.1. Unary Operations

3.2. Binary Operations

4. Summary

5. Query Plans in Real DBMSs

351

1. Overview

Physical Plans

Logical query plan: RA expression

Physical query plan: Logical query plan where an algorithm is
assigned to each operation

In principle, we may have a choice between several algorithms for an operation
with different incomparable characteristics (e.g., time consumption) and
requirements (e.g., necessary memory, presence of indexes, etc.)

Moreover, algorithms may be pipelined so that characteristics of two algorithms
together may be better than the sum of their characteristics in isolation

We used the size of the intermediate relations as costs of logical query plans,
which are an approximation of time consumption of the algorithms

More fine-grained costs take the concrete algorithms into account, and
estimate different physical plans rather than just logical plans

352

Algorithms for operations

For simplicity, in what follows we ignore this issue and assume that
we have a logical plan constructed

We will only study algorithms ‘in isolation’, sometimes several for
one operation (depends on available memory, indexes, etc.)

Before algorithms for the RA operations, we will consider
algorithms for basic operations (sorting, hashing, etc.)

– need them by themselves, e.g., as intermediate steps

– they are often the base for RA algorithms

353

Algorithms for operations: Assumptions and costs

Our (new) main cost: number of block I/O (reads and writes)

For each algorithm, we generally assume

– the operands are initially on the disk

– the result is written to output stream (with no cost)

– other costs can be ignored

– the tuples of a relation are clustered—that is, tightly packed in
blocks (no free space in a block for a new tuple, maybe
spanned or unspanned)

– when we use indexes, we ignore the cost of their retrieval

354

Notation

We use the following parameters:

MMBuffers – the size of the main memory, in blocks
(sometimes called buffers)

Blocks(R) – the number of blocks to store relation R on disk

Tups(R) – the number of tuples in relation R

Vals(R.A) – the number of different values of (one or several)
attributes A in R

(Tups(R) and Vals(R.A) are now exact, not estimation)

355

2. Executing basic operations

Scanning a relation

Scanning a relation is the most simple: just to retrieve the whole
relation

– Table scan: no index used, blocks retrieved one by one
Cost: Blocks(R) disk I/O operations
(If clustered; otherwise, up to Tups(R), or even more)

– Index scan: Index (sparse or dense) is used
Cost: Blocks(R) disk I/O operations (the same)
(But may be used to retrieve a part of R quicker)

356

Sorting a relation

Sort scan reads a relation R and returns it in sorted order with
respect to a set of attributes Atts

– if R has an index of Atts, then it can be used to traverse the tuples in R

in the order
Cost: Blocks(R) (primary/clustering) or

Tups(R) (secondary) disk I/O operations

– if Blocks(R) ≤ MMBuffers (i.e., the whole R fits into the main memory),
we use an efficient sorting algorithm

Cost: Blocks(R) disk I/O operations

– if Blocks(R) > MMBuffers (i.e., R is too big to fit into memory), we use
a dedicated sorting algorithm that handles data in multiple passes

we consider two-phase multiway merge sort (TPMMS)
(has requirement

√
Blocks(R) ≤ MMBuffers,

but can be generalised to N-phase multiway merge sort)

357

Two-Phase Multiway Merge Sort (TPMMS): Phase 1

TPMMS Phase 1. Sort parts of R of size MMBuffers individually:

Repeat:
1. Fill all (MMBuffers) buffers with new blocks of R
2. Sort this part in the memory
3. Write the sorted result back to disk

Until all R is processed

Cost of Phase 1: 2 ∗ Blocks(R)

358

Two-Phase Multiway Merge Sort (TPMMS): Phase 2

TPMMS Phase 2. Merge all the sorted parts into one:

Repeat:
1. Read the first block from each part into buffers

(at most MMBuffers)
2. Find the smallest tuple over the first tuples in the buffers
3. Remove this tuple from the buffer; if the buffer is empty,

re-fill it with the next block from the same part
4. Put this tuple to the output buffer; if it is full, flush it

Until all parts in the main memory is empty

Cost of Phase 2: Blocks(R)

Total cost: 3 ∗ Blocks(R)
Requirement: Number of parts cannot be more than MMBuffers − 1:
Blocks(R)/MMBuffers ≤ MMBuffers − 1

so essentially
√
Blocks(R) ≤ MMBuffers 359

TPMMS: Example Phase 1

Let MMBuffers = 3

Consider Tups = 11 in Blocks = 6 (2 tuples per block):

5 . . .
14 . . .
8 . . .
1 . . .
6 . . .

10 . . .
13 . . .
12 . . .
4 . . .
2 . . .
3 . . .

read from
– 3 first blocks →

to buffers

5 . . .
14 . . .
8 . . .
1 . . .
6 . . .

10 . . .

– sort →

1 . . .
5 . . .
6 . . .
8 . . .

10 . . .
14 . . .

write to
– 3 first blocks →

from buffers

360

TPMMS: Example Phase 1

Let MMBuffers = 3

Consider Tups = 11 in Blocks = 6 (2 tuples per block):

5 . . .
14 . . .
8 . . .
1 . . .
6 . . .

10 . . .
13 . . .
12 . . .
4 . . .
2 . . .
3 . . .

read from
– 3 next blocks →

to buffers

13 . . .
12 . . .
4 . . .
2 . . .
3 . . .

– sort →

2 . . .
3 . . .
4 . . .

12 . . .
13 . . .

write to
– 3 next blocks →

from buffers

361

TPMMS: Example Phase 2

Let MMBuffers = 3

Consider Tups = 11 in Blocks = 6 (2 tuples per block):

1 . . .
5 . . .
6 . . .
8 . . .

10 . . .
14 . . .
2 . . .
3 . . .
4 . . .

12 . . .
13 . . .

read from
– first blocks →

of each part
to buffers

1 . . .
5 . . .
2 . . .
3 . . .

put
– smallest, 1, →

to output
buffer

5 . . .

2 . . .
3 . . .
1 . . .

→

362

TPMMS: Example Phase 2

Let MMBuffers = 3

Consider Tups = 11 tuples in Blocks = 6 (2 tuples per block):

1 . . .
5 . . .
6 . . .
8 . . .

10 . . .
14 . . .
2 . . .
3 . . .
4 . . .

12 . . .
13 . . .

. . . →

5 . . .

2 . . .
3 . . .
1 . . .

put
– smallest, 2, →

to output
buffer

5 . . .

3 . . .

1 . . .
2 . . .

– output →

5 . . .

3 . . . →

363

TPMMS: Example Phase 2

Let MMBuffers = 3

Consider Tups = 11 tuples in Blocks = 6 (2 tuples per block):

1 . . .
5 . . .
6 . . .
8 . . .

10 . . .
14 . . .
2 . . .
3 . . .
4 . . .

12 . . .
13 . . .

. . . →

5 . . .

3 . . .

put
smallest, 3,
to output

– buffer; →
refill from
2 part

5 . . .

4 . . .
12 . . .
3 . . .

→

364

TPMMS: Example Phase 2

Let MMBuffers = 3

Consider Tups = 11 tuples in Blocks = 6 (2 tuples per block):

1 . . .
5 . . .
6 . . .
8 . . .

10 . . .
14 . . .
2 . . .
3 . . .
4 . . .

12 . . .
13 . . .

. . .→

5 . . .

4 . . .
12 . . .
3 . . .

put
– smallest, 4, →

to output
buffer

5 . . .

12 . . .

3 . . .
4 . . .

– output →

5 . . .

12 . . . →

365

TPMMS: Example Phase 2

Let MMBuffers = 3

Consider Tups = 11 tuples in Blocks = 6 (2 tuples per block):

1 . . .
5 . . .
6 . . .
8 . . .

10 . . .
14 . . .
2 . . .
3 . . .
4 . . .

12 . . .
13 . . .

. . . →

5 . . .

12 . . .

put
smallest, 5,
to output

– buffer; →
refill from
1 part

6 . . .
8 . . .

12 . . .

5 . . .

– . . . and so on

366

Hash Partitioning

Partitions relation R to buckets according to hash function h

(applied to one or more attributes of R)

Condition: the number of hash values (i.e., buckets) is no more
than MMBuffers − 1

Uses one read buffer and (at most) MMBuffers − 1 buffers
associated to the hash values

Repeat:
1. If the read buffer is empty,

load the next block of R to the read buffer
2. For each tuple t in the read buffer

– add t to the bucket buffer h(t)
– if the bucket buffer is full, flush it to the output

Until all blocks of R are processed

Cost: Blocks(R) (or up to Tups(R) if not clustered) 367

Hash Partitioning: Example

Let MMBuffers = 3 and h(t) is Mod 2

Consider Tups = 11 in Blocks = 6 (2 tuples per block):

5 . . .
14 . . .
8 . . .
1 . . .
6 . . .

10 . . .
13 . . .
12 . . .
4 . . .
2 . . .
3 . . .

read
– first block →

to read buffer

5 . . .
14 . . .

– hash each → 5 . . .

14 . . .

→

368

Hash Partitioning: Example

Let MMBuffers = 3 and h(t) is Mod 2

Consider Tups = 11 in Blocks = 6 (2 tuples per block):

5 . . .
14 . . .
8 . . .
1 . . .
6 . . .

10 . . .
13 . . .
12 . . .
4 . . .
2 . . .
3 . . .

read
. . . – next block →

to read buffer

8 . . .
1 . . .
5 . . .

14 . . .

– hash →
each

5 . . .
1 . . .

14 . . .
8 . . .

– flush →
each

→

369

Hash Partitioning: Example

Let MMBuffers = 3 and h(t) is Mod 2

Consider Tups = 11 in Blocks = 6 (2 tuples per block):

5 . . .
14 . . .
8 . . .
1 . . .
6 . . .

10 . . .
13 . . .
12 . . .
4 . . .
2 . . .
3 . . .

read
. . . – next block →

to read buffer

6 . . .
10 . . .

– hash →
each

6 . . .
10 . . .

→ . . . and so on

370

3. Executing RA Operations

Algorithms: Overview

Classes based on approach:

– Sort-based (always work)

– Hash-based (relies on a good hash function)

– Index-based (relies on indexes)

Classes based on memory requirements:

– One-pass: data fits into the main memory,
read once

– Two-pass: data does not fit into the memory,
but two passes are enough

– N-pass, N ≥ 3: recursive generalisation to more memory,
several passes (mostly omitted below)

371

3.1. Unary operations

Tuple-at-a-time operations: Selection and Projection

Selection σCond(R) and projection πL(R) process each tuple of R in
isolation, so they have simple algorithms, regardless of Blocks(R):

Repeat:
1. Retrieve the next relevant block into a buffer

(use indexes if available and relevant)
2. Process tuples in the buffer one by one, output when relevant

Until all relevant blocks of R are processed

Cost (I/O reads):

– Blocks(R) for selection without index and projection
– for selection with index, depends on condition and index type

for example, ⌈Blocks(R)/Vals(R.A)⌉ on average
for A = c as Cond and primary/clastering index

Requirement: (just) 1 ≤ MMBuffers 372

Selection with secondary index: Example

Let Tups(R) = 20000, Blocks(R) = 1000

Cost of σA=c with index on A:

– for Vals(R.A) = 10 we have 1000/10 = 100 disk I/O

– for Vals(R.A) = 100 we have 1000/100 = 10 disk I/O

– for Vals(R.A) = 20000 (i.e., candidate key) we have
⌈1000/20000⌉ = 1 disk I/O

373

One-pass duplicate elimination

Duplicate elimination δ(R)

when it can be performed in main memory

Use one read buffer and other buffers to store the result

Repeat:
1. Retrieve the next block of R in the read buffer
2. For each tuple t in the read buffer,

search for the same tuple in the result buffers,
append if not found

Until all blocks of R are processed

Cost (I/O reads): Blocks(R)

Requirement: Blocks(δ(R)) ≤ MMBuffers − 1

374

Two-pass sort-based duplicate elimination

Duplicate elimination δ(R)

when it cannot be performed in the main memory

Sort-based algorithm: essentially TPMMS where duplicates are
eliminated before output

Phase 1: Sort parts of size MMBuffers individually with all
attributes as the sort key

Phase 2: Merge the parts eliminating duplicate tuples when
output

Cost: 3 ∗ Blocks(R)
Requirement:

√
Blocks(R) ≤ MMBuffers

375

Two-pass hash-based duplicate elimination

Duplicate elimination δ(R)

when it cannot be performed in the main memory

Hash-based algorithm: exploit that duplicates will have the same
hash value

Partition the relation into buckets, write buckets back to disk
Run one-pass duplicate elimination individually on each bucket

Cost: 3 ∗ Blocks(R)
Requirement: The size of each bucket (MMBuffers − 1 in total)
can’t be more than MMBuffers:
Blocks(R) ≤ MMBuffers ∗ (MMBuffers − 1)

so essentially
√
Blocks(R) ≤ MMBuffers

(Assuming equal distribution over buckets, i.e., good hash function)

The same bound as sort-based, but quite different approach 376

Grouping with Aggregation

Grouping and Aggregation γL is very similar to duplicate
elimination δ

One-pass: same idea, keep a tuple for each group in memory
Cost: Blocks(R)

Requirement: Blocks(γL(R)) ≤ MMBuffers − 1 (little more for AVG)

Sort-based two-pass: same idea, except that the sort key is the grouping
attributes
Cost : 3 ∗ Blocks(R)
Requirement:

√
Blocks(R) ≤ MMBuffers (approximately)

Hash-based two-pass: same idea, except that the hashed key is the grouping
attributes
Cost : 3 ∗ Blocks(R)
Requirement:

√
Blocks(R) ≤ MMBuffers

(assuming good hash function)

377

3.2 Binary operations

One-pass bag union

Bag union R ∪b S is essentially tuple-at-a-time

1. Retrieve and output all blocks of R one by one

2. Retrieve and output all blocks of S one by one

Cost: Blocks(R) + Blocks(S)

Requirement: MMBuffers ≥ 1

378

One-pass set union

Set union R ∪ S : need to eliminate duplicates

Keep the smaller of R and S in MMBuffers − 1 buffers, use the
other buffer to pass through the bigger one

Assuming Blocks(R) ≤ Blocks(S),
load all blocks of Blocks(R) into the MMBuffers − 1 buffers,
output all tuples in Blocks(R) blocks (keeping in buffers)

Repeat:
1. Retrieve the next block of S into the one buffer
2. For each tuple t of the S buffer,

search for t in the R buffers,
output t if not found

Until all blocks of S are processed

Cost: Blocks(R) + Blocks(S)

Requirement: min(Blocks(R),Blocks(S)) ≤ MMBuffers − 1 379

Two-pass sort-based set union

(Set) union R ∪ S

when it cannot be performed in the main memory

Sort-based algorithm: essentially duplicate elimination by TPMMS
for R ∪ S

Phase 1: Sort parts of R ∪ S of size MMBuffers individually
with all attributes as the sort key

Phase 2: Merge the parts eliminating duplicate tuples when
output

Cost: 3 ∗ (Blocks(R) + Blocks(S))

Requirement:
√
Blocks(R) + Blocks(R) ≤ MMBuffers

380

Two-pass hash-based set union

(Set) union R ∪ S

when it cannot be performed in the main memory

Hash-based algorithm: using that duplicates have same hash value

Partition R and S into buckets separately, write buckets to disk
Run one-pass set union for each pair of buckets with same value

Cost: 3 ∗ (Blocks(R) + Blocks(S))

Requirement: at most MMBuffers − 1 buckets (for both R and S),
min(Blocks(Ri),Blocks(Si)) ≤ MMBuffers − 1 for each bucket i :

essentially
√
min(Blocks(R),Blocks(S)) ≤ MMBuffers

(Assuming equal distribution over buckets,
and that one of R , S is smaller than the other in all buckets)

Better than sort-based, but with an essential assumption 381

Intersection and difference (set and bag)

Same ideas as for set union:

One-pass:
Cost: Blocks(R) + Blocks(S)

Requirement: min(Blocks(R),Blocks(S)) ≤ MMBuffers − 1

Two-pass sort-based:
Cost: 3 ∗ (Blocks(R) + Blocks(S))

Requirement:
√
Blocks(R) + Blocks(R) ≤ MMBuffers

Two-pass hash-based:
Cost: 3 ∗ (Blocks(R) + Blocks(S))

Requirement:
√
min(Blocks(R),Blocks(S))≤MMBuffers (almost)

(under the assumptions; note also that the bounds are symmetric
even for non-commutative difference)

382

One-pass natural join

Natural join R ⋊⋉ S

when the smaller relation fits to the main memory

Keep the smaller of R and S in MMBuffers − 1 buffers, use the
other buffer to pass through the bigger one:

Assuming Blocks(R) ≤ Blocks(S),
load all blocks of Blocks(R) into the MMBuffers − 1 buffers

Repeat:
1. Retrieve the next block of S into the one buffer
2. For each tuple t in the S buffer,

search for the tuples joining with t in the R buffers,
output all join results

Until all blocks of S are processed

Cost: Blocks(R) + Blocks(S)

Requirement: min(Blocks(R),Blocks(S)) ≤ MMBuffers − 1 383

Nested-loop natural join

Natural join R ⋊⋉ S

generalisation of one-pass

Apply one-pass join to the parts of the smaller of R and S

separately, using MMBuffers − 1 buffers:

Assuming Blocks(R) ≤ Blocks(S),
Repeat:

1. load the next MMBuffers − 1 blocks of Blocks(R)
into the MMBuffers − 1 buffers

2. apply one-pass join to these buffers and full S

Until all blocks of R are processed

Cost: Blocks(R) + Blocks(S) ∗ ⌈Blocks(R)/(MMBuffers − 1)⌉
Requirement: 2 ≤ MMBuffers

(essentially, no space requirement, but quadratic)
384

Two-pass sort-based natural join

Natural join R ⋊⋉ S via two-pass sorting

First sort separately, then join:

Sort R and S separately on the join attributes by TPMMS
Assign MMBuffers/2 buffers to R , same for S
Repeat:

1. fill empty R buffers with next R blocks, same for S
2. output all joined tuples with the smallest sort values,

delete contributing tuples

Until all blocks of R and S are processed

Cost: 5 ∗ (Blocks(R) + Blocks(S)) (4 passes for TPMMS, 1 for join)

Requirement 1:
√
max(Blocks(R),Blocks(S)) ≤ MMBuffers

Requirement 2: at most MMBuffers/2 blocks with the same join
value in each of R and S

385

Two-pass hash-based natural join

Natural join R ⋊⋉ S via hashing

Hash-based algorithm: using that duplicates have same hash value

Partition R and S into buckets separately hashing the join values

Run one-pass join for each pair of buckets with same value

Cost: 3 ∗ (Blocks(R) + Blocks(S))

Requirement: at most MMBuffers − 1 buckets (for both R and S),
min(Blocks(Ri),Blocks(Si)) ≤ MMBuffers − 1 for each bucket i :

essentially
√
min(Blocks(R),Blocks(S)) ≤ MMBuffers

(Assuming equal distribution over buckets,
and that one of R , S is smaller than the other in all buckets)

386

Two-pass hybrid hash-based natural join

Natural join R ⋊⋉ S via hashing with improvement

Improvement: Keep one bucket of smaller relation in main memory,
and join on the fly when hashing the larger relation
(assuming that the number of buckets allow this)

