Geometry and linear algebra for IN3050/IN4050

Jan Tore Lønning

February 2020

Abstract

Machine learning (ML) builds on knowledge from several fields, in particular probabilities and linear algebra. We will in IN3050/IN4050 keep probabilities at a minimum. But as we will be interested in the algorithmic properties of ML, we need some background in vectors and matrices. The IN3050/IN4050 students come from several study programs and have different mathematical backgrounds. Many books on ML contains some first chapters, or appendices, with background knowledge in topics like probabilities and linear algebra. Marsland, *Machine Learning* contains e.g., an appendix on Python and NumPy, but assumes familiarity with linear algebra from the reader. The following pages are meant as an appendix, or introductory chapter, on linear algebra for Marsland's book. Some of you probably know everything already, for others it may serve as a fresh up, and for some as an introduction. Of course, this cannot replace a more proper education on linear algebra, but it will hopefully be of some help.

1 Cartesian coordinates

1.1 Points in the plane

We begin with the very basic, points in the plane. By introducing two perpendicular axes, we can refer to any point in the plane with a pair of real numbers, cf., figure 1.

We will write (x, y) for a general point in the plane. In these days, we are so familiar with this connection between algebra and geometry that we take it for

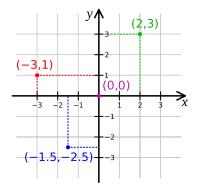


Figure 1: Points in the plane (Source: Wikipedia)

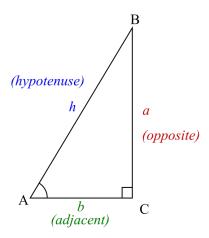


Figure 2: Right triangle (Wikipedia)

granted. This connection is, however, far from self-evident, and it was a major achievement by René Descartes (1596-1650) to establish it. By the way, Descartes also used this discovery to study optique and how light rays were processed by the eye, and speculated how this could further be processed by the brain. He was thereby one of the forerunners of AI. But that is another story.

Remember, Pythagoras' theorem; in a right triangle (one where one of the angles is a right angle), we have the following relationship between the lengths of the hypothenuse (the side opposite the right angle), c, and the two other sides, a and b (called the catheti, plural of cathetus, figure 2).

$$a^2 + b^2 = c^2$$

From this, we can define a distance between two points in the Cartesian plane by the following formula, cf., figure 3.

$$d((x_1, y_1), (x_2, y_2)) = \sqrt{(x_2 - x_1)^2 + (y_2 - y_1)^2}$$
(1)

It does not matter in which order we insert the two points, as we remember $(-5)^2 = 5^2 = 25$, and $\sqrt{(-5)^2} = \sqrt{25} = |5| = 5$, where |a|, the absolute value of a, is defined by |a| = a for $a \ge 0$ and |a| = -a for a < 0.

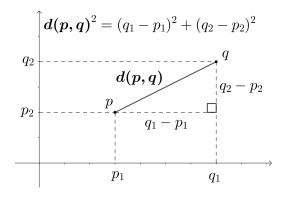


Figure 3: Distance in the plane (Wikipedia)

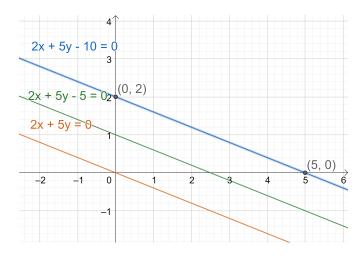


Figure 4: Parallel lines (Made with GeoGebra)

The distance function, as we have defined it here, is the common (or "normal") way to define distance in the Cartesian plane. In the machine learning literature, it is often called the L^2 - or l2-distance. It is possible to define other distance metrics in the plane. Another metric also used in machine learning is the *Manhattan* or L^1 -distance defined by the following formula.

$$d_1((x_1, y_1), (x_2, y_2)) = |x_2 - x_1| + |y_2 - y_1|$$
(2)

Why do you think it is called Manhattan distance?

1.2 Lines in the plane

Given three real numbers, a, b, and c, where at least one of a or b does not equal 0. All points (x, y) satisfying

$$ax + by + c = 0 (3)$$

will lay on a straight line. If $b \neq 0$, we can consider $x_1 = 0$ and find the intercept with the y-axis, $y_1 = \frac{-c}{b}$. Similarly, if $a \neq 0$, we find the intercept with the x-axis, $x_2 = \frac{-c}{a}$. For example, take the line 2x + 5y - 10 = 0. We find the intercepts, (0, 2) and (5, 0); see figure 4. If $b \neq 0$, we can find the slope of the line, as $m = -\frac{a}{b}$. For the example, the slope $m = -\frac{2}{5}$ is negative, which means that the line is leaning downwards to the right.

So far, we have taken the equation for the line as a starting point. Alternatively, we could start with two points. For any two different points in the plane, there is one and exactly one line passing through the two points. For the two points (x_0, y_0) and (x_1, y_1) , where $x_0 \neq x_1$, the line consists of all points (x, y) satisfying the following formula.

$$\frac{y - y_0}{x - x_0} = \frac{y_1 - y_0}{x_1 - x_0} \tag{4}$$

It is straightforward to transform this to the form ax + by + c = 0 and express a, b and c in terms of x_0, x_1, y_0, y_1 . In particular, we can calculate the slope of the line to be $m = \frac{y_1 - y_0}{x_1 - x_0}$. This formula also works for lines passing through the origin. (By the way, origin is the point (0,0) where the two axes cross each other, remember?)

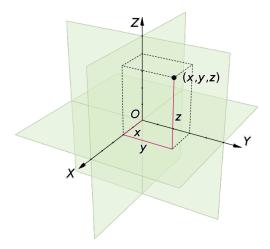


Figure 5: Points in 3D space (Wikipedia)

Two lines that do not cross each other are said to be *parallel*. If we keep a and b the same, but change c, we get parallel lines. For c = 0, we get a line through the origin. What happens if a = 0 or b = 0; for example, which line is 5y - 10 = 0 or 2x - 10 = 0?

1.3 3D and higher dimensions

Just like we can locate points in the plane with respect to two axes, points in space can be located related to three axes. The three axes must meet in a point, the origin, and be pair-wise perpendicular. As in the two-dimensional case, each axis has to be oriented and the three axes use the same unit of length. Any point can then be described with three numbers, its coordinates with respect to the three axes, (x, y, z).

The definition of distance generalizes to the 3D space. For example, in figure 5, let c be the line segment from (0,0,0) to (x,y,0) and d the line segment from (0,0,0) to (x,y,z). By Pythagoras' theorem, we see that $d^2=c^2+z^2$ and $c^2=x^2+y^2$, hence $d^2=x^2+y^2+z^2$. We can define the general distance between two points as,

$$d((x_1, y_1, z_1), (x_2, y_2, z_2)) = \sqrt{(x_2 - x_1)^2 + (y_2 - y_1)^2 + (z_2 - z_1)^2}$$
 (5)

As in the two