Cost: (3− 2MMBuffers/Blocks(R)) ∗ (Blocks(R) + Blocks(S))

(Cost of hash-based: 3 ∗ (Blocks(R) + Blocks(S)))

Homework: understand this advantage

Requirement: essentially√
min(Blocks(R),Blocks(S)) ≤ MMBuffers

(with same assumptions plus
number of buckets + size of the R bucket ≤ MMBuffers)

387

One index based natural join

Natural join R ⋊⋉ S using an index

Iterate over R, get relevant tuples of S using index on join attributes A:

Repeat:
1. read next blocks of R into MMBuffers − 1 buffers
2. for each tuple t in the buffers,

retrieve all tuples of S joining with t using index and last block
output joined tuples, remove t from the buffers

Until all blocks of R are processed

Cost (estimate) for clustered index (i.e., S is sorted on A):
Blocks(R) + Tups(R) ∗ ⌈Blocks(S)/Vals(S .A)⌉

Cost (estimate) for non-clustered index:
Blocks(R) + Tups(R) ∗ ⌈Tups(S)/Vals(S .A)⌉

Requirement: 2 ≤ MMBuffers

Useful only if R is small and Vals(S .A) is large
(e.g., A is a primary key for S) 388

Zig-zag (two index based) natural join

Natural join R ⋊⋉ S using two indexes

Join the indexes on the join attributes A for both R and S :

1. identify relevant blocks of R and S using the indexes

2. load the blocks with the same join values
and construct the output

Cost: at most Blocks(R) + Blocks(S) (as one pass)

Requirement: blocks for each join value (for R and S together)
should be at most MMBuffers

(an estimation formula can be written
via Vals(R.A) and Vals(S .A)

relying on the uniformity assumption)

389

Natural join algorithms: Comparison example

Natural join R ⋊⋉ S on a common attribute A,
both with clustered indexes

Statistics: Tups(R) = 10, 000, Blocks(R) = 1, 250, Vals(R.A) = 100

Tups(S) = 5, 000, Blocks(S) = 625, Vals(S .A) = 10

Cost (often estimation) Requirement for MMBuffers

One-pass 1875 626
Nested-loop 9375 2
Two-pass sort-based 9375 36
Two-pass hash-based 5625 25
Hybrid hash-based 5019 25
One index-based on S 625,000 2
One index-based on R 62,500 2
Zig-zag 1875 76

Note: cost of nested-loop and hybrid hash-join depends on MMBuffers;
we take MMBuffers = 101

390

4. Summary

Algorithms summary

One-pass: good, but applies generally when one argument fits into the memory

Two-pass: much lighter memory requirements

– Sort-based:
give sorted results, which can be utilised later

– Hash-based:
usually requires less memory (only the smaller counts)
relies on good hash function (equal distribution over buckets)

– Index-based:
requires indexes
great for selection
often efficient for join

N-pass: generalisation of two-pass for even bigger relations

391

N-pass algorithms

N-pass: generalisation of two-pass for even bigger relations

Example: Blocks(R) = 1, 000, 000

– TPMMS requires
√
Blocks(R) ≤ MMBuffers so

MMBuffers ≥ 1, 000
– for bigger R , two passes are not enough

N-PMMS sorting:

– recursive TPMMS
– Cost: (2N − 1) ∗ Blocks(R)
– Requirement: N

√
Blocks(R) ≤ MMBuffers

Similar ideas applies to hash-based algorithms

392

Back to query plans

Logical query plan: RA expression

Physical query plan: Logical query plan where an algorithm is
assigned to each operation

For simplicity, we assumed that we have a logical plan constructed,
and studies algorithms for RA operations ‘in isolation’ (often several
algorithms for one operation with different costs and requirements)

In reality, these costs are used to choose logical plans
(even more search space)

We may have problems with evaluation:
our algorithms rely on assumptions, which may not hold in reality,
and we may have to use another algorithm
(or even adapt the already running one loosing the performance) 393

5. Query plans in real DBMSs

Overview

Real DBMSs estimate costs based on their knowledge on the system
(block size, main-memory operation costs, etc.)

For example, in PostgreSQL the defaults are something like
seq_page_cost = 1
random_page_cost = 4
cpu_tuple_cost = 0.01
cpu_operator_cost = 0.0025
cpu_index_tuple_cost = 0.005

Usually updated automatically,
but sometimes can be manually changed (for estimation)

394

PostgreSQL query plans analysis

PostgreSQL has EXPLAIN command that provides information on
query plans and their costs (Play with it, see accessible manual at
https://wiki.postgresql.org/wiki/Using_EXPLAIN)

Example: EXPLAIN SELECT * FROM Post ORDER BY Body LIMIT 50;

Limit (cost = 23283.24..23283.37 rows = 50 width = 422)
-> Sort (cost = 23283.24..23859.27 rows = 230412 width = 422)
Sort Key: body
-> Seq Scan on post (cost = 0.00..15629.12 rows = 230412 width = 422)

Has parameters:

– VERBOSE: more information
– ANALIZE: also runs the query and compares plan with reality
– . . .

Quickly become unreadable, but there are visualisation tools
(e.g., http://tatiyants.com/pev/) 395

MySQL query plan analysis

Much less information

396

What have we learned in Part 1?

SELECT DISTINCT title FROM StarsIn WHERE starName IN
(SELECT name FROM MovieStar WHERE birthDate LIKE ‘%1960′);

⇝
parsing

(parse tree)
⇝
compilation

πtitle(σstarName=name(StarIn×πname(σbirthDate LIKE ‘%1960′(MovieStar))))
⇝
optimisation

πtitle(StarIn ⋊⋉starName=name πname(σbirthDate LIKE ‘%1960′(MovieStar)))
⇝
evaluation over tables

(Result) 397

IN3020&4020 – Database Systems (2024)
Part 2: Transaction management
Lectures 16–18: Transaction processing
concepts

11, 12, 18 March

Egor V. Kostylev and Martin Giese
IFI, University of Oslo
egork@ifi.uio.no

Big Picture (reminder)

Syllabus of the course:

– (Extended) Intro and SQL recap ✓

Part 1. Query processing in relational databases ✓

Part 2. Transaction management in relational databases

– Transaction processing concepts (3 lectures)

– Concurrency control techniques (3 lectures)

– Database recovery techniques (2 lectures)

Part 3. NoSQL DBMS

406

Materials to read about transaction management

Part 2. Transaction management in relational databases

Fundamentals of Database Systems by R. Elmasri and
S.B. Navathe (7th edition): Part 9 (close to my presentation)

– Transaction processing concepts (3 lectures)

Chapter 20

– Concurrency control techniques (3 lectures)

Chapter 21

– Database recovery techniques (2 lectures)

Chapter 22

Database Systems: the Complete Book by H. Garcia-Molina,
J. Ullman & J. Widom (2nd edition): Sections 6.6, 19

etc. 407

Lecture Plan

1. Motivation and introduction

2. Desirable properties of transactions (ACID)

3. Transactions, schedules, and conflicts

4. Characterising schedules based on serialisability

5. Characterising schedules based on recoverability

6. Isolation levels

408

1. Motivation and introduction

Introduction

– Transactions (informally):
mechanism for managing logical units of data processing:
independent on others, all or nothing

– Examples:
- a single data retrieval query
- a sequence of data manipulation queries that should be

executed together

– Transaction management (or processing) systems:
systems with large databases and many concurrent users
require high availability and fast response time

– Examples:
- banking, airline booking, online retail, stocks

409

Single-user vs multi-user, challenges

– Single-user DBMS:
at most one user at a time

(usually, personal computer)
– Multi-user DBMS:

many users (processes with own computation)
with concurrent access to the same data

(usually, servers with many CPUs,
but may be handled by one CPU

with interleaving concurrency)

Both need transaction management, with two challenges:

– concurrency control (transactions independent of each other)
– fail recovery (each transaction executed all or nothing)

410

The place of transaction management

411

Transaction idea

Transaction (informally):

– program that forms a logical unit of database processing

– has its own memory and computation ability

– includes one or more access operations to (shared) database
(e.g., retrieval, insertion, deletion)

– for us, usually a sequence of operations
(no branching, no cycles, etc.)

– boundaries can be specified by begin and end statements
(if something goes wrong on the way, effects roll back)

– an application program may have several transactions
(even parallel)

– may be read-only (only data retrieval) and read-write
412

Data items and granularity

In Part 2, we use a simple data model:
a database is a set of named data items

– can be a tuple (record), block, attribute value

– can be uniquely identified by name (address, tuple ID, etc.)

– can be read and written by name

Item granularity:

– the size of a data item

Transaction processing concepts are
independent of item granularity

413

Main transaction operations

read(X)
– reads an item named X from the global database into a local

program variable named X

– includes finding the address of the block on the disk (or in cache)
with X , and copying to a main memory buffer

write(X)
– writes the value of local program variable named X into the global

database item named X

– includes finding the address of the block on the disk (or in cache)
with X , read it to the local memory buffer, modify it, and write it
back (to the disk or cache)

Program local operations (for example, update X := X + 50)

We will see other (transaction management) operations later
414

Example transactions

Let X and Y be the numbers of reserved seats in two flights
(stored in a database)

Transaction T1 transfers N reservations from X to Y

Transaction T2 reserves M seats in X

Important:
– updates are local, the (only) database is not updated until the

new value is written
– some commands are often omitted if they are not relevant

(both local and transaction management) 415

Why concurrency control is needed?

Potential concurrency control problems (or phenomena):

1. Dirty write (or lost update)

2. Dirty read (or temporary update)

3. Non-repeatable read

4. Incorrect summary (or phantom phenomena)

5. . . .

(Other variations of these problems can be found in the literature)

416

Example transactions

Let X and Y be the numbers of reserved seats in two flights

Transaction T1 transfers N reservations from X to Y

Transaction T2 reserves M seats in X

What can go wrong when interleave these transactions?
417

Dirty write (lost update)

Two transactions update (read and write) the same item,
second update starts before the first is complete

(updates are interleaved)

Result: incorrect value (update is lost)

418

Dirty read (temporary update)

A transaction updates an item,
new value is used by another transaction,
the first transaction fails (see below) and its update is rolled back

Result: the second transaction relies on an incorrect value

419

Non-repeatable read

One transaction reads the same item twice,
another transaction changes its value in between

Result: the first transaction gets different values of the same item

420

Incorrect summary (Phantom phenomena)

One transaction calculates an aggregate summary,
while other transactions update some involved items

Result: the aggregate is inconsistent

421

Why recovery is needed?

Transaction idea (reminder):

– program that forms a logical unit of database processing
– includes one or more database access operations

(e.g., retrieval, insertion, deletion)
– boundaries can be specified by begin and end statements

(if something goes wrong, effects roll back)

Should be either

– Committed:
evaluated in full and all effects permanently recorded

– Aborted:
no effect on the database (everything done rolled back)

Should take into account and use cache and log
(which we will introduce later) 422

Why recovery is needed?

Types of failures:

– Computer failure (system crash):
hardware, software, network errors

– Transaction failure:
division by zero, integrity constraint violation, user interrupt, etc.

– Local transaction errors:
no data found, programmed exception, etc.

– Concurrency control enforcement:
serialisability violation, deadlock resolving, etc.

– Disk failure:
errors with disk reads or writes

– Physical problems:
power cut, fire, catastrophe, etc. 423

Main goal of Part 2

To develop a principled machinery (formalise concepts, develop
algorithms, etc.) for transaction management system:

– concurrency control subsystem

– fail recovery subsystem

424

2. Desirable properties:
ACID principles

ACID properties

ACID:

– Atomicity
Transaction performed in its entirety or not at all

– Consistency
The database should always remain consistent

– Isolation
Transaction should not interfere with other transactions

– Durability
Changes of committed transactions must persist

425

Atomicity

Atomicity: Transaction performed in its entirety or not at all

– ensured by transaction recovery subsystem of a DBMS

– the recovery technique must undo any effects
of a failed (aborted) transaction

– done by using the log and writing back the old values
(we will discuss the log and techniques)

– cooperation with concurrency control subsystem
is also necessary

426

Consistency

Consistency: The database should always remain consistent

– each transaction should bring database from one consistent
state to another consistent state

– consistent state (reminder): the database satisfies the integrity
constraints specified in the schema as well as any other
constraints on the database that should hold

– the responsibility of the database program
(i.e., the programmer)

– transactions can use abort instructions, leading to rollbacks
(handled by recovery subsystem)

427

Isolation

Isolation: Transaction should not interfere with other transactions

– ensured by the concurrency control subsystem

– ideally, we should avoid all problems (dirty writes and reads,
non-repeatable reads, phantoms, etc.)

– this may be too expensive (in terms of efficiency),
so often may be relaxed in one way or another
(isolation levels, we will see)

– one of the most difficult and interesting issues
for transaction management

428

Durability

Durability (or permanency): Changes of committed transactions
must persist

– ensured by the recovery subsystem

– after a crash, the log is used
to restore committed transactions and
roll back uncommitted ones

– cache complicates restoration

429

3. Transactions and schedules

Transactions

Transaction is a sequence of operations, an atomic unit of work

Structure of a committed (successful) transaction:

1. begin ← marks the beginning of transaction execution

2. one or several read(X), write(X), local operations (e.g., var
updates), transaction control operations (e.g., locks), etc.

3. end ← mark the end of transaction execution

4. one or several operations checking consistency, serialisability, etc.
5. commit ← successful completion, changes cannot be undone

Structure of an aborted (unsuccessful) transaction:
same beginning, but ends at any point with

N. abort ← unsuccessful completion, all changes must be undone

A partial transaction:
a beginning of one above (‘waiting’ for next operation) 430

Transaction notation

Transaction is a sequence of operations (not arbitrary)
– begin, end, commit,

abort, read(X), write(X), variable updates, etc.
– can be committed, aborted, or partial

(depending on the last operation)

Often we

– use abbreviations:
b, e, c, a, r(X), w(X) (var updates the same)

– omit operations irrelevant in the context
(in most cases, only r(X) and w(X) are relevant)

– when considering several transactions,
append transaction ids to operations:
b1, r1(X), r2(X), w3(X)

431

Example transactions

Let X and Y be the numbers of reserved seats in two flights

(Some operations are already omitted here)

May be written as
T1: r1(X), w1(X), r1(Y), w1(Y)

T2: r2(X), w2(X)

432

Schedules

Schedule (or history, execution plan) S of transactions T1, . . . ,Tn:
a (total) ordering of the operations of T1, . . . ,Tn

– operations of different transitions can interleave
– operations of each Ti are in the same order as in Ti

Complete schedule: all T1, . . . ,Tn are committed or aborted

Example: Sa: r1(X), r2(X), w1(X), r1(Y), w2(X), w1(Y)

Example (complete): Sb: r1(X), w1(X), r2(X), w2(X), r1(Y), a1, c2 433

4. Characterising schedules based
on serialisability

Serialisability informally

For isolation (transaction should not interfere with other
transactions), we need to be able to ensure that all transactions of
a schedule are executed correctly

We will characterise the types of schedules
that are considered to be correct:

serial, (conflict-)serialisable, view-serialisable

434

Serial schedules

Serial schedule intuitively: no interleaving

Serial schedule: no transaction begins when there is an active
(non-committed and non-aborted) transaction
(i.e., all the operations of every transaction are executed consecutively,

and only one transition at a time is active)

A: r1(X), w1(X), r1(Y), w1(Y), c1, r2(X), w2(X), c2

B: r2(X), w2(X), c2, r1(X), w1(X), r1(Y), w1(Y), c1

Every serial is considered correct

Limit (essentially no) concurrency: unacceptable
435

Serialisable schedules

Serialisable schedule: equivalent to a serial schedule

We need to define transaction equivalence

Examples:

C should not be serialisable, D should be

Most common is conflict equivalence (in two slides),
but there are other possibilities 436

Naive approaches to equivalence

Naive approaches to equivalence:

– result equivalence:
two schedules give the same result on the current database

– semantic equivalence:
two schedules give the same result on all possible databases

Question: What are the problems with these approaches?

We will develop syntactic notions of equivalence, which guarantee
semantic (and hence result) equivalence. The first and the main is
based on the notion of a conflict.

437

Conflicts

Intuitively: a conflict is a pair of operations in a schedule such that

– they are from different transactions
– flipping them can result in a different outcome

Formally: two operations in a schedule is

– a read-write conflict if they are ri (X) and wj(X) with i ̸= j (in any order)
– a write-write conflict if they are wi (X) and wj(X) with i ̸= j

Examples:

– r1(X), r2(X), w1(X), r1(Y), w2(X), w1(Y)

– r1(X), w1(X), r2(X), w2(X), r1(Y), a1

– r1(X), w1(X), r2(X), w2(X), r1(Y), a1

(You may sometimes see intra-transaction conflicts in literature,

but we do not need them in our formalisation)

Misleading name: Nothing wrong per se! 438

Conflict equivalence

Two schedules are conflict equivalent if

– they are schedules of the same transactions
– if the relative order of every two conflicts (read-write,

write-write) is the same in both schedules

(Conflict-)serialisability: serialisability based on conflict equivalence

Schedule C is not (conflict-)serialisable
Schedule D is serialisable (equivalent to T1;T2)

439

Testing for serialisability

Simple algorithm for testing serialisability of a schedule S

1. Construct precedence graph of a S :

– nodes: transactions in S

– (directed) edges: conflict pairs of operations
(from the earlier to the later)

(i.e., operations from different transactions
one of which is write)

2. Return serialisable if and only if
the precedence graph has no cycles

440

Sanity check examples

Serial schedules (obviously) have acyclic precedence graph

(Labels X are not essential, just for reference) 441

More examples – 1

Non-serialisable and serialisable schedules:

442

More examples – 2

443

More examples – 3

444

View equivalence: Motivation

Serialisability based on conflict-equivalence is rather strong,
and can be relaxed

Example: r1(X), w2(X), w1(X), w3(X), c1, c2, c3

Not conflict-serialisable, but the effect is equivalent to serial
r1(X), w1(X), c1, w2(X), c2, w3(X), c3

(due to blind write w3(X))

445

View equivalence

Schedules S and S ′ are view equivalent if

– they are schedules of the same transactions

– each r(X) reads from the same place in S and S ′

(i.e., in both schedules either X has been previously written by the same
w(X) or not written at all)

– the last write of each X is also the same

View-serialisability: serialisability based on view equivalence

Example: r1(X), w2(X), w1(X), w3(X), c1, c2, c3

Each conflict-serialisable is view-serialisable
Each view-serialisable is semantic-serialisable (so result-serialisable)

Difficult to check view-equivalence (NP-complete)

By default, we rely on conflict-equivalence,
and ‘serialisability’ below means ‘conflict-serialisability’

446

Serialisability in concurrency control

Every serial schedule is serialisable, but not other way round

Serialisable schedules give benefit of concurrent execution without
giving up any correctness

Difficult to test for serialisability in practice (even
conflict-serialisability)

– system load, time of transaction submission, and process
priority affect ordering of operations

– often we need to ensure serialisability before the transactions
complete

DBMSs enforce concurrency control protocols that ensure
serialisability

447

5. Characterising schedules based
on recoverability

Recoverability informally

For durability (changes of committed transactions must persist),
we need to be able to recover schedules from transaction and
system failures

We will see techniques for this (in a couple of weeks),
but before this it is important to classify schedules
with respect to recoverability:

– impossible to recover
(we will see examples)

– possible to recover
recoverable (we will define formally and see examples)

– easy to recover
cascadeless, strict (we will define and see examples)

448

Recoverable schedules

Transaction T reads from (different) transaction T ′ in a schedule if
an item X is first written by T ′ and then read by T (and no
transactions write X in between)

Schedule S is recoverable if no transaction T in S commits until all
transactions T ′ such that T reads from T ′ have committed

Examples:

r1(X), r2(X), w1(X), r1(Y), w2(X), c2, w1(Y), c1

recoverable

r1(X), w1(X), r2(X), r1(Y), w2(X), w1(Y), c2, a1

non-recoverable

r1(X), w1(X), r2(X), r1(Y), w2(X), w1(Y), a1, c2

still non-recoverable

r1(X), w1(X), r2(X), r1(Y), w2(X), w1(Y), a1, a2

recoverable 449

Cascadeless schedules

Recoverable schedules may need cascading aborts (cascading
rollbacks) to recover—that is, an (non-committed) transaction has
to abort since it has read from another failed transaction

Example: r1(X), w1(X), r2(X), r1(Y), w2(X), w1(Y), a1, a2

This may affect many transactions, and rollbacks may be expensive

Cascadeless schedule idea: no cascade rollbacks

Cascadeless schedule: every transaction in the schedule reads only
from committed transactions
(i.e., for each r(X), X can be previously written by the same transaction,

written by another committed transaction or have not been written before)

Example:
r1(X), w1(X), r1(Y), r2(Z), w1(Y), c1, w2(Z), r2(X), w2(X), c2

450

Strict schedules

Cascadeless schedules may still have fairy complicated recovery
protocols, because we cannot just restore the values of all writes of
an aborted transaction

Example: w1(X), w2(X), a1

This may all affect many transactions (no cascades though)

Strict schedule: no transaction can read or write an item X until
the previous write of X is committed or aborted

Examples:
w1(X), c1, w2(X) w1(X), a1, w2(X)

451

Recovery hierarchy

Every strict schedule is cascadeless

Every cascadeless is recoverable

We will study recovery techniques for different types of schedules
in a couple of lectures

452

6. Isolation levels

Back to problems (phenomena)

Potential concurrency control problems (or phenomena):

1. Dirty write (or lost update): . . . r1(X), . . . , w2(X), . . . , w1(X) . . .

not conflict-serialisable

2. Dirty read (or temporary update): . . . w1(X), . . . , r2(X), . . . , a1 . . .

not recoverable

3. Non-repeatable read: . . . r1(X), . . . , w2(X), . . . , r1(X), . . .

not conflict-serialisable

4. Phantoms (incl. incorrect summary): . . . r1(X) . . . w2(Y) . . . r1(Y) . . .

where X and Y contribute to query of T1 in the same way
need to treat this by other mechanisms

453

Isolation levels

It is not always necessary to ensure no problems of all types

– in some applications we can tolerate some problems
– for the sake of more concurrency (i.e., efficiency)

Simple isolation level hierarchy of schedules
(and also transaction management protocols):

Level 0: no dirty reads
Level 1: no dirty writes
Level 2: no dirty reads, no dirty writes
Level 3 (true isolation): no dirty reads, no dirty writes,

no non-repeatable reads

A protocol that ensure
recoverable and serialisable schedules is Level 3 454

Isolation levels in SQL

SQL standard concentrate on
dirty reads, non-repeatable reads, and phantoms

Isolation levels in SQL (‘yes’ is allowed):

Note: SERIALIZABLE here is different from conflict-serialisable

(Real DBMSs do not always follow the standard:
for example, no dirty writes are usually also ensured)

455

SQL transaction language

SQL has a language for transactions
(systems may not follow the standard in all details)

Example:

Access mode: READ ONLY (only SELECT queries) or READ WRITE

Diagnostic size: number of statements with diagnostic messages

Note: need to handle schedules with transaction of different levels 456

What have we learned?

Basics of transaction management:

– ACID principles (Atomicity, Concurrency, Isolation, Durability)

– main concepts (transactions, schedules, conflicts)

– recoverable schedules (including cascadeless and strict)

– serialisable schedules (including conflict- and view-serialisable)

– isolation levels (several types)

In the rest of Part 2:

1. techniques for concurrency control

2. techniques for recovery

457

IN3020&4020 – Database Systems (2024)
Part 2: Transaction management
Lectures 19–21: Concurrency control
techniques

19 March, 2, 8 April

Egor V. Kostylev
IFI, University of Oslo
egork@ifi.uio.no

Big Picture (reminder)

Syllabus of the course:

– (Extended) Intro and SQL recap ✓

Part 1. Query processing in relational databases ✓

Part 2. Transaction management in relational databases

– Transaction processing concepts (3 lectures) ✓

– Concurrency control techniques (3 lectures)

– Database recovery techniques (2 lectures)

Part 3. NoSQL DBMS

465

Materials to read about transaction management

Part 2. Transaction management in relational databases

Fundamentals of Database Systems by R. Elmasri and
S.B. Navathe (7th edition): Part 9 (close to my presentation)

– Transaction processing concepts (3 lectures)

Chapter 20

– Concurrency control techniques (3 lectures)

Chapter 21

– Database recovery techniques (2 lectures)

Chapter 22

Database Systems: the Complete Book by H. Garcia-Molina,
J. Ullman & J. Widom (2nd edition): Parts of Section 18

etc. 466

Reminders – 1

Transaction is a sequence of operations (not arbitrary)
– begin, end, commit,

abort, read(X), write(X), variable updates, etc.
– we use abbreviations (b, e, c, a, r(X), w(X))
– we may omit operations (e.g., use only r(X) and w(X))
– we often append transaction ids (e.g., b1, r1(X), r2(X), w3(X))

– transactions read from and write to the common disk,
but have their own main memory

Can be committed, aborted or partial

Schedule (history, or execution plan) S of transactions T1, . . . ,Tn

is a (total) ordering of the operations of T1, . . . ,Tn

– operations of different transitions can interleave
– operations of each Ti are in the same order as in Ti

Complete schedule: all T1, . . . ,Tn are committed or aborted 467

Reminders – 2

ACID principles:

– Atomicity: Transaction performed in its entirety or not at all
– Consistency: The database should always remain consistent
– Isolation: Transaction should not interfere with others
– Durability: Changes of committed transactions must persist

We agreed to ensure isolation by enforcing (conflict-)serialisability:

– schedule is serial if no transaction begins when there is another active
(non-committed and non-aborted) transaction

– schedule is (conflict-)serialisable if it is (conflict-)equivalent to a serial one

– two schedules (of the same transactions) are conflict-equivalent if the
relative order of every two conflicts is the same in both

– a conflict is a pair of operations from different transactions at least one of
which is write

468

Ensuring serialisability in DBMSs

Naive approach:

– run all transactions in an arbitrary way
– construct the precedence graph in the process
– when done, check if the graph is acyclic
– abort and restart everything if not

Obvious drawbacks

Instead, DBMSs arrange transactions
(individually and in the schedule)
using concurrency control protocols (i.e., set of rules)
that ensure serialisation by construction

In this set of lectures, we consider such protocols

469

Lectures Plan

1. Serialisability via two-phase locking

1.1. Types of locks

1.2. Two-phase locking protocol

1.3. Deadlocks

2. Serialisability via timestamps

3. Multiversioning for concurrency control

4. Concurrency with multiple granularity

5. Other issues and conclusion

470

1. Two-phase locking
1.1. Types of locks

Locks

A lock: a variable associated with a data item

– unique LKD(X) for each data item X

– describes status for operations that can be applied

We will consider

– binary locks:
LKD(X) takes values locked or unlocked (or 1 and 0)

– shared/exclusive locks:
LKD(X) takes values read-locked, write-locked, or unlocked

These variables are managed by
concurrency control subsystem (transaction manager)

471

Binary locks

Binary locks:
for each item X, variable LKD(X) can have on of the two values:

– LKD(X) is locked (or 1) means that X is locked by a
transaction and cannot be accessed by any other transaction

– LKD(X) is unlocked (or 0) means that X is available and can
be accessed when requested

– schedules start with all unlocked

472

Binary locks in transactions

Transaction with binary locks: can use two operations lock(X) and
unlock(X) following several rules:

– all read(X) and write(X) must be between the two
– is well-formed: no unlocking without locking, etc.

These operations are implemented such that

– when lock(X) is issued
- if LKD(X) = 1, then the transaction is

forced to wait for LKD(X) = 0 (in the schedule)
- if LKD(X) = 0, it is set to 1 and the transaction can proceed

– when unlock(X) is issued, LKD(X) is set to 0

run by transaction manager (concurrency subsystem), see below

As a result, certain schedules are disallowed 473

Example: Transactions with binary locks

T1

lock(X);

read(X);

X := X − 1;
write(X);

unlock(X);

lock(Y);

read(Y);

Y := Y + 1;
write(Y);

unlock(Y);

T2

lock(X);

lock(Y);

read(X);

unlock(X);

X := X + 1;
lock(X);

write(X);

unlock(Y);

unlock(X);

T1 : l1(X), r1(X), w1(X), u1(X), l1(Y), r1(Y), w1(Y), u1(Y): Ok!

T2 : l2(X), l2(Y), r2(X), u2(X), l2(X), w2(X), u2(Y), u2(Y): Ok!

Note: T2 locks and unlocks X twice and locks Y without a need 474

Example: Transactions with binary locks 2

T1

lock(X);

read(X);

X := X − 1;
write(X);

unlock(X);

read(Y);

lock(Y);

Y := Y + 1;
write(Y);

unlock(Y);

T2

lock(X);

lock(Y);

read(X);

unlock(X);

X := X + 1;
lock(X);

write(X);

unlock(X);

T1 : l1(X), r1(X), w1(X), u1(X), r1(Y), l1(Y), w1(Y), u1(Y): Not ok

T2 : l2(X), l2(Y), r2(X), u2(X), l2(X), w2(X), u2(Y): Not ok

Note: T1 reads Y without locking, and T2 does not unlock Y 475

Example: Schedules with binary locks

S1 : l1(X), r1(X), u1(X), l2(X), r2(X), u2(X), l1(X), w1(X), u1(X)

Ok!

S2 : l1(X), r1(X), l2(X), u1(X), r2(X), u2(X), l1(X), w1(X), u1(X)

Ok!

S3 : l1(X), r1(X), l2(X), r2(X), u1(X), u2(X), l1(X), w1(X), u1(X)

Not ok (implementation of l2(X) is ‘broken’: should not allow to continue T2

with r2(X) before u1(X))

Note: locks (i.e., the rules and implementations as above)
do not guarantee serialisability by themselves;
we will see how they can be used to ensure serialisability

476

Lock table

Concurrency control subsystem of a DBMS has a lock manager
module that relies on a lock table:

– has schema [Data_item_name, Locking_transaction]

– keeps only locked items (others are unlocked)

Lock manager keeps track of and controls access to locks
by checking the rules for transactions and
enforcing allowed schedules (waiting, etc.)

Binary locking is too restrictive anyway
so before moving to the description of how they are used,
we consider more advanced locks

477

Shared/exclusive locks

Shared/exclusive (or read/write) locks idea: we can allow sharing
for several reading transactions (but still exclusive writes)

Shared/exclusive (or read/write) locks formally: for each item X

– LKD(X) is read-locked (or share-locked) means that X is read by a
transaction

– auxiliary numeric variable #READS(X) is maintained, which keeps the
number of reading transactions

– LKD(X) is write-locked (or exclusive-locked) means that X is exclusively
locked for writing by some transaction and cannot be accessed by others

– LKD(X) is unlocked means that X is available for access (with locking)

– schedules start with all LKD(X) = unlocked and #READS(X) = 0

Lock table stores this information appropriately
(maintained by lock manager)

478

Shared/exclusive locks transaction operations

Transaction with shared/exclusive locks: can use three operations
read_lock(X), write_lock(X) and unlock(X) with rules:

– each read(X) is after read_lock(X) or write_lock(X)
(with no unlock(X) in between)

– each write(X) is after write_lock(X) (with no unlock(X)
in between)

– each read_lock(X) and write_lock(X) has unlock(X) at
some point after

– no changing of lock type before unlocking;
that is, no read_lock(X) after write_lock(X) without
unlock(X) between

(this may be changed, see lock conversion below)

479

Implementation of read_lock

The routine that the transaction manager runs when it receives
read_lock(X) from a transaction:

480

Implementation of write_lock

The routine that the transaction manager runs when it receives
write_lock(X) from a transaction:

481

Implementation of unlock

The routine that the transaction manager runs when it receives
unlock(X) from a transaction:

482

Examples: Schedules with shared/exclusive locks

S1 : rl1(X), r1(X), u1(X), rl2(X), r2(X), u2(X), wl1(X), w1(X), u1(X)

Ok!

S ′
1 : rl1(X), r1(X), u1(X), rl2(X), r2(X), u2(X), rl1(X), w1(X), u1(X)

Not ok (write with read lock)

S ′′
1 : wl1(X), r1(X), u1(X), rl2(X), r2(X), u2(X), wl1(X), w1(X), u1(X)

Ok!

S3 : rl1(X), r1(X), rl2(X), r2(X), u1(X), u2(X), wl1(X), w1(X), u1(X)

Ok!

S ′
3 : rl1(X), r1(X), wl2(X), w2(X), u1(X), u2(X), wl1(X), w1(X), u1(X)

Not ok (implementation of wl2(X) is ‘broken’: should be exclusive)

S ′′
3 : rl1(X), r1(X), rl2(X), r2(X), u2(X), wl1(X), w1(X), u1(X)

Not ok (T1 is not following the rules: a second lock without unlocking)

483

Lock conversion

Transaction rule

– no changing of lock type before unlocking
(e.g., no read_lock(X) after write_lock(X) without
unlock(X) between)

can be dropped, thus allowing for lock conversion—that is, lock
upgrade and downgrade

This may be obviously beneficial for concurrency

Implementations of read_lock(X), write_lock(X), and
unlock(X) need modifications (left for homework)

484

Example: Shared/exclusive locks with conversions

All above are the same, but

S ′′
3 : rl1(X), r1(X), rl2(X), r2(X), u2(X), wl1(X), w1(X), u1(X)

Now ok!

Still, do not guarantee serialisability by themselves,
but are needed to guarantee it in the protocols below

485

1.2. Two-phase locking protocol

Two-phase locking: definition

Conversion-free transaction (binary or shared/exclusive) follows
two-phase locking protocol if it follows the rule

– all locking operations are before all unlocking operations

Two phases:

– locking (first, expanding, or growing) phase

– unlocking (second or shrinking) phase

If conversion is allowed,

– all upgrades (from read- to write-lock) in growing phase

– all downgrades (from write- to read-lock) in shrinking phase

486

Two-phase locking: negative example

Transactions T1 and T2 (left) do not follow the two-phase locking
protocol, so they allow for a non-serialisable schedule (right)

487

Two-phase locking: positive example

Versions T ′
1 and T ′

2 (left) follow the two-phase locking protocol,
so no non-serialisable schedule complies the rules

488

Serialisability by two-phase locking

Two-phase locking guarantees serialisability
(i.e., every allowed schedule of transactions following the rules of
the two-phase locking protocol is (conflict-)serialisable)

As the result, we can create a serialisable schedule operation by
operation, without knowing the transactions in full

Drawback 1: Some serialisable schedules do not comply the
protocol, thus limiting the amount of concurrency

(formally, there is a conflict-serialisable schedule without locks that cannot be

converted to an allowed schedule of transactions following the protocol by

inserting locking and unlocking operations)

Homework: come up to an example

489

Serialisability by two-phase locking

Two-phase locking guarantees serialisability
(i.e., every allowed schedule of transactions following the rules of
the two-phase locking protocol is (conflict-)serialisable)

As the result, we can create a serialisable schedule operation by
operation, without knowing the transactions in full

Drawback 2: we may end up in a deadlock

We will look at methods to deal with deadlocks in few minutes
490

Variations of two-phase locking

More constrained versions of two-phase locking often guarantee
better properties (while sacrificing even more concurrency):

– conservative (or static) two-phase locking:
all locking of a transaction are at its beginning
deadlock-free, requires to know the read and write sets at the beginning

– strict two-phase locking:
all write unlocking of a transaction are at its end
not deadlock-free, used in practice, guarantees strict schedules

– rigorous two-phase locking:
all unlocking of a transaction are at its end
not deadlock-free, easy to implement, guarantees strict schedules,

very limited concurrency

491

1.3. Deadlocks

Deadlock problem

Two (or more) transactions may be stuck in a deadlock,
where each transaction is waiting for another transaction,
making a ‘waiting cycle’

This may happen for all types of locks,
so we do not assume a specific type below

492

Deadlock avoidance: Overview

We will consider several groups of (sub-)protocols
to deal with deadlocks:

– (naive)
– deadlock prevention
– deadlock detection
– timeouts

Most of protocols may roll back (i.e., abort and restart)
some transactions

– cascadeless (i.e., recoverable) due to two-phase locking
(all deadlocked transactions in the growing phase,
so no one have read what they have written)

– may face and have to deal with starvation:
a transaction rolls back over and over again indefinitely

493

Deadlock avoidance protocols: naive approaches

We have seen one method:
conservative two-phase locking (not practical)

Another simple method:
locking according to a predefined order of all items

– all items are ordered in advance (e.g., by address)

– all locking of a transaction is in the increasing order

– no deadlocks by construction

– not practical due to
- limited concurrency
- unreasonable restrictions on transactions

494

Deadlock prevention protocols: Overview

We will consider four more methods for deadlock prevention:

– timestamp-based (wait-die and wound-wait)

– waiting-based (no-waiting and cautious-waiting)

All four avoid deadlocks, but often force transaction aborts without
a real deadlock

Deadlock prevention
is not a popular approach in practice due to high overhead,
but may be useful when transactions are long and use many items

495

Timestamp-based deadlock prevention: Wait-die rule

Transaction timestamp:
a unique number TS(T) assigned to each transaction T so that
TS(T ′) < TS(T) for each T ′ started before (for the first time)

Wait-die rule:
let transaction T try to lock an item that is already locked by T ′

– if TS(T) < TS(T ′) (i.e., T is older than T ′), then T waits
for T ′ to release

– otherwise (i.e., T is younger) T aborts (i.e., ‘dies’) and
restarts with the same timestamp

The older proceeds (maybe, after waiting) and the younger restarts,
so the wait-die rule guarantees no deadlocks, no starvation

496

Timestamp-based deadlock prevention: Wound-wait rule

Transaction timestamp:
a unique number TS(T) assigned to each transaction T so that
TS(T ′) < TS(T) for each T ′ started before (for the first time)

Wound-wait rule:
let transaction T try to lock an item that is already locked by T ′

– if TS(T) < TS(T ′) (i.e., T is older than T ′), then T ′ aborts
(i.e., is ‘wounded’) and restarts with the same timestamp

– otherwise (i.e., T is younger) T waits for T ′ to release

The older proceeds and the younger restarts (maybe, after waiting),
so the wound-wait rule guarantees no deadlocks, no starvation

497

Examples of wait-die and wound-wait

When T1 tries to lock X that is already locked by T2

– if T1 is older
- wait-die: T1 waits

b1, . . . , b2, . . . , l2(X), . . . , l1(X), [T1 waits] . . . , u2(X), . . .

- wound-wait: T2 dies
b1, . . . , b2, . . . , l2(X), . . . , l1(X), a2, . . .

– if T1 is younger
- wait-die: T1 dies

b2, . . . , b1, . . . , l2(X), . . . , l1(X), a1, . . .

- wound-wait: T1 waits
b2, . . . , b1, . . . , l2(X), . . . , l1(X), [T1 waits] . . . , u2(X), . . .

498

Waiting-based deadlock prevention protocols

(No timestamps in these protocols)

Let transaction T try to lock an item that is already locked by T ′

– no-waiting rule:
- T aborts and restarts

– cautious-waiting rule:
- if T ′ is not waiting for anyone, then T waits (regularly checked)
- otherwise T aborts and restarts

Any of these rules guarantees no deadlocks
(no cyclic waiting is possible)

Special care should be taken to avoid starvation
(Homework: What can be a solution?)

Easier, but even more unnecessary aborts 499

Deadlock detection

Deadlock happens when
there is a cycle of transactions waiting for each other

We can detect a cycle and
break the cycle by aborting one transaction (the victim)

Can be done by maintaining the wait-for graph:

– nodes: active transactions
– (directed) edges: transactions waiting for transactions

A cycle in the wait-for graph means a deadlock

May be resource-consuming to maintain

Victim selection should be done cautiously to avoid starvation

500

Timeouts

Timeout-based deadlock avoidance:
fix a waiting timeout period in advance
a transaction waits for at most the timeout period

after this abort and restart

Simple and easy to maintain

No guarantees (unknown overhead, possible starvation)

501

2. Concurrency via timestamps

Timestamp-based concurrency control: Idea

Reminder:
Transaction timestamp in a unique number TS(T) assigned to each
transaction T so that TS(T ′) < TS(T) for each T ′ started before

We used timestamps for deadlock prevention in the lock-based
concurrency control

We can use timestamps for concurrency control without locking:

– optimistically runs transactions until something goes wrong
(i.e., a conflict is detected)

– rolls back one of the conflict transactions based on their
timestamps (roll back is abort and restart with a new timestamp)

502

Timestamp-based concurrency control: Overview

Timestamp-based concurrency control protocols:

– all ensure serialisability
the serial version has transactions arranged by their timestamps

– may not guarantee recoverability
additional techniques needed to ensure this

(e.g., form of deadlock-free locking)

– may not guarantee no starvation
additional techniques needed to ensure this

We will consider several timestamp-based protocols

– basic: ensures serialisability, but not recoverability
– strict: ensures serialisability and strictness (so recoverability)
– basic/strict with Thomas write rule: less roll-backs

503

Item timestamp variables

Besides the timestamp of a transaction (see above),
the concurrency control subsystem (of each timestamp-based
protocol) maintains two variables for each item X :

– read timestamp ReadTS(X):
the timestamp of the youngest transaction that has read X

– write timestamp WriteTS(X):
the timestamp of the youngest transaction that has written X

Maintained in appropriate timestamp tables
(similar to the lock table in lock-based protocols)

(All initialised by 0)

504

Basic timestamp-ordering protocol: Idea

Main idea:
If there is a conflict that violates the order

(of the serial schedule imposed by the timestamps),
then roll back (i.e., abort and restart with new timestamp)

the transaction of the second operation of the conflict

Read-write conflict 1:
a transaction may try to read data item X too late

Should abort and restart T1 505

Basic timestamp-ordering protocol: Idea

Main idea:
If there is a conflict that violates the order

(of the serial schedule imposed by the timestamps),
then roll back (i.e., abort and restart with new timestamp)

the transaction of the second operation of the conflict

Read-write conflict 2:
a transaction may try to write data item X too late

Should abort and restart T1 505

Basic timestamp-ordering protocol: Idea

Main idea:
If there is a conflict that violates the order

(of the serial schedule imposed by the timestamps),
then roll back (i.e., abort and restart with new timestamp)

the transaction of the second operation of the conflict

Write-write conflict:
a transaction may try to write data item X too late

Should abort and restart T1 (or?...)
505

Basic timestamp-ordering protocol formally

Concurrency control subsystem should follow two rules:

Rule 1. When transaction T issues read(X):

– if WriteTS(X) > TS(T)

(i.e., someone younger written X),
then roll-back T (i.e., abort and restart T with a new timestamp)

– otherwise, execute the rest of read(X) and
set ReadTS(X) to max(ReadTS(X),TS(T))

Rule 2. When transaction T issues write(X):

– if ReadTS(X) > TS(T) or WriteTS(X) > TS(T)

(i.e., someone younger accessed X),
then roll-back T (i.e., abort and restart T with a new timestamp)

– otherwise, execute the rest of write(X) and
set WriteTS(X) to TS(T) 506

Basic timestamp-ordering protocol properties

Concurrency control subsystem should follow two rules:

Rule 1. When transaction T issues read(X):

– if WriteTS(X) > TS(T) then roll-back T

– otherwise, execute read(X) and set ReadTS(X) to
max(ReadTS(X),TS(T))

Rule 2. When transaction T issues write(X):

– if ReadTS(X) > TS(T) or WriteTS(X) > TS(T) then roll-back T

– otherwise, execute write(X) and set WriteTS(X) to TS(T)

Ensures serialisable schedules, but they

– may be not recoverable, (ensured by strict version)
– may have cascading roll-backs, (avoided by strict version)
– may have starving transactions (leave for you)

507

Reminder

To ensure durability in ACID, a schedule may be

– recoverable: T does not commit before each T ′ from which T

read have committed

– cascadeless: T does not read from uncommitted transactions

– strict: T is cascadeless and does not overwrite any values
written by uncommitted transactions

508

Strict timestamp-ordering protocol

Idea: In the rules the execution is postponed (using e.g., locking)
until the pervious write is committed (so ensuring strict schedules)

Rule 1. When transaction T issues read(X):

– if WriteTS(X) > TS(T) then roll-back T

– otherwise
- wait until the transaction T ′ such that

WriteTS(X) = TS(T ′) is committed (if there is such)
- execute the rest of read(X) and

set ReadTS(X) to max(ReadTS(X),TS(T))

Rule 2. When transaction T issues write(X):

– if ReadTS(X) > TS(T) or WriteTS(X) > TS(T) then roll-back T

– otherwise
- wait until the transaction T ′ such that

WriteTS(X) = TS(T ′) is committed (if there is such)
- execute the rest of write(X) and set WriteTS(X) to TS(T) 509

Thomas writing rule

Improvement (less roll-backs) for both basic and strict protocols
in case of write-write conflict

Rule 1. When transaction T issues read(X): . . . (same)

Rule 2. When transaction T issues write(X):

– if ReadTS(X) > TS(T) then roll-back T

– otherwise, if WriteTS(X) > TS(T) ignore the operation and proceed

– otherwise . . . (same, i.e., possibly wait, execute, update)

Same guarantees as the versions without the improvement
510

3. Multiversioning
for concurrency control

Multiversioning concurrency control: Idea

Multiversioning idea:
several versions of the (value of the) same item
are kept by the system

– transactions are the same as usual
(in particular, they request reads/writes for items, not versions)

– the versions of items are managed
by the concurrency control subsystem

Pros: increase concurrency (we will see how)

Cons: more storage is needed to maintain multiple versions

511

Multiversioning for concurrency control: Overview

Multiversioning: several versions of the same item are kept

Technical difficulty (for us):
Intuitively, still want to ensure semantic equivalence to a serial schedule,
but our notion of a schedule does not cover multiple versions of an item,
and all derived notions (conflicts, serialisability, etc.) are not formally applicable

All these notions can be generalised appropriately (but clumsy)
So we assume such generalisation silently
Aiming for semantic serialisability of the multiversion schedule

We will (briefly) consider several multiversion protocols, based on

– timestamps
– two-phase locking
– validation
– snapshot isolation 512

Timestamps and timestamp variables for multiversioning

Concurrency control subsystem maintains:

– a timestamp TS(T) of each transaction T (as before)

– several versions X0,X1, . . . of each data item X

each version is written (created) only once
– two variables for each version Xi of each item:

- read timestamp ReadTS(Xi):
the timestamp of the youngest transaction that has read Xi

- write timestamp WriteTS(Xi):
the timestamp of the (only) transaction that has written Xi

Maintained in appropriate tables
(similar to the lock table in lock-based protocols)

(Each X0 is initialised by the original value with 0 timestamps, at
the end the last version is considered final) 513

Multiversion timestamp-ordering protocol

Main idea:

– A transaction reads the version written by the youngest
transaction among those that are older than the reading
transaction (always allowed)

– A transaction is allowed to write (create a new version) only if
no one yet read a wrong value

Formally, concurrency control subsystem should follow two rules

Rule 1. When transaction T issues read(X):

– find the version Xi with the highest WriteTS(Xi) less or equal than
TS(T) (if there are several versions with the same timestamp, take the
one with the largest i)

– return this version to T and
set ReadTS(Xi) to max(ReadTS(Xi),TS(T))

514

Multiversion timestamp-ordering protocol

Main idea:

– A transaction reads the version written by the youngest
transaction among those that are older than the reading
transaction (always allowed)

– A transaction is allowed to write (create a new version) only if
no one yet read a wrong value

Formally, concurrency control subsystem should follow two rules

Rule 2. When transaction T issues write(X):

– find version Xi with highest WriteTS(Xi) less or equal than TS(T)

– if ReadTS(Xi) > TS(T) (i.e., someone younger accessed X),
then roll-back T (i.e., abort and restart T with a new timestamp)

– otherwise, create a new version Xj and set
both ReadTS(Xj) and WriteTS(Xj) to TS(T) 514

Multiversion timestamp-ordering protocol: Properties

Main idea:

– A transaction reads the youngest version among those that are
created by older transactions (always allowed)

– A transaction is allowed to write (create a new version) only if
no one yet read a wrong value

Ensures serialisable schedules (with the timestamp-ordered serial
schedule), but they may

– be not recoverable, (ensured by strict version)
– have cascading roll-backs, (avoided by strict version)
– have starving transactions

The strict (hence recoverable and cascadeless) version may be
designed in the same way as for usual timestamp-based protocol

515

Multiversion two-phase locking protocol: Idea (only)

Maintains two versions of each data item:

– committed:
- written by a committed transaction (or original)
- all transactions (except the currently writing) read this

– local:
- written by a currently writing transaction (only one is allowed)
- visible for reading only for the writing transaction
- rewrites the committed version

when the writing transaction commits

Three types of locks (read, write, certify) with compatibility table

516

Validation-based protocol: Idea

Validation-based protocol:

– an optimistic serialisation strategy based on time stamping
(‘optimistic’ is ‘evaluate transaction and check serialisability after’)

– each transaction has three phases:
- read phase (includes all calculation)
- validation phase (few checks, can roll back)
- write phase

(equivalent to keeping multiple local versions of items)

– the concurrency subsystem stores information
only about transactions (not about items)

– aims for the serialisable schedule equivalent to the serial one
according to the order of (completion of) validation

– (may be not recoverable and starving,
need separate techniques to avoid them) 517

Validation-based protocol: Notation

Validation-based protocol:

– each transaction has three phases:
- read phase:

includes all calculation
- validation phase:

few checks, can roll back
in what follows, we assume that it has only one operation

- write phase

– the concurrency subsystem stores, for each transaction T :
- beginning timestamp of each phase

Start(T), StartVal(T), StartWrite(T) (passed so far)
- end timestamp End(T) (passed so far)
- read and write set of items ReadSet(T) and WriteSet(T)

(should be known by StartVal(T))

518

Validation-based protocol: Formally

At validation phase of each transaction T , check the following
for each T ′ with StartVal(T ′) < StartVal(T)

(i.e., older according to the validation order):

– if End(T ′) < Start(T) (i.e., T ′ ended before T started), then pass

– otherwise,
if End(T ′) < StartVal(T) (i.e., T ′ ended before T writes), then

WriteSet(T ′) ∩ ReadSet(T) = ∅
(i.e., T ′ wrote nothing T has read, maybe too late)

– otherwise (i.e., T ′ started to write before T writes), then
WriteSet(T ′) ∩ (ReadSet(T) ∪WriteSet(T)) = ∅

(i.e., T ′ wrote nothing T is accessing, maybe too late)

If a check fails, abort T

Ensures serialisability according to the validation order
519

Snapshot isolation: Idea

Snapshot Isolation concurrency control protocol

– used in several practical DBMSs (PostgreSQL, Oracle, etc.)
– easy to ensure for the manager
– each transaction evaluates on the data version committed by

the beginning of the transaction (i.e., multiversion)
– write-sets of interleaving transactions are disjoint
– does not guarantee serialisability

Example: r1(X), r1(Y), r2(X), r2(Y), w1(Y), w2(X), c1, c2

On the one hand, not (conflict-)serialisable
On the other hand, snapshot-isolated in essence:

– both transactions read only initial data
– write-sets are disjoint

520

4. Concurrency
with multiple granularity

Data item granularity

Granularity: the size of data items
– field value of a record (fine)
– record
– disk block
– table file
– whole database (coarse)

The tradeoff:

– more coarse allows for lower degree of concurrency
– more fine leads to more overhead (lock management, etc.)

Best item size depends on transaction type:

– if a transaction accesses few records, a record as item is good
– if a transaction accesses many records, a block as item is good

It may be nice to have different granularity for different transactions
521

Multiple granularity locking: Example

Example granularity hierarchy:

Let T1 write-lock f1 and then T2 tries to read-lock r121:
easy to detect and delay T2 by traversing from leaf to root

522

Multiple granularity locking: Example

Example granularity hierarchy:

Let T2 read-lock r121 and then T1 tries to write-lock f1:
detecting requires to search through the whole sub-tree,
which may be not efficient

522

Intention locks

Intention locks solve the problem:
besides usual (exclusive or shared) locks,
the locking transaction labels the path
from the root to the needed node with intension locks

– Intention-shared lock (IS):
a shared lock is to be requested on a descendant node

(one or several)

– Intention-exclusive lock (IX):
an exclusive lock is to be requested on a descendant node

– Shared-intension-exclusive lock (SIX):
current node is shared-locked and
an exclusive lock is to be requested on a descendant node

523

Multiple-granularity two-phase locking

Multiple-granularity two-phase locking protocol rules (informally):

– each locking starts in the root and ends in the locked node
– the path to the node is locked with intentional versions and

the node itself with the usual lock
– the lock-compatibility table (above) must be always adhered

(wait if ‘no’)
– unlocking is symmetric, upgrading is possible 524

5. Other issues and conclusion

Other issues

There are many more issues with concurrency control:

– indexes, in particular B(+)-trees
using multiple-granularity two-phase locking is possible
not very efficient: insertion write-locks all the branch
dedicated approaches are used

(using the fact that all insertions start from the root)

– insertion and deletion may require special care
(write locks, etc.)

– phantom tuples may require special treatment
(when a new tuple is inserted in the middle of
an affected selection by another transaction)

our protocols do not cover them

– interactive transactions
(something showed to a user, but then should be rolled back)

525

What have we learned?

Concurrency control protocols
that ensure isolation via (conflict-)serialisability:

– locking-based
(two-phase with variations,
based on binary and shared/exclusive locks
with several deadlock-avoidance methods)

– timestemp-based
(basic, strict, Thomas write rule)

– multiversion-based
(timestamp, two-phase, validation, snapshot)

– multiple-granularity-based

In the rest of Part 2 (next week):

– techniques for recovery 526

IN3020&4020 – Database Systems (2024)
Part 2: Transaction management
Lectures 22, 23: Recovery techniques

9, 15 April

Egor V. Kostylev
IFI, University of Oslo
egork@ifi.uio.no

Big Picture (reminder)

Syllabus of the course:

– (Extended) Intro and SQL recap ✓

Part 1. Query processing in relational databases ✓

Part 2. Transaction management in relational databases

– Transaction processing concepts (3 lectures) ✓

– Concurrency control techniques (3 lectures) ✓

– Database recovery techniques (2 lectures)

Part 3. NoSQL DBMS

539

Materials to read about transaction management

Part 2. Transaction management in relational databases

Fundamentals of Database Systems by R. Elmasri and
S.B. Navathe (7th edition): Part 9 (close to my presentation)

– Transaction processing concepts (3 lectures)

Chapter 20

– Concurrency control techniques (3 lectures)

Chapter 21

– Database recovery techniques (2 lectures)

Chapter 22

Database Systems: the Complete Book by H. Garcia-Molina,
J. Ullman & J. Widom (2nd edition): Parts of Section 17

etc. 540

Transactions: Reminder

Transaction is a sequence of operations (not arbitrary)
– begin, end, commit,

abort, read(X), write(X), variable updates, etc.
– we use abbreviations (b, e, c, a, r(X), w(X))
– we may omit operations (e.g., use only r(X) and w(X))
– we often append transaction ids (e.g., b1, r1(X), r2(X), w3(X))

– transactions read from and write to the common disk (or cache!),
but have their own main memory

Can be committed, aborted or partial

Schedule (history, or execution plan) S of transactions T1, . . . ,Tn

is a (total) ordering of the operations of T1, . . . ,Tn

– operations of different transitions can interleave
– operations of each Ti are in the same order as in Ti

Complete schedule: all T1, . . . ,Tn are committed or aborted 541

ACID principles: Reminder

ACID principles:

– Atomicity: Transaction performed in its entirety or not at all
Ensured by the recovery subsystem

– Consistency: The database should always remain consistent
Ensured by the transaction program ✓

– Isolation: Transaction should not interfere with others
Ensured by the concurrency control subsystem ✓

– Durability: Changes of committed transactions must persist
Ensured by the recovery subsystem

In general, the subsystems need coordination

542

Recoverable Transactions: Reminder

To ensure durability in ACID, a schedule may be

– recoverable: T does not commit before each T ′ from which T

read have committed

– cascadeless: T does not read from uncommitted transactions

– strict: T is cascadeless and does not overwrite any values
written by uncommitted transactions

In this part, we concentrate on strict schedules
(restricted concurrency, but enough to illustrate the principles)

543

Lectures plan

1. Recovery concepts

1.1. Intro

1.2. Cache

1.3. Log

1.4. Checkpoint

2. Recovery protocols

2.1. Shadowing recovery (no logs)

2.2. Deferred-update recovery (NO-UNDO/REDO logs)

2.3. Immediate-update recovery (UNDO/REDO logs)

2.4. ARIES recovery (advanced UNDO/REDO logs)

3. Other considerations

544

1. Recovery concepts
1.1. Intro

Recovery intro

Recovery:
restores database to most recent consistent state before failure

Types of failures (reminder):

– Computer failure (system crash): hardware, software, network errors
– Transaction failure: division by zero, constraint violation, etc.
– Local transaction errors: no data found, programmed exception, etc.
– Concurrency control enforced: serialisability violation, deadlock break, etc.

– Disk crash: persistent errors with disk reads or writes
– Physical problems: power cut, fire, catastrophe, etc.

Groups of failures:

– Disk is (significantly) damaged (catastrophe, disk crash, etc.)
– Disk is not damaged (everything else)

545

Recovery intro

Recovery:
restores database to most recent consistent state before failure

Groups of failures:

– Disk is (significantly) damaged (catastrophe, disk crash, etc.)
restore the whole database from back-up storage (tape, etc.)

few words at the end of this slides

– Disk is not damaged (everything else)
recover consistency by undoing and redoing

some operations following a recovery protocol
use the database on the disk and a log of operations
need to take into account the cache in the main memory

our main focus
546

1.2. Cache

Cache

DBMSs use (dedicated) cache:

– some parts of information (data itself, indexes, logs, etc.) from
the disk are kept in main-memory cache for quick access

– usually, collection of buffers (a.k.a. pages—that is, blocks in
main memory) with corresponding blocks on disk

– to perform an operation with data, the cache is first checked:
- if the needed block is in cache, it is used
- otherwise, an existing cache buffer is flushed (i.e., replaced) by

the needed block from disk using buffer replacement policies
(i.e., methods to decide which cache buffers should be flushed)

- if the operation is write, then the buffer becomes dirty: its disk
version is outdated

547

Cache: Flushing approaches

Each buffer in the cache has a dirty bit (flag) attached:

- was the buffer modified or not

Flushing approaches:

– in-place flushing:
new (i.e., cache) version replaces the old (the disk) one

if dirty bit is 1
used in most cases

– shadowing:
new version is written in another place and

the old version is kept
no log is needed for recovery (see below), but overhead
used in the shadowing recovery protocol (see below)

548

Cache: Buffer replacement policies

DBMSs use cache: some disk blocks are mirrored in cache (main
memory) buffers for quick access, but sometimes we have to
replace a cache buffer with a new one

Basic standard replacement policy is LRU:

– the least recently used buffer is flushed (replaced)

– not specialised for DBs and not effective, because different
domains (types of information: data itself, indexes, logs, etc.)
may benefit from different treatment

549

Cache: Buffer replacement policies

DBMSs use cache: some disk blocks are mirrored in cache (main
memory) buffers for quick access, but sometimes we have to
replace a cache buffer with a new one

Domain separation technique:

– Each domain (data itself, indexes, logs, or even certain
relations) has its own dedicated cache

– LRU (least recently used) policy is used in each individually

– better results than common LRU

Can be improved in several ways:

– Group LRU with dynamic cache separation, DBMIN (omitted)

– Hot set, clock sweep (next slide)

550

Cache: Clock sweep with hot set

Hot set:

– blocks that should always be in cache until a certain point
– decided externally (e.g., smaller relation in nested-loop join)

Clock sweep over other buffers (for each domain separately):

– each (non-hot) cache buffer has an integer count value
– cache buffers are checked in a round-robin ‘cycle’

with some regularity, maintaining individual counts
– if a buffer has started to be used since the last time visited,

increment its count
– otherwise, decrement its count
– if we need to replace a buffer with a new block from the disk,

the buffer with the least count is replaced

551

1.3. System Log

System log

System log keeps track of executed operations of transactions:

– sequential, append-only file (i.e., a table of entries)

– reading and writing the log are not affected by failure
except disk or catastrophic failures

(i.e., logging is done by stand-alone system operations
which is not a part of any transaction operations)

– backed up periodically to guard against these failures

552

System log: Properties

System log keeps track of relevant executed operations of
transactions:

– in particular, we do not need to log computations

– log keeps the effects of data writes and maybe reads
(not write and read operations themselves,
see next slide)

– log also keeps the beginnings and the ends (commit or abort)
of transactions

(e.g., entries of the form [commit, T])

– log keeps other information
e.g., about checkpoints and dirty buffer table
(will discuss when needed)

553

System log: Read and Write entries

System log table can have read and write entries of several types:

– UNDO- (OLD-) WRITE entry:
keeps the before-image (i.e., old value) of a written item
used to undo the write if the transaction is aborted

– REDO- (NEW-) WRITE entry:
keeps the after-image (i.e., new value) of a written item
used for redo the write if the transaction is committed,

but the effect is not on the disk (only in a dirty cache buffer)

– UNDO&REDO-WRITE entry: keeps both above

– additionally, READ entry:
needed when cascading rollbacks are possible
we generally assume strict schedules, so do not use such entries

(reminder: a schedule is strict when no transaction can read or write
an item X until the previous write of X is committed or aborted)

554

Log cache buffer

System log cache buffer:

– main memory buffer (cache)

– keeps the last part of the log

– when full, appended (i.e., flushed) to the log file on the disk

Log cache buffer may also be flushed to ensure write-ahead logging:

– log information about a transaction operation is flushed
before the effect of the operation is flushed itself

555

Write-ahead logging: More detail

A recovery protocol follows write-ahead logging if

– before-image (the old version) of each item on the disk
cannot be overwritten (by the flushing buffer)
by its after-image (the new version)
until all UNDO (OLD) log entries have been flushed to disk

– a transaction cannot commit
until all UNDO (OLD) and REDO (NEW) log entries

for that transaction have been flushed to disk

(Most of) recovery protocols are write-ahead logging

556

1.4. Checkpoints

Checkpoints

Checkpoint idea:
a recovery subsystem (not transaction!) operation that makes it
possible, in case of a fail, to safely return to a consistent state (i.e.,
all committed transactions at a point of the fail are logically
redone, all aborted undone) by

– flushing all relevant buffers and
– logging a list of currently active transactions

Ensures that everything committed so far is on the disk and does
not need any action in case of a fail

Repeated regularly (e.g., every 5 minutes) by recovery subsystem

– more frequent—less recovery work
– less frequent—more overhead

The latest checkpoint is active
557

Checkpoints

Checkpoint idea:
a recovery subsystem (not transaction!) operation that makes it
possible, in case of a fail, to safely return to a consistent state (i.e.,
all committed transactions at a point of the fail are logically
redone, all aborted undone) by

– flushing all relevant buffers and
– logging a list of currently active transactions

Basic (rigid) checkpoint operation formally:

1. suspend execution of all transactions
2. flush all main non-pinned dirty memory buffers
3. write checkpoint entry [checkpoint, list of active transactions]

to log and flush the log to the disk
4. resume executing transactions 557

2. Recovery protocols

Coordination of recovery and concurrency control

Recovery subsystem ensures atomicity and durability:
restores database to most recent consistent state before failure—

that is, one or several (maybe all) transactions abort and
all their changes need to be rolled back

Needs coordination with concurrency control:

– usually, we assume a system crash event that aborts all
transactions as a model type failure

(but the ideas applicable to other types of failures,

including those that affect only one transaction)

– usually, we assume strict two-phase locking as a model
concurrency control protocol

(but the ideas applicable to other concurrency protocols;

a difficult case is cascading roll-backs,

which require more complicated treatment) 558

2.1. Shadowing recovery protocol

Shadowing recovery protocol: Idea and properties

Shadowing (shadow paging) recovery protocol idea:

– flush each modified buffer immediately to a new place on disk,
the old (shadow) version is kept on disk (and never modified)

– if a transaction commits, the current version is used
– if a transaction aborts, the shadow version is used

Shadowing recovery protocol properties:

– no log required in strict (or single-user) environment
(assuming blocks as data items)

– so, sometimes called NO-UNDO/NO-REDO
– no checkpoints either

– essentially, a copy of cache on disk
– results in a lot of overhead and random-ordered blocks on disk
– requires complicated garbage collection 559

Shadowing recovery protocol: Formally

A directory: a table with pointers to disk blocks

Shadowing (shadow paging) recovery protocol
(for a single transaction):

– at the beginning of a transaction,
a current directory with pointers to all blocks is created,
and it is copied to shadow directory

– after each write,
affected buffers are immediately flushed to a new disk block,
and the current directory is updated

– if a transaction commits, the current version is taken

– if a transaction aborts, the shadow version is restored

560

Example of shadowing

Directories and disk blocks
after writing in Block (i.e., page) 2 and then Block 5

561

2.2. Deferred-update protocol

Before we start: A picture to have in the head

Here, T1, . . . ,T5 lines are transactions (committed or partial)
spanning over time

562

Deferred update: Idea

Deferred update recovery protocol idea:

– no-steal approach:
postpone all flushes of (dirty buffers) to disk
until the transaction commits

– REDO- (NEW-) log entries are needed:
to recover committed transactions after a system crash

– UNDO- (OLD-) log entries are not needed:
no changes of aborted transactions are on the disk

– thus, NO-UNDO/REDO

Deferred update recovery protocol properties:

– effective only for short transactions with few changes
– cache size is an issue with longer transactions

563

Deferred update: Simplifying assumptions

Simplifying assumptions, some already mentioned
(can be relaxed but rules and procedures may need adjustments):

– strict two-phase locking with blocks as items

– system crash as a fail (i.e., all active transactions abort)

– all blocks changed by a transaction fit into cache

564

Deferred update: Formal rules

Deferred update protocol rules:

– use log with REDO entries and regular checkpoints

– all buffers changed by a transaction are pinned until commit
(i.e., no-steal approach)

– transaction does not commit until all its REDO-type log
entries are recorded in log and log buffer is flushed to disk

(i.e., the relevant REDO-part of the write-ahead approach)

565

Deferred update: Recovery procedure

Deferred-update procedure
(evaluated by the recovery subsystem after a system crash):

– find the active (i.e., latest) checkpoint in the log on the disk
all effects of committed transactions are on the disk by the checkpoint

– using the checkpoint’s active transactions and the log after the
checkpoint, construct the set of all committed transactions
between the checkpoint and the crash

their commit log entries are on the disk

– redo all operations of the committed transactions from the set
all their log entries are on the disk

566

Deferred update: Observations

Rules (brief reminder):

– no flushing of modified data before commit

– flushing of all transaction-relevant log entries before commit

Observations:

– ensures Atomicity and Durability as required

– No need to do anything with non-committed transactions
(due to deferred update)

– The steps can be optimised and parallelised
(e.g., only the last update of each buffer needs to be redone)

– Restart the same recovery procedure in case of another crash
during recovery

567

Deferred update protocol: Example

– T1: already committed and flushed, no action required

– T2: may have non-flushed buffers,
but the log (including begin_transaction) is flushed, so all changes
can be recovered from the log (considered from from the checkpoint)

– T3: may have non-flushed buffers,
but the log is flushed and the checkpoint remembers that it is active, so
all the changes can be recovered from the log

– T4,T5: aborted and no buffers are flushed, no action required

568

2.3. Immediate-update recovery

Immediate update: Idea

Immediate update recovery protocol idea:

– possible steal approach:
allow to flush of dirty buffers
both before and after the transaction commits

– REDO- (NEW-) log entries log entries are needed:
to redo committed transactions after a system crash

– UNDO- (OLD-) log entries log entries are needed:
to undo aborted transactions

– thus, UNDO/REDO (generalises deferred-update)

(UNDO/NO-REDO also exists, think about it by yourself)

Immediate update recovery protocol properties:

– more general than deferred-update
– more difficult 569

Immediate update: Formal rules

Simplifying assumptions, less than above
(can be relaxed but rules and procedures may need adjustments):

– strict two-phase locking with blocks as items (not essential here)

– system crash as a fail (i.e., all active transactions abort)

Immediate update protocol rules (just write-ahead logging in full):

– use log with REDO/UNDO entries and regular checkpoints

– a dirty buffer does not flush until all relevant log entries are
recorded in log and log buffer is flushed to disk

(i.e., the first part of the write-ahead approach)

– transaction does not commit until all its log entries are
recorded in log and log buffer is flushed to disk

(i.e., the second part of the write-ahead approach)

570

Immediate update: Recovery procedure

Immediate-update procedure
(evaluated by the recovery subsystem in case of a crash):

– find the active (i.e., latest) checkpoint in the log on the disk
all effects of committed transactions are on the disk by the checkpoint

– construct the sets of all committed and non-committed (i.e.,
aborted) transactions between the checkpoint and the crash

their commit log entries are on the disk

– redo all operations of the committed transactions
all their log entries are on the disk

– undo all known operations of the non-committed transactions
some of their log entries may not be on the disk,
but their corresponding changes were not flushed

571

Immediate update: Observations

Rules (brief reminder, write-ahead logging):

– flushing of all modified-data-relevant log entries before flushing
this modified data

– flushing of all transaction-relevant log entries before commit

Observations:

– ensures Atomicity and Durability as required

– The steps can be optimised and parallelised
(e.g., only the last update of each buffer needs to be redone)

– Restart the same recovery procedure in case of another crash
during recovery

572

Immediate update protocol: Example

– T1,T2,T3: same as before

– T4,T5: aborted, so should be undone;
some changes may be already flushed by t2 and some may not,
but the log entries of all flushed changes are also flushed

573

Improvement for both protocols: Fuzzy checkpoints

Basic (rigid) checkpoint reminder:

1. suspend execution of all transactions
2. flush all main non-pinned dirty memory buffers
3. write checkpoint entry to log and flush the log to the disk
4. resume executing transactions

Step 2 may take time,
and suspending for this time all execution may be impractical

Fuzzy checkpoint allows to continue transactions while flushing:

1. log begin checkpoint entry [begin_checkpoint, active transactions]
2. flush all main non-pinned dirty memory buffers

continuing transaction execution in parallel
3. log end checkpoint entry [end_checkpoint]

and flush the log to the disk

Checkpoint becomes active after end_checkpoint,
but recovery process starts from begin_checkpoint

574

5. ARIES recovery protocol

ARIES: Overview

ARIES protocol main properties:

– Algorithm for Recovery and Isolation Exploiting Semantics
– an improved version of immediate-update protocol

(possible steals, REDO/UNDO log entries, write-ahead logging)

– used in practice
– again, we concentrate on strict schedules

ARIES update recovery protocol improvement ideas:

– different checkpoints (main improvement):
instead of flushing everything,
remember the table of currently dirty buffers

– other improvements (e.g., logging of recovery):
not discussed here

575

ARIES Checkpoints

During execution, ARIES maintains (in main memory):

– Transaction table of currently active and committed
transactions

(ID, pointer to the most recent relevant log entry, status)

– Dirty buffer table of currently dirty buffers in the cache
(ID, pointer to the earliest update log entry)

ARIES checkpoint (fuzzy in general)

– the begin_checkpoint entry identifies the start point for the recovery,
and the state of the transaction table and dirty buffer table to store

– the end_checkpoint entry has the tables (at the begin-point state)
appended in the log

– the log must be flushed at the end of checkpoint

576

ARIES recovery protocol: Example

(a) The log

(b) Possible transaction and dirty block table at the begin checkpoint
(appended to end_checkpoint)

(c) Possible tables at the moment of the end of the log
(observe that 7 in dirty buffer table
implies that C was flushed between Lsn 5 and 7)

577

ARIES recovery main steps

ARIES recovery procedure (evaluates at the crash event):

1. Analysis step:
identifies the earliest update log entry of a dirty buffer

at the checkpoint (and collects other relevant information)

2. Redo step:
go through the log from the identified point to the end and redo

the necessary operations (i.e., the writes of dirty blocks in the table

before the begin checkpoint and all writes after it)

3. Undo step:
go through the log from the end to the beginning of all uncommitted

(by the log end) transactions and undo necessary operations

(i.e., all writes that are not overwritten by a redo)

Evaluated undo’s and redo’s are also logged,
so that a crash during update does not cause a need to re-evaluate
all the recovery process from scratch

578

ARIES recovery protocol: Example

Let the log above be in on the disk after a crash. ARIES steps:

1. Analysis step: identifies the earliest log entry: Lsn 1
2. Redo step: redo the writes with Lsn 1, 6, 7 (no 2)
3. Undo step (only T3): undo update with Lsn 6

(Lsn 6 is redone and undone;

think of advantages and disadvanatages of such strategy)
579

6. Other considerations

Recovery in multidatabase cases

Often, a transaction accesses several databases, in which a
two-level recovery mechanism can be used:

– managed by (global) coordinator
– consists of two phases: in phase 1, coordinator prepares for

commit by sending a message to all databases, which respond
‘ready-to-commit’ or ‘cannot-commit’;
if all successful, in phase 2 coordinator issues commit signal to
all participating databases

– always possible to recover to a state where the transaction is
committed or aborted

– Failure during Phase 1 requires rollback
– Failure during Phase 2 means

successful transaction can recover and commit
580

Recovery from catastrophic failures

Database backup:

– entire database and log periodically copied onto inexpensive
storage medium

– latest backup copy can be reloaded to disk in case of
catastrophic failure

– often moved to physically separate locations
(e.g., subterranean storage vaults)

– system log is usually smaller than the database
so a second backup may be the log after a first backup

– may benefit from more frequent backups
(e.g., to magnetic tapes)

581

What have we learned?

Recovery protocols
that ensure atomicity and durability:

– shadowing-based
easy but essentially no cache, so slow

– deferred-update
easier that immediate-update but slower to recover

– immediate-update
general

– ARIES
immediate-update with improvements

Rest of the course Part 3 (and a little more):

– No-SQL databases overview
582

IN3020&4020 – Database Systems (2024)
(Between Parts 2 and 3)
Lecture 24: Database security

16 April

Egor V. Kostylev
IFI, University of Oslo
egork@ifi.uio.no

Big Picture (reminder)

Syllabus of the course:

– (Extended) Intro and SQL recap ✓

Part 1. Query processing in relational databases ✓

Part 2. Transaction management in relational databases ✓

– Database security

Part 3. NoSQL DBMS

– Advanced DBMS architecture (IN4020 only)

595

Lecture schedule

Date Part Topic
.

24 16.04 (Tue) (no part) Database security
25 22.04 (Mon) Part 3: NoSQL Overview
26 23.04 (Tue) Part 3: NoSQL Knowledge Graphs
27 29.05 (Mon) Part 3: NoSQL RDF and SPARQL
28 30.04 (Tue) Part 3: NoSQL Neo4j and Cypher
29 06.05 (Mon) for IN4020 Advanced DBMSs

(digital, intro for IN5040)
30 07.05 (Tue) Wrap-up Summary
31 13.05 (Mon) 2024 exam discussion Summary

Exam: Thursday, 30 May (see next slide)

596

Exam

Exam formal details:

– Time: 30 May 2024, 09:00 Duration: 4 hours
– Place: Silurveien System: Inspera
– Withdrawal deadline: 1 May

Exam rules and contents:

– no collaboration (standard plagiarism rules)
– the slides will be available

- the content in the spirit of the
mandatories, * questions in weekly exercises & 2024 exam

– if you are comfortable with mandatories, you should be fine
with the exam

– no one is expected to do everything correct
(and it is not required for A)

597

Materials to read about database security

1. Fundamentals of Database Systems by R. Elmasri and
S.B. Navathe (7th edition):

Section 30 (the only in Part 12)
(more than my presentation)

2. Database Systems: the Complete Book by H. Garcia-Molina,
J. Ullman & J. Widom (2nd edition): Parts of Section 10

3. IN2090 – Databaser og datamodellering (Leif Harald Karlsen):
Lecture 12 (basics)
https://www.uio.no/studier/emner/matnat/ifi/IN2090/h21/timeplan/

4. etc.

598

Lectures plan

1. Introduction and main concepts

2. Discretionary access control (DAC)

3. Mandatory access control (MAC)

4. Other control measures

599

1. Introduction and main concepts

Database Security: Issues and threats

Database security is a broad area with many issues:

– Legal, ethical, and policy issues
(e.g., private information access rights, corporate policies)

– System-related issues
(e.g., system levels on which security should be enforced)

– Security categorisation and organisation
(classes of users vs. classes of information)

Threats to databases:

– Loss of integrity: Improper modification of information

– Loss of availability: Legitimate user cannot access data objects

– Loss of confidentiality: Unauthorised disclosure of confidential information

600

Database Security: Not an isolated concern

Applications often contain much more than just the database:
the database works as part of a network of services
(other applications, programs, Web servers, etc.)

– Database security can therefore not only focus on the database

– Security holes can occur in all joints (frontend, backend,
network, etc.)

– Safety is therefore always a comprehensive task:
must be ensured for each component
and the interaction between them

– Must be clear on what assumptions
about other components each part of the system makes

601

DB-related threat example: SQL injection

SQL injection:

– Attacker changes SQL statement to their advantage
(e.g., commonly, adds conditions to the WHERE clause)

– May lead to unauthorised data manipulation
or execution of system-level commands

Example:

SELECT * FROM Users WHERE
username = ‘jake’ AND password = ‘jakespasswd’

can be changed to

SELECT * FROM Users WHERE
username = ‘jake’ AND (password = ‘jakespasswd’ OR ‘x’ = ‘x’)

with obvious consequences
602

Database multi-user security mechanisms

DBMS must provide techniques to enable certain
users or user groups to access selected portions of a database

There are several types of security mechanisms; most fundamental:

– Discretionary security mechanisms
Used to grant privileges to users to access certain pieces of data
Commonly used in practice

– Mandatory security mechanisms
Classify data pieces and users into various security classes
Give access according to a corresponding security policy
Used (and extended) in professional DBMSs (e.g., Oracle)

We will briefly consider such mechanisms for access control below

603

What is access? Control measures for data security

Access control (narrow sense, our main focus below):

– handled by user accounts (with passwords) and data labelling
to ensure the security mechanism

Inference control (briefly at the end):

– ensure that information about individuals cannot be derived
key in statistical databases

Flow control (briefly at the end):

– prevents information from flowing from authorised to unauthorised users
disallow covert channels

Data encryption (briefly at the end):

– used to protect sensitive data during transmission
symmetric/asymmetric encryption, digital signatures and certificates

604

Users: Role of database administrator

Database administrator (DBA):

– central authority for administering database system

– superuser or system account

– central role for ensuring security (especially access control)

DBA-privileged commands for access control:

– account creation

– privilege granting and revocation (discretionary authorisation)

– security level assignment (mandatory authorisation)

605

Users: Security-related system tables and audit

User must log in using assigned username and password

DBMS has encrypted tables for

– users, including accounts and passwords

– a write-only log of login sessions (user ID, beginning, end, etc)
a logic session may include several transactions
may re-use and extend the recovery system log

If tampering is suspected, database audit is performed:
reviewing log to examine all accesses and operations
to determine the possible culprit

606

Data: Causes for data sensitivity

Sensitivity of data:
measure of the importance assigned to the data by its owner
denoting its need for protection

Different parts of data in database may have different sensitivity

Factors that can cause sensitivity status of a piece of data:

– inherently sensitive (e.g., a patient’s diagnosis)
– from a sensitive source (e.g., from a secret informer)
– declared sensitive (e.g., by the data owner)
– has a sensitive part (e.g., salary attribute)
– sensitive in relation to previously disclosed data

(i.e., disclose sensitive information
in conjunction with previously given data)

607

Data: Security vs. precision

Security:
ensures that sensitive data is kept safe from corruption and

non-authorised access

Precision (or Availability):
To make available as much nonsensitive data as possible

(In both cases, sensitivity is relative to a specific user)

The ideal combination is to maintain
perfect security with maximum precision
contradictory in practice, so the best trade-off should be found

608

Security as a part of privacy

Security:
issues related to access to resources

Privacy goes beyond:
issues related to appropriate use of information—
that is, the ability of individuals to control the terms
under which their personal information is acquired and used;

for example

– preventing storage without a need
– ensuring appropriate use

General Data Protection Regulation (GDPR):
an EU (and EEA) data protection and privacy law
(should always be considered when considering privacy issues)

609

2. Discretionary access control

Discretionary access control: Idea

Part of SQL standard and commonly implemented
(sometimes partially)

Discretionary access control (DAC):

– based on granting and revoking privileges
to users (or groups of users)

– SQL has statements GRANT and REVOKE
for granting and revoking

(Revoking may be necessary when temporal access is needed)

There are two levels of privileges: account level and relation level

610

Account-level privileges

Account-level privileges—
that is, privileges applying to the whole database:

– privileges for
data definition (CREATE/DROP/ALTER TABLE/VIEW)
data modification (INSERT/UPDATE/REMOVE)
data access (SELECT)

– granted/revoked by the DBA

Examples:
GRANT CREATETAB TO UserName
REVOKE CREATETAB FROM UserName

611

Relation- (table-) level privileges

Relation-level privileges—
that is, privileges applying to specific tables and views:

– privileges for
data modification (INSERT/UPDATE/REMOVE)
data access (SELECT)
constraints (FOREIGN KEY)

– can be seen as a access matrix (Users × Tables)

– (originally) granted/revoked by the owner (usually the creator)

Example:
GRANT INSERT, DELETE

ON Employee, Department TO UserName

612

Propagation of relation-level privileges

Relation-level privileges can be propagated to other users
by WITH GRANT OPTION modifier

Example:
GRANT SELECT ON Employee, Department TO UserName

WITH GRANT OPTION

Revoking is automatically cascading

Example:
REVOKE SELECT ON Employee FROM UserName

automatically recursively revokes all privileges given by UserName

Should be careful with multiple grantees and should prevent cycles

Some DBMSs allow for horizontal (i.e., number of users) and
vertical (i.e., depth) limits on propagations 613

Fine-grained privileges via views

Views are a DAC mechanism by themselves:
can give fine-grained access to certain attributes and/or tuples

Examples:

Consider owner UserA of relation R and other user UserB

– UserA can create view V1 of R
that includes only attributes UserA wants UserB to access
and grants SELECT privilege on V1 to UserB

– UserA can also create view V2 of R
that selects only tuples UserA wants UserB to access
and grants SELECT privilege on V2 to UserB

614

3. Mandatory access control

Mandatory access control: Idea

Mandatory access control (MAC) idea:

– classify subjects (i.e., users) and objects (i.e., data elements
such as attribute values and tuples) to security classes

– classes are (possibly partially) ordered (i.e., multilevel security)

– compose the classes of involved subjects and objects using the
order when deciding to give access

Typical (simple) security classes

– Top secret (TS)
– Secret (S)
– Confidential (C)
– Unclassified (U)

with (total) order TS ≥ S ≥ C ≥ U
615

Bell-LaPadula access control model

Two rules are enforced
(general rules, may be applied to any type of data)

– Simple security property:
subject (e.g., user) S can read object (e.g., value) O

only if class(S) ≥ class(O)

that is, no one can read data with higher security

– Star property:
subject (e.g., user) S can write object (e.g., value) O

only if class(S) ≤ class(O)

that is, no one can write data with lower security

(prevents information flow from higher to lower classifications)

616

MAC model for relational databases

Mandatory access control (MAC) in DBMSs:

– less commonly adopted due to complexity (mostly professional)
– objects are attribute values in tuples and tuples themselves
– classification of a tuple is

the highest classification of its attribute values

Example: (TS ≥ S ≥ C ≥ U)

(We omit the commands for assigning classes,
they are not in the SQL standard anyway)

617

Reading in MAC model for relational databases

Filtering is used for reading (i.e., SELECT queries):

– replacing by NULLs attribute values with higher classification than user’s
– removing whole tuples when nothing left

Example:

Query SELECT * FROM Employee issued by user of class C gives

618

Reading in MAC model for relational databases

Filtering is used for reading (i.e., SELECT queries):

– replacing by NULLs attribute values with higher classification than user’s
– removing whole tuples when nothing left

Example:

Query SELECT * FROM Employee issued by user of class U gives

618

Writing in MAC model for Relational Databases

Poly-instantiation can be used for writing (e.g., UPDATE queries):

– updates on the lower level is not allowed (star property)
– updates on the same level is as usual
– updates on the higher level creates several copies

(need to be careful, details are omitted)

Example:

Query UPDATE Employee SET Job_performance = ‘Excellent’
WHERE Name = ‘Smith’ issued by user of class C gives

619

DAC vs. MAC

Discretionary access control (DAC):

– more fine-grained
– more vulnerable
– no flow control

Mandatory access control (MAC):

– more rigid
– higher degree of protection
– ensures flow control

Professional DBMSs (e.g., Oracle) implement more advanced
models, often generalising both DAC and MAC:

– Role-based access control
– Label-based (e.g., for tuples) access control 620

4. Other control measures

Inference control in statistical databases

Statistical database
is a usual database with special use:

intuitively, (usual) users are

– assumed to retrieve only statistical information

– forbidden to retrieve individual data

Essentially, implemented so that only statistical (i.e., aggregate)
queries are allowed; for example

621

Inference control in statistical databases

Forbidding non-aggregate queries is not enough

Example:

If count is 1, the average is the exact number

Can be resolved by several methods, for example:

– fixing a minimum threshold on number of tuples
– introducing noise
– prohibit sequences of queries for the same population

(e.g., table)

622

Flow control

Flow control:

– regulates the flow (i.e., distribution) of information among
accessible objects

– ensures that information contained in some objects does not
flow explicitly or implicitly into less protected objects

Flow policy:

– specifies channels along which information is allowed to move
– covert channels (improperly) allows to pass from higher to

lower classification

We have seen an example:
MAC

623

Encryption of sensitive data

Encryption converts data into cyphertext

– performed by applying an encryption algorithm to data using a
pre-specified encryption key

– resulting data can only be decrypted using a decryption key to
recover original data

Encryption protocols and algorithms

– a big separate research field
– classic approach: symmetric (secret key) protocols

requires the same secret key for encryption and decryption
– modern approach: asymmetric (public key) protocols

RSA scheme (Rivest, Shamir, and Adleman, 1978):
encryption with public key, decryption with private key
deep mathematics (number theory, one-side functions) 624

What have we learned?

Brief intro to database security

Next time: Part 3 (NoSQL)

625

IN3020&4020 – Database Systems (2024)
Part 3: NoSQL
Lecture 25: Overview

22 April

Egor V. Kostylev
IFI, University of Oslo
egork@ifi.uio.no

Big Picture (reminder)

Syllabus of the course:

– (Extended) Intro and SQL recap ✓

Part 1. Query processing in relational databases ✓

Part 2. Transaction management in relational databases ✓

– Database security ✓

Part 3. NoSQL DBMS

– Advanced DBMS architecture (IN4020 only)

632

Lecture schedule

Date Part Topic
.

24 16.04 (Tue) (no part) Database security
25 22.04 (Mon) Part 3: NoSQL Overview
26 23.04 (Tue) Part 3: NoSQL Knowledge Graphs
27 29.05 (Mon) Part 3: NoSQL RDF and SPARQL
28 30.04 (Tue) Part 3: NoSQL Neo4j and Cypher
29 06.05 (Mon) for IN4020 Advanced DBMSs

(digital, intro for IN5040)
30 07.05 (Tue) Wrap-up Summary
31 13.05 (Mon) 2024 exam discussion Summary

Exam: Thursday, 30 May

633

Materials to read about NoSQL

1. Fundamentals of Database Systems by R. Elmasri and
S.B. Navathe (7th edition):

Section 24 (and 25) (close to my presentation)

2. (English) Wikipedia

3. Systems’ tutorials (MondoDB, SPARQL, etc.)

4. etc.

634

Lectures plan

1. Introduction and classification

2. Document-based systems

3. Key-valued stores

4. Column-based systems

5. Graph-based (a quick look)

635

1. Introduction and classification

NoSQL: Intro

New main-line types of applications (data science, social media)
impose new requirements upon the underlying systems
(including DBMS)

NoSQL (Not only SQL) serves these needs

Most NoSQL systems are distributed over several nodes
Main challenges (and motivation for NoSQL):

– semi-structured data (no or little schema)
– high performance
– data availability and replication (several unreliable nodes)
– scalability (as opposed to immediate consistency)
– sharding and range partitioning

636

NoSQL and Big Data

NoSQL systems focus on Big Data:

– data sets too large or complex for traditional data-processing
– challenges: capturing data, data storage, data analysis, search,

sharing, transfer, visualisation, querying, etc.
– V-characteristics:

- Volume (currently, the size 1015B–1018B),
- Velocity (speed of creation, ingestion, and processing)
- Variety (various types)
- (Veracity, Value, Variability, etc.)

Some typical applications that use NoSQL:

– Social media (Facebook, etc.)
– Web links (Google search)
– Marketing and sales (Amazon, etc.)
– Interactive maps (Google maps, etc.)
– Email (Gmail, etc.)
– Ontologies and Knowledge Graphs (Equinor, Bosch, etc.)

637

NoSQL: distributed characteristics

NoSQL characteristics related to distributed database systems:

– Scalability (horizontal, i.e., adding more distributed data nodes)

– Availability via replication and eventual consistency
(c.f., serialisable consistency)

– Replication models
- Master-slave (write to one master, propagate to slaves)
- Master-master (different writes, reconciliation)

– Sharding of files (one table distributed over several files)

– High performance data access (e.g., via indexes)

638

NoSQL: data model and query language characteristics

NoSQL characteristics related to data models and query languages:

– Schema not required: data may be
- semi-structured

for example, JSON and XML data formats
- self-describing (‘schema’ as a part of data)

for example, RDF/S knowledge graphs

– Less powerful query languages:
- usually search rather than querying (e.g., no join)
- (S)CRUD: (search), create, read, update, delete

– Versioning
- e.g., timestamps

639

NoSQL: Categories

Categories of NoSQL systems

– Document-based systems: MongoDB, CouchDB, etc.

– Key-value stores: DynamoDB, Voldemort, etc.

– Column-based (or wide-column) systems: HBase, Cassandra, etc.

– Graph-based systems: RDF, Neo4j, etc.

– Hybrid systems: HADOOP, etc.

– (Object databases, XML databases)

640

NoSQL: Landscape

Some examples in the landscape:

641

CAP theorem

Levels of consistency among replicated (distributed) data items

– the strongest form: serialisability
high overhead: can reduce read/write performance

– (on this slide, ‘consistency’ is not the C in ACID)

CAP theorem (more like a principle here, since only informally):
The three desired properties

of distributed systems with replicated data:

– consistency: every read gets most resent write
– availability: every read and write receives a response
– partition tolerance: works after a (disconnected) split

are not possible to guarantee simultaneously
(in distributed system with data replication)

642

CAP theorem: Concequences

CAP theorem:
consistency, availability, and partition tolerance
are not possible to guarantee simultaneously

NoSQL system designers can choose two of three to guarantee

– availability and partition tolerance more important

– weaker consistency levels is often acceptable

– eventual consistency is often adopted

643

Document-based NoSQL systems

Document-based systems: Idea

Document stores:
Collections of similar documents

Individual documents may be complex objects:

– documents may have internal structure and be self-describing
– can have different data elements (attributes)

Documents can be specified in various formats

– XML (Extensible Markup Language)
file format for storing, transmitting, and reconstructing arbitrary data

tree-like semi-structured data

– JSON (JavaScript Object Notation)
open standard human-readable file format and data interchange format

attribute-value pairs and arrays 644

MongoDB data model

MongoDB

– a popular document-based approach

– documents stored in binary JSON (BSON) format

Individual documents stored in collections

– collection creation example:

– first parameter specifies the collection name

– collection options may include limits
on size and number of documents

– (each document in collection has unique ID)

645

MongoDB data model: CRUD

Collection of documents does not have a schema

– structure of documents are chosen based on how documents
will be accessed

Document creation using insert operation (documents in BSON)

–

Document reading using find operation with a Boolean condition
(and indexing)

–

Document deletion using remove operation

–
646

MongoDB: Example

Two collections (projects and workers) with interreferences:

Note: Different workers can have different keys

Can be achieved via inserts:

647

MongoDB Distributed Systems: Concurrency and Replication

Concurrency in MongoDB:

– Two-phase commit for atomicity and consistency

Replication in MongoDB:

– Replica sets for multiple copies on different nodes

– Variation of master-slave approach:
primary copy, secondary copy, and arbiter
(arbiter participates in elections of a new primary if needed)

– All write operations applied to the primary copy and
propagated to the secondaries

– User can choose read preference
(read requests can be processed at any replica)

648

MongoDB Distributed Systems: Sharding

Sharding in MongoDB:

– horizontal partitioning divides a collection
into disjoint partitions (shards) of documents

– shards stored on different nodes to achieve load balancing

– partitioning field (shard key) exists in every document in the
collection and be indexed

– range or hash partitioning is used

649

Key-Value NoSQL stores

Key-Value stores: Overview

Key-value stores:
focus on high performance, availability, and scalability
(as opposed to complex querying and search)

– Key: unique identifier associated with a data item
used for fast retrieval

– Value: the data item itself
can be string or array of bytes

No built-in query language
fast retrieval by key is the main goal and characteristic
application is responsible for searching, querying, etc.

Several similar systems, including

– DynamoDB (Amazon, proprietary)
– Voldemort (open-source) 650

DynamoDB

DynamoDB:
part of Amazon Web Services and SDK platform (proprietary)

Uses its own terminology:

– Table: collection of items (with no schema)

– Item: set of attribute-value pairs

– Attribute: simple or complex unique identifier (primary key)

– Value: arbitrary data values

Implements quick access via hashing and indexing

651

Voldemort

Voldemort
open-source key-value system similar to DynamoDB
focus: horizontal scalability, replication, sharding

Voldemort features:

– Simple basic CRUD operations (get, put, and delete by key)

– High-level formatted data values (input as JSON)
– Hashing for distributing key-value pairs across nodes (i.e.,

sharding)
- also used for replication (like master-slave, but more advanced)

– Consistency and versioning:
- concurrent writes allowed
- each read may return several versions

652

Other Key-Value stores

Redis key-value cache and store

– caches data in main memory to improve performance
– master-slave replication and high availability
– persistence by backing up cache to disk

Apache Cassandra

– offers features from several NoSQL categories
– used by Facebook and others

Oracle NoSQL database

– high-level of integration into other Oracle products

etc.
653

Column-based (wide-column)
NoSQL systems

Column-based systems: Overview

Column-based systems:
for storing large amount of data
similar to key-based, but with multi-dimensional keys

(e.g., table name, row key, column info and time-stamp)

BigTable: Google’s distributed storage system for big data

– Used in Gmail
– Uses Google File System for data storage and distribution
– (omitted in our presentation)

Apache Hbase: a similar, open-source system

– Uses Hadoop Distributed File System (HDFS) for data storage
– Can also use Amazon’s Simple Storage System (S3)

654

Hbase Data Model

Data organisation concepts:

– Namespace: collection of tables
– Named table: set of self-describing rows with row keys

(ordered lexicographically)
– Named column families (associated with tables)

created on creation of table and cannot be changed
used for grouping together related columns (attributes)

– each column family can be associated with column qualifiers
make the model self-describing
not specified on creation, can be different in rows

– a column is a combination ColumnFamily:ColumnQualifier
– a timestamp identifies a version of a data item

Each column family stored in its own file(s)
using the HDFS file system 655

HBase: CRUD

Hbase Provides only low-level CRUD operations
(Applications can implement more complex operations)

Create operation:
Creates a new table (with associated column families)

Put operation:
Inserts new data (or new versions of existing data)

Get operation:
Retrieves data associated with a single row

(most recent by default, but older versions also possible)

Scan operation:
Retrieves all rows from a table

Delete operation:
Make at item ‘invisible’

656

HBase: Example

657

HBase: Storage

Each Hbase table divided into several regions

– each region holds a range of the row keys in the table
– row keys must be lexicographically ordered
– each region has several stores

(column families are assigned to stores)

Regions assigned to region servers for storage

– master server responsible for monitoring the region servers

Hbase uses

– Apache Zookeeper (open source system for services related to
data naming, distribution, and synchronisation)

– HDFS (Hadoop Distributed File System) for file services

658

Graph databases: A quick look

Graph databases: Ideas

Graph databases idea:

– Data represented as a (labelled) graph
(collection of vertices (nodes) and edges)

– Labels store data associated with nodes and edges

Two main types:

– RDF Graphs
Older, W3C standardised
has a standardised query language SPARQL

– Property graphs
Newer, ISO standardised (very recently!)
has several query languages:

PGQL (Oracle), Cypher (Neo4j), Tinkerpop (Apache), etc.

659

Graph databases

Next time

660

What have we learned?

Brief intro to NoSQL

Next time: Graph databases (in detail)

661

IN3020&4020 – Database Systems (2024)
Part 3: NoSQL
Lectures 26–28: Graph Databases

(and Knowledge Graphs)

23, 29, 30 April

Egor V. Kostylev
IFI, University of Oslo
egork@ifi.uio.no

Big Picture (reminder)

Syllabus of the course:

– (Extended) Intro and SQL recap ✓

Part 1. Query processing in relational databases ✓

Part 2. Transaction management in relational databases ✓

– Database security ✓

Part 3. NoSQL DBMS

– Advanced DBMS architecture (IN4020 only)

668

Materials to read about NoSQL

1. Fundamentals of Database Systems by R. Elmasri and
S.B. Navathe (7th edition):

Section 24 (few pages only)

2. (English) Wikipedia

3. Systems’ tutorials
- RDF and SPARQL are W3C standards

e.g., https://www.w3.org/TR/rdf11-concepts/
- Neo4j and Cypher also gave good documentation

4. etc.

669

Lectures plan

1. Overview of knowledge graphs

2. Semantic knowledge graphs

2.1. RDF

2.2. Implicit Knowledge: RDFS and OWL

2.3. Query language: SPARQL

3. Property graphs

3.1. Neo4j

3.2 Cypher

670

1. Overview of knowledge graphs
(a.k.a. graph databases)

Why graphs?

Graphs:

– universal mechanism for
describing complex data

– shared terminology between
disciplines

– intuitive (!)

– many data are naturally graphs
- social media
- economic networks
- the Web
- molecules
- networks of neurons
- etc.

671

Knowledge graphs

Knowledge graphs (KGs), or Graph Databases

– annotated, usually directed, often multi- graphs

– studied in Knowledge Representation and Reasoning AI branch
– capture data (facts) and semantics (metadata, schema, rules)
– nodes connected by relationships

672

KGs: Emerging technology

Still there in recent years (in some form)

Graphs:

– Underlie Graph Databases as a NoSQL approach

– Used in the new generation of Enterprise and Web applications

– Exploited in representational and structure-aware learning

673

KGs in enterprise example

One of the main use is data integration:

– departments keep data in own databases in different formats
– they specify the mappings (i.e., ‘views’) to a common KG
– the KG can be accessed (e.g., queried) without knowing the

individual schemas

Example:

674

KGs in the Web (and Enterprise) example

Google Knowledge Graph:

– ‘A huge knowledge graph of interconnected entities
and their attributes’

Amit Singhal, Senior Vice President at Google

– ‘A knowledge base used by Google to enhance its search
engine’s results with semantic-search information gathered
from a wide variety of sources’

http://en.wikipedia.org/wiki/Knowledge_Graph

– used in many Google applications,
including search and voice assistant

– emerged from open Freebase KG, is based on information
derived from many sources (e.g., Wikidata, Wikipedia)

– contains over 70 billion facts (i.e., edges) 675

Google KG in Search: Example 1

Entity search and summarisation

676

Google KG in Search: Example 2

Discovering related entities

677

Google KG in Search: Example 3

Answering factual questions

678

Other enterprise KGs

Microsoft graph:

Siemens, LinkedIn, Airbnb, eBay, Apple, etc.

679

Linked data principles

Enterprise KGs are usually a closed implementation of Web of Data
(Semantic Web) and Linked Data principles

Linked Data principles (by Tim Berners-Lee):

– all conceptual things should have a name (e.g., starting with HTTP)
– looking up a name should return useful data about the thing in question

in a standard format
– anything a thing relates (i.e., links) to

should also be given a name (and be accessible) 680

Linked data

Linked Data:

– method for publishing data on the Web

– self-describing semi-structured data:
entities and relations between them

– can be accessed using semantic queries

W3C (WWW consortium) developed standards for Linked Data
(http://www.w3.org/standards/semanticweb/data):

– data format: RDF

– knowledge: RDFS and OWL

– query language: SPARQL

681

RDF graphs: Idea

RDF graph: a set of triples subject predicate object

of IRIs or literals (see below), can be seen as

Example:
http://my-domain.com/id/Alice http://xmlns.com/foaf/0.1/gender “female” .

http://my-domain.com/id/Alice http://xmlns.com/foaf/0.1/name “Alice” .

http://my-domain.com/id/Alice
http://www.w3.org/1999/02/22-rdf-syntax-ns#type

http://xmlns.com/foaf/0.1/Person

682

Property Graphs: Idea

Property graphs:

– more modern approach
– no IRI’s, more structure
– no standard yet (!)
– implemented in several systems

(e.g., Neo4j with its own query language Cypher)

Example (with terminology):

Some constraints, such as

– each relationship has exactly one type
– each node can have none or several labels and/or properties 683

Before we proceed to details

What can we do with graphs?

– querying using SQL-like languages (SPARQL, Cypher)

– more complex graph algorithms

– ML over graph

Next we briefly look at the latter two,
leaving more detailed discussion of query languages for later

684

Graph algorithms

Path & subgraph finding:
find the shortest path(s) or other ‘best’ subgraph(s)

(e.g., single source or all-pairs shortest path, Minimum-weight spanning tree)

Centralities:
determine the importance of distinct nodes in a network

(e.g., Closeness Centrality, Betweenness Centrality, Google’s PageRank)

Community detection:
evaluate how a group is clustered or partitioned,

as well as its tendency to strengthen or break apart

(e.g., Louvain, label propagation, triangle count)

685

Example: Centralities

Shortest path (simplest version):

– a shortest path between 2 nodes in indirected unweighted graph

Closeness Centrality: a number for a node

– the average shortest path length between the node and all nodes

Betweenness Centrality: a number for a node

– the sum of proportions of shortest paths (for all pairs of nodes
in the graph different from the node) that pass through the node:

g(v) =
∑

s ̸=v ̸=t

σst(v)

σst

σst the number of shortest paths from s to t

σst is the number of those paths that pass through v

686

Example: Louvain method for community detection

– Used for detecting communities in networks

– Evaluates how much more densely connected the nodes within
a community are, compared to how connected they would be
in a random network

687

Machine Learning on Graphs

There are many ML tasks on graphs:

– most natural:
node classification (predict the type of a given node)

– many others:
link prediction, network similarity, etc.

– classic approach:
embed the input (graph and nodes) into a vector space,
apply a standard NN

– structure-aware approach:
use Graph Neural Networks (GNNs)
come to me if interested

688

Machine Learning on Graphs: Examples

689

KG Summary

Graph databases (knowledge graphs) idea:

– Data represented as a (labelled) graph
– Labels store data associated with nodes and edges

Two main types:

– RDF Graphs
Older, W3C standardised
has a standardised query language SPARQL

– Property graphs
Newer, not yet standardised
has several query languages Cypher (by Neo4j), etc.

An emerging technology

– becoming popular in industry and academic applications
– developed by many large and small companies
– KGs and ML complement each other

690

2. Semantic KGs
(RDF, RDFS/OWL, SPARQL)

2.1. RDF Graphs

RDF Intro

RDF: a language that enable us to make statements about resources
Example statement: “John is father of Bill ”

RDF graph is a set of triples (here in Turtle-like syntax):

subject1 predicate1 object1 . subject2 predicate2 object2

– subject: resource (IRI) or blank node
– predicate: resource
– object: resource, literal or blank node

Triple subject predicate object is often written as
(subject, predicate, object) in texts

Example: (ex:john, ex:father-of, ex:bill)
(here, ex: is an abbreviation for an http://... prefix, see below)

Can be seen as a first-order logic fact
ex:father-of(ex:john, ex:bill) 691

RDF Graph Representation

RDF graph (set of triples) is often visualised as a
labelled directed multi-graph

– nodes: subjects and objects

– edges (i.e., edges labels): predicates

Example: (ex:john, ex:father-of, ex:bill)
can be seen as the graph on the right

Remember the mismatch:
edges can also be nodes (rare in practice)

692

RDF graph: More complex example

Here and usually:

– resources are filled-in ovals
– blank nodes are empty ovals
– literals are boxes 693

RDF elements: Resources

A resource may be an identifier of

– Web page (e.g., <http://www.w3.org>)

– person (e.g., <http://www.w3.org/People/Berners-Lee/>)

– book (e.g., urn:isbn:4-534-34674-4)

– anything else denoted with a URI (or IRI, a Unicode version of
URI)

IRI (and URI) is an identifier and not a location on the Web

RDF allows making statements about resources:
(<http://www.w3.org/People/Berners-Lee/>, <http://www.w3.org/HasName>, “Tim”)

(urn:isbn:0-345-33971-1, <http://www.w3.org/Has-Author>, “John”)

694

URI, URL, URN, IRI

Uniform Resource Identifier (URI):
a string of characters used to identify a name or a resource on the Web

URI is URL or URN:

– Uniform Resource Name (URN) defines an item’s identity

Example: URN urn:isbn:4-534-34674-4 is a URI specifying the

identifier system (ISBN) and the unique reference within the system

– Uniform Resource Locator (URL) provides a method for
finding the resource

Example: URL <https://www.uio.no/studier/emner/matnat/ifi/IN3020>

identifies a resource (IN3020’s home page) and implies that a

representation of that resource is obtainable via the HTTP link

IRI: a Unicode version of URI
695

RDF elements: Literals

Literal can be

– plain literal:
sequence of symbols (e.g., “any text”),
optionally followed by language tag
(e.g. “Hello, how are you?”@en-GB)

– typed literal:
(e.g., “hello”^^xsd:string and “1”^^xsd:integer)
recommended datatypes are XML Schema datatypes
xsd:string, xsd:integer, xsd:float, xsd:boolean, etc.

Literal can be only the object of a triple, for example:

696

RDF elements: Blank nodes

Blank nodes are nodes without a URI; used for

– unnamed resources
– more complex-structured data

(RDF containers, reification, OWL anonymous classes, etc.)

Usually written with _: prefix

There may be different blank nodes (different from SQL NULLs)

Example:
(ex:john, ex:hasName, _:johnsname)
(_:johnsname, ex:firstName, “John”^^xsd:string)
(_:johnsname, ex:lastName, “Smith”^^xsd:string)

697

RDF containers: Idea

RDF containers:

– used to add more structure to the data
(surrogate, no semantics)

– group objects for the same subject and predicate:

Motivating examples:

“The lecture is attended by John, Mary and Chris (without specified order)”

called bag

“RDF-Concepts are edited by Graham and Jeremy (in that order)”

called seq

“The source code for the application may be found at at least one of

ftp1.example.org, ftp2.example.org, ftp3.example.org”

called alt

698

RDF containers

Three types of containers:

– rdf:Bag: unordered set of items
– rdf:Seq: ordered set of items
– rdf:Alt: set of alternatives

Represented by a blank node _:cont connected to rdf:XXX
by a triple <_:cont, rdf:type, rdf:XXX>

Items in the container are linked to _:cont by rdf:_1, rdf:_2, . . .

Limitations:

– semantics of the container is up to the application
– what about closed sets (e.g., how do we know whether

Graham and Jeremy are the only editors of RDF-Concepts)?
Can be represented by RDF collections (see below)

699

RDF Bag container: Example

“The lecture is attended by John, Mary and Chris
(without specified order)”

700

RDF Seq container: Example

“RDF-Concepts are edited by Graham and Jeremy (in that order)”

701

RDF Alt container: Example

“The source code for the application may be found at at least one
of ftp1.example.org, ftp2.example.org, ftp3.example.org”

702

RDF collections: Example

“RDF-Concepts are edited by Graham and Jeremy
(in that order and nobody else)”

703

Reification: Idea

Reification: statements about statements (also more structure)

Example: “John’s name is John Smith” normally represented by
(ex:john, ex:hasName, “John Smith”)

Example: “Mary claims that John’s name is John Smith”

We need to relate a URI to the triple, which is not possible naturally

Reify (i.e., transform) (ex:john, ex:hasName, “John Smith”) to
(_:myStatement, rdf:type, rdf:Statement)

(_:myStatement, rdf:subject, ex:john)

(_:myStatement, rdf:predicate, ex:hasName)

(_:myStatement, rdf:object, “John Smith”)

and add a triple
(ex:mary, ex:claims, _:myStatement) 704

Reification: Properties

Reification:
has no formal semantics—
that is, the original and the reified forms

are not formally equivalent
(but this can be detected by an application)

RDF uses only binary properties
(e.g, “John’s name is John Smith”)

Reification can be also used for higher-arity properties
(e.g, “John takes IN3020 in 2023”)

705

RDF Vocabulary

RDF vocabulary:
resources (IRIs) in RDF dedicated for some purpose
we have seen some (rdf:type, rdf:Seq, etc.)

In reality, RDF vocabulary is defined in the namespace:
http://www.w3.org/1999/02/22-rdf-syntax-ns#

Grouped into several sets:

– Classes (rdf:Property, rdf:Statement, rdf:XMLLiteral, rdf:Seq,

rdf:Bag, rdf:Alt, rdf:List)

– Properties (rdf:type, rdf:subject, rdf:predicate, rdf:object,

rdf:first, rdf:rest, rdf:_n, rdf:value)

– Other (rdf:nil)

706

RDF Vocabulary

RDF Vocabulary:

– formally, there is nothing special about these IRI’s
– may have desired assumed meaning,

which can be used in applications

For example, rdf:type is used for typing:
(A, rdf:type, B) means “A belongs to class B”

rdf:Seq, rdf:Bag, rdf:Alt, rdf:List mean as explained above

However, every RDF graph implicitly contains several triples:

– (P, rdf:type, rdf:Property) for each P in the property position

– (rdf:type, rdf:type, rdf:Property)

– . . .

707

RDF syntax variants

RDF has several file formats (i.e., syntaxes understood by systems)

– Turtle

– XML

– N-Triples (similar to Turtle)

– JSON-LD

– (my (s, p, o) format above does not count,
it is only for humans)

Next we briefly look at some of them

708

RDF Syntax: Turtle

Simple Turtle is most direct syntax:

– full triples (blanks between elements, dot-separated)
– full IRIs, enclosed in < and >

– readable, but wordy

Example:

709

RDF Syntax: Turtle

Turtle also allows for some shortcuts, such as

– @base for the base IRI: may be omitted in the graph after
– @prefix introduces an abbreviation for a prefix
– ; means that in the following triple the subject is omitted

and taken from the previous triple
– [] introduces an unlabelled blank node

Example:

See https://www.w3.org/TR/turtle/ for further details 710

RDF Syntax: XML

XML syntax is more wordy

Example (only):

(Note: this is a different graph)

See https://www.w3.org/TR/rdf-syntax-grammar/ for further details
711

RDF Named graphs

Sometimes we need to work with several RDF graphs
(in one RDF store)

To access them (e.g., in SPARQL), we can give them names
a name is also a IRI

Conceptually, we can see a triple in a named graph
as a quadruple of IRIs:

(We omit the details)
712

2.2. Implicit knowledge in RDF:
RDFS and OWL

RDFS and OWL idea

RDF Vocabulary is just a convention for usage of some URIs
(no special meaning)

RDFS and OWL are technologies to encode implicit knowledge:

– some URIs (vocabulary) have special meaning

– explicit triples with these URIs in an RDF graph imply other
implicit triples (i.e., knowledge) according to specific rules

Example: graph with

(John, rdf:type, #Student), (#Student, rdfs:subClassOf, #Person)

implicitly contains (under RDFS entailment) (John, rdf:type, #Person)
according to the RDFS rule

(A, rdf:type, Class1) (Class1, rdfs:subClassOf, Class2)
(A, rdf:type, Class2)

713

RDFS summary

RDFS (RDF schema):

– W3C standard (see https://www.w3.org/TR/rdf-schema/)
– Systems working with RDF (e.g., SPARQL) can be customised to work

under RDFS entailment regime (i.e., to take implicit triples into account)
– IN4060 – Semantic Technologies for more details

RDFS vocabulary:

RDF vocabulary is also used in RDFS rules
(but have special meaning here, contrary to RDF) 714

RDFS entailment: Example

RDFS rules over graph

entail, for example,
(ex:John, rdf:type, ex:Person)
(ex:JohnName, rdf:type, ex:String)

715

OWL summary

RDFS entailment is rather simple

OWL (Web Ontology Language) goes further in such knowledge:

– allows for complex entailment rules (in fact, rule patterns)
based on Description Logics (DLs, several versions)

– for example OWL implies the rule (in DL syntax)
Student ⊓ HasIFIOffice ⊑ IFIStudent, which means
‘Every student who has an IFI office is an IFI student’

– uses OWL vocabulary (with owl: prefix)
that allows to encode such entailments

– entailment (called DL reasoning) are may be complex

– W3C standard (https://www.w3.org/TR/owl2-overview/)
– several systems: HermiT, ELK, KAON, etc.
– IN4060 – Semantic Technologies for more details

716

2.3. Query language for RDF:
SPARQL

Relational Databases and RDF

Relational databases:
a well-established technology to store and query data
has well-known advantages and disadvantages
over other approaches to manage data

Can we translate (ideally, automatically) RDF graphs to relations
and use SQL for querying the data?

Yes, but there are some disadvantages
which we will see on an example RDF graph:

(person12345, rdf:type, uni:lecturer)
(person12345, uni:name, “Joe Doe”)
(uni:lecturer, uni:title, “University Professor”)

717

Storing RDF data in relational form: Normalised approach

Possible approach: normalise data into relation(s)

In our example,
(person12345, rdf:type, uni:lecturer)

(person12345, uni:name, “Joe Doe”)

(uni:lecturer, uni:title, “University Professor”)

translates to

Advantages:
Querying is standard; for example, ‘Find names of all lecturers’

can be written in SQL as SELECT name FROM Lecturer

Drawbacks:
Each new type of content requires a new table

Not scalable, not dynamic, not based on the RDF principles (triples)
718

Storing RDF data in relational form: Less normalised

Another possible approach:
relations for triples with IDs, Resources, Literals, etc.

In our example, the triples translate to

Advantages:
flexible in adding new statements dynamically without changing the schema

Drawbacks:
using SQL for querying may be very inefficient due to a lot of joins

for example, ‘Find names of all lecturers’ requires 5 joins

719

SPARQL Intro

SPARQL:

– native query language for RDF data
– uses SQL-like syntax for query structure
– uses Turtle-like syntax for triples (possibly with variables)
– avoids the drawbacks of possible translations to SQL

– (in one sentence:
Looks like SQL over one Triple table,
but with several differences in details)

Example:

SELECT ?name
WHERE { ?s <http://example.org/uni/name> ?name .

?s rdf:type <http://example.org/uni/lecturer> }

In SPARQL, ‘?’ is a variable prefix 720

SPARQL query elements

Basic SPARQL SELECT query structure:

(PREFIX . . .) *
– prefix mechanism for abbreviating URIs, as in Turtle

SELECT [DISTINCT | REDUCED] . . .
– identifies the variables to be returned in the query answer

[FROM [NAMED] . . .]
– the graph to be queried (if not default)

WHERE . . .
– query pattern to match (may be complex)

[ORDER BY . . .] [LIMIT . . .] [OFFSET . . .]

– number and order of answers, as in SQL

Besides SELECT, there are ASK, CONSTRUCT, etc.,
which we will look at the end of the lecture 721

More about some SPARQL Keywords

PREFIX:

– specifies a namespace as in Turtle
– may be none, one, or many
– Example: PREFIX uni: <http://example.org/uni/>

SELECT DISTINCT and SELECT REDUCED:

– normally, SPARQL gives a bag of mappings
(i.e., variable assignments, see below)

– DISTINCT does duplicate elimination, as in SQL
– REDUCED is flexible: leave the system to decide eliminate or not

ORDER BY, LIMIT, OFFSET:

– order the answers and specifies the fraction, as in SQL
– may be several order comparators, possibly with ASC, DESC modifiers
– Example:

SELECT ?name, ?age WHERE ...
ORDER BY ?name, DESC(?age) LIMIT 5 OFFSET 10 722

SPARQL Example: Subject and object retrieval

Query ‘Return the full names of all people in the graph’ :

PREFIX vCard: <http://www.w3.org/2001/vcard-rdf/3.0#>

SELECT ?fullName

WHERE { ?x vCard:FN ?fullName }

over RDF graph gives
?fullName
===========
"John Smith"

"Mary Smith"

Essentially, selection and projection
723

SPARQL Example: Property retrieval

Query ‘Return the relations between John and Mary’ :

PREFIX ex: <http://example.org/#>

SELECT ?p

WHERE { ex:john ?p ex:mary }

over RDF graph gives
?p
===========
<http://example.org/#marriedTo>

Essentially, selection and projection
724

SPARQL Example: Several-triple patterns

Query ‘Return the spouse of a person by the name of John Smith’ :

PREFIX vCard: <http://www.w3.org/2001/vcard-rdf/3.0#>

PREFIX ex: <http://example.org/#>

SELECT ?y

WHERE { ?x vCard:FN “John Smith” . ?x ex:marriedTo ?y }

over RDF graph gives
?y
===========
<http://example.org/#mary>

Essentially, selection, projection, and join 725

SPARQL Example: Several answer variables, blank nodes

Query ‘Return the names with their first names’ :

PREFIX vCard: <http://www.w3.org/2001/vcard-rdf/3.0#>

SELECT ?name, ?firstName

WHERE { ?x vCard:N ?name . ?name vCard:Given ?firstName }

over RDF graph gives
?name ?firstName
===========
_:a “John”

_:b “Mary”

Blank nodes (in RDF graphs) are treated as usual URIs
726

SPARQL Example: Filter

Query ‘Return all people over 30’ :

PREFIX ex: <http://example.org/#>

SELECT ?x

WHERE { ?x hasAge ?age . FILTER(?age > 30) }

over RDF graph gives
?x
===========
<http://example.org/#john>

FILTER is a part of WHERE clause, essentially complex selection
727

SPARQL Example: Optional matching

Query ‘Return all people and their spouses, if we know about any’ :
PREFIX ex: <http://example.org/#>

SELECT ?person, ?spouse

WHERE { ?person ex:hasAge ?age .

OPTIONAL { ?person ex:marriedTo ?spouse } }

over RDF graph gives
?person ?spouse
===========
<.../#mary>

<.../#john> <.../#mary>

OPTIONAL sub-clauses may be complex
(e.g., several triples, nested optional with bottom-up evaluation) 728

SPARQL WHERE queries: Summary

Syntax of SPARQL WHERE clause:

– triple pattern as base case (a triple possibly with variables)
– . as ‘join’, similar AND in SQL
– more complex conditions via FILTER
– optional matching via OPTIONAL (no direct SQL analog)
– bag union via UNION (does not require same sets of variables, cf. SQL)
– property paths (reachability in a graph, difficult to express in SQL)
– aggregates, subqueries, etc.

Semantics SPARQL WHERE queries:

– RDF graph as input, a multiset (bag) of mappings as output
– a mapping is an assignment of RDF terms to variables

(may have different variables in mapping domains in the same multiset)
– query evaluation may be formally defined using SPARQL algebra

(manipulates bags of mappings,
evaluated bottom-up: from simple sub-queries to more complex)

729

SPARQL ASK Example: Testing if a solution exists

Query ‘Are there any married persons’ :
PREFIX ex: <http://example.org/#>

ASK { ?person ex:marriedTo ?spouse }

over RDF graph gives
===========
yes

ASK . . . is essentially SELECT (no variables) WHERE . . .

730

SPARQL CONSTRUCT Example: Building RDF graphs

Query ‘Rewrite the naming triples from vCard to foaf’ :
PREFIX vCard: <http://www.w3.org/2001/vcard-rdf/3.0#>

PREFIX foaf: <http://xmlns.com/foaf/0.1/>

CONSTRUCT { ?x foaf:name ?name }

WHERE { ?x vCard:FN ?name }

over RDF graph gives RDF graph
ex.john foaf:name “John Smith".

ex.marry foaf:name “Marry Smith"

CONSTRUCT creates a new graph
731

RDF triplestores and SPARQL engines

There are several triplestores,
most of which include SPARQL engines:

– AllegroGraph

– OpenLink Virtuoso

– GraphDB

– Apache Jena

– Oracle Spatial and Graph DB

– RDFox

– etc.

See details related to scalability of triplestores at
https://www.w3.org/wiki/LargeTripleStores

732

3. Property path graphs
(Neo4j, Cypher)

3.1. Neo4j (and GQL) data model

(Labelled) graph databases

Labelled graphs:
natural to describe data and traverse through it

– each node has an inner structure describing its properties
– the edges indicate relationships between the nodes
– the edges can carry information in the same way as the nodes

Data in the labelled-graph form: can be schema-free

– new nodes and edges (with new inner structures) can be
introduced dynamically

– existing nodes and edges can be expanded with new properties

Search: Specify how the graph should be navigated

– the graph is traversed via pointers to neighbouring nodes
(the traverse requires no indexes and no join operations)

733

Neo4j: Intro

Neo4j (https://neo4j.com):

– a native graph database

– ‘whiteboard friendly’

– schemaless – no need to define any structure in advance

– query language: Cypher
- declarative, pattern-based
- transaction support

– scalability (support for clusters)

– examples of use: eBay, HP

– open-source under GPL

734

Neo4j: Getting started

Easiest to get started is via the Neo4j Sandbox:
https://neo4j.com/sandbox

Alternatively, download and install locally the Neo4j desktop:
https://neo4j.com/download/neo4j-desktop/

735

Neo4j data model: Property Graphs

Node: can have any number (none, one or several) labels
Relationships:

– directed edges between two nodes

– two nodes can have several relationships between

– each relationship has exactly one type

Properties:

– key-value pairs

– can be attached to both nodes and relationships (any number)

– key is a character string

– value is from a base datatype (e.g., int, char) or an array over a base
datatype (e.g., int[], char[])

736

3.2 Cypher query language

Cypher Graph patterns: Intro

The strength of a property graph lies in its ability
to encode patterns of connected nodes and relationships

Cypher is strongly based on patterns (cf. SPARQL patterns)

– patterns are used to match desired graph structures

– simple pattern connects two nodes by a single relationship
example: Person LIVES_IN City

– complex patterns can express arbitrarily complex concepts (i.e., use many
nodes and relationships)

example: Person LIVES_IN City IS_PART_OF Country

Cypher represents graph-related patterns using clauses and keywords

for example, MATCH, WHERE and DELETE

All the details at https://neo4j.com/docs/cypher-manual

737

Neo4j Cypher Refcard

Alternatively, you can start with the infamous Cypher Refcard

738

Node syntax

Nodes are represented in Cypher using a pair of parentheses:

– () an anonymous, uncharacterised node
– (varName) a node labelled by a variable (restricted to a single

statement)
– (:label) restrict the matches of the node by a specific label
– {key1:value1, ... , keyn:valuen} restrict the matches of

the node by a specific properties

Examples:

739

Relationship syntax

Relationships are represented with dashes:

– -- relationships (direction and types are unrestricted)

– <--, --> directed relationships

– [...] to specify details
(variables, relationship types, properties)

Examples:

740

Pattern syntax

Patterns are expressed by combining nodes and relationships
node relationship node

Examples:

741

Clauses

Cypher statements typically have multiple clauses,
each clause performs a specific task, such as

– create and match patterns in the graph

– filter, project, sort, or paginate results

– compose partial statements

742

Creating data

The simplest clause is CREATE

To return the created (or retrieved) data the RETURN clause is used
(refers to the variable assigned to the pattern elements)

743

Creating data: more complex structures

We can create more complex structures

Usually, we want to connect new data to existing structures
Requires us to find existing patterns in graph data

744

Matching patterns

Matching patterns is done using the MATCH statement,
by passing the patterns describing what to look for

MATCH statement searches for the specified patterns
and return one row per successful pattern match

It is possible to attach structures to the graph
by combining MATCH and CREATE

745

Completing patterns

MERGE checks for the existence of data first before creating it
defines a pattern to be found or created
(can provide additional properties to set ON CREATE)

MERGE can also assert that a relationship is only created once

746

Filtering results

Filtering conditions are expressed in a WHERE clause
(here, =∼ is regular expression matching operator)

Allows to use Boolean expressions with AND, OR, XOR and NOT

747

Returning results

The RETURN clause can return nodes, relations, and expressions

Examples of simple expressions:

– values of keys from key-value pairs: numbers, arrays, etc.

– functions over other expressions:
a + b, length(array), toInteger(“12”), etc.

Can use expression AS alias to improve readability

DISTINCT indicate unique results in RETURN

748

Aggregating information, ordering and pagination

Aggregation over final results can be used in the RETURN clause
common aggregation functions are supported
(e.g., count, sum, avg, min, and max)

Ordering by ORDER BY expression
(optionally with ASC/DESC modifiers)

Pagination by SKIP offset LIMIT count

Other features: UNION, WITH, etc.
749

Graph tasks (reminder)

Used to compute metrics for graphs, nodes, or relationships

Provide insights on

– nodes and pairs of nodes (shortest path, etc.)
– relevant entities in the graph (centralities, ranking),
– inherent structures (community-detection, graph-partitioning, clustering)

Many of these tasks have high (worst-case) complexity

– iterative approaches frequently traverse the graph for the computation
using random walks, breadth-first or depth-first searches, or pattern
matching

– optimised algorithms utilise certain structures of the graph, recall already
explored parts, and parallelise operations

Neo4j has highly efficient built-in library for many graph tasks
(distinctive feature in comparison to other approaches)

750

Graph Algorithms in Neo4j

Path finding:
find the shortest path or evaluate the availability and quality of routes
(minimum-weight spanning tree, random walk,
all-pairs and single-source shortest path via A∗ and Yen’s K-shortest

paths)

Centralities:
determine the importance of distinct nodes in a network
(PageRank, Betweenness Centrality, Closeness Centrality)

Community detection:
evaluate how a group is clustered or partitioned,
as well as its tendency to strengthen or break apart
(Louvain, label propagation, connected components,
triangle count & clustering coefficient)

751

Example: Shortest Path

Calculates the shortest (weighted) path between a pair of nodes
(Dijkstra’s algorithm is the most well-known approach)

Often used to finding directions between physical locations
(e.g., Google maps)

Can also be used in social networks
to find the degrees of separation between people

752

Removing and modifying data

DELETE: deletes nodes, relationships or paths
DETACH DELETE: deletes a node and all relationships to or from it

REMOVE: removes key-value pairs from nodes and relationships,
and removes labels from nodes

SET: updates labels and values of keys

753

Graph vs. relational models

Graph model vs. Relational model:

– traversing a graph is much cheaper than joins;
uses direct pointers to neighbouring nodes

– workload is shifted from query execution
to data insertion and maintenance

– ‘dynamic’ schema make it simpler to use for not-experts

Signs of managing highly-connected data with a relational database

– large number of JOINs
– numerous self-JOINs (or recursive JOINs)
– frequent schema changes
– slow-running queries (despite extensive tuning)
– pre-computing the results

754

From Relational to Graph DBs

Example:

Comparison:
https://neo4j.com/developer/graph-db-vs-rdbms/

Tips for translation:
https://neo4j.com/developer/relational-to-graph-modeling/ 755

Multi-model databases

Multi-model DB is
a database that consists of different data storage mechanisms
(e.g., relational, document, key/value, graph):

– all in one database engine

– unifying query language and API

– cover all supported data models and
even allow for mixing them in a single query

756

Multi-model databases: Examples

– ArangoDB: document (JSON), graph, key-value

– Cosmos DB: document, table, key-value, JSON, SQL

– CouchBase: relational (SQL), document

– CrateDB: relational (SQL), document (Lucene)

– MarkLogic: document (XML and JSON),
graph (RDF with OWL/RDFS), text, geospatial,
relational (SQL)

– OrientDB: document (JSON), graph, key-value, text,
geospatial, binary, reactive, relational (SQL)

– Datastax: key-value, tabular, graph

– etc.

757

What have we learned?

Graph databases, including RDF/SPARQL and Neo4j/Cypher

758

IN4020: Database Systems (2024)
Lecture 29: Database Research Trends

Leif Harald Karlsen
leifhka@ifi.uio.no

University of Oslo

6 May 2024

766 / 780

Lecture overview

Look at:
■ trends in database research
■ related courses at IFI
■ related research initiatives at UiO

766 / 780

The Beckman report (2016)

■ Available online1

■ Report from meeting(s) of top database researchers
■ Meets every 5 years
■ Identified big data as the defining challenge
■ Identified the following trends:

■ ”developing scalable data infrastructures”
■ ”coping with increased diversity in both data and data management”
■ ”addressing the end-to-end data-to-knowledge pipeline”
■ ”responding to the adoption of cloud-based computing”
■ ”accommodating the many and changing roles of individuals in the data life
cycle”

1https://cacm.acm.org/research/the-beckman-report-on-database-research/

767 / 780

Main challenge: Big data

■ Main characteristics: Volume, Velocity and Variety
■ Need to adapt current solutions
■ Many systems move to cloud
■ Need completely new solutions and techniques

768 / 780

Trend: Scalable big/fast data infrastructures

Need to develop:
■ more cost-aware query processing and optimization
(multiple cores, large clusters)

■ more specialized hardware (database machine)
■ more cost-efficient storage (new types of memory)
■ high-speed data-stream processing
■ late-bound schemas (for un-/rarely-used data)
■ new models for consistency and concurrency
(NoSQL)

■ new types of benchmarks (cost of ownership)

769 / 780

Trend: Coping with diversity in data management

Need to develop:
■ better cross-platform integration (performance, abstraction)
■ programming models suitable for operations on very large datasets (R,
Python, etc.)

■ better data processing workflows (lazy ”Lego bricks”)

770 / 780

Trend: End-to-end processing of data

Need to develop:
■ data-to-knowledge pipeline adapted to scale and diversity
■ more diverse, (knowledge-)customizable and open source tools
■ more tools for understanding data (visualization, explanation, etc.)
■ knowledge bases capturing more of domain knowledge

771 / 780

Trend: Cloud services

Need to improve:
■ data elasticity (make data easier to move)
■ protocols for data replication
■ automatic system administration
■ multitenancy (multiple users of same physical resource)
■ data curation and provenance in the cloud
■ support for hybrid clouds (local + cloud)

772 / 780

Trend: Roles of people in the data life cycle

New roles:
■ Data producers: Make it easier to e.g. add metadata
■ Data curators: Make it easier to crowd-source curation
■ Data consumers: Make it easier to pose complex queries
■ Online communities: Make it easier to share, mine, exploit data

773 / 780

The Seattle Report (2022)

■ Available online2

■ Have made progress on 2016-trends, but still lots to do
■ Many new developments (AI/ML, data science)
■ Trends:

■ Data science as a field
■ Data governance
■ Cloud data services
■ Database engines

2https://dl.acm.org/doi/pdf/10.1145/3524284

774 / 780

Trend: Data science as a field

Need to improve:
■ data-to-insight pipelines (cleaning, integration,
transformation takes 80-90% of the time)

■ data provenance (track data, reproduce)
■ interactive data exploration at scale
■ declarative programming for data
■ metadata management for improved ML

775 / 780

Trend: Data governance

Need to improve:
■ data use policy (e.g. GDPR)
■ data privacy (e.g. in analysis/aggregation)
■ ethical considerations (e.g. bias, discrimination)

776 / 780

Trend: Cloud services

Need to improve:
■ systems for serverless cloud database services (autoscaling, pay for quick
allocation)

■ support for disaggregation (separate storage and compute)
■ support for multitenancy
■ support for edge computing
■ support for hybrid/multi cloud
■ auto-tuning and configuration
■ SaaS cloud database applications (study tradeoffs of multitenancy)

777 / 780

Trend: Database engines

Need to:
■ support heterogeneous computing (GPU, FPGA)
■ improve algorithms for distributed transactions
■ make better systems for data lakes
■ improve algorithms for query approximation
■ improve in-database ML-inferencing
■ investigate ML for auto-tuning
■ improve benchmarking and reproducibility

778 / 780

Other relevant courses at IFI

■ IN3060/4060: Semantic Web Technologies
■ IN5040: Advanced Database Systems for Big Data
■ IN5800: Declarative Data Engineering

779 / 780

Database reasearch at UiO: Examples of centers and projects

■ SIRIUS: Centre for Scalable Data Access3 (SFI, 2015-2023)
■ Respire: Responsible Explainable Machine Learning for Sleep-related
Respiratory Disorders4 (2022-2027)

■ Integreat: Norwegian Centre for Knowledge-driven Machine Learning5 (SFF,
2023-2033)

3https://sirius-labs.no/
4https://www.mn.uio.no/ifi/forskning/prosjekter/respire/index.html
5https://www.integreat.no/

780 / 780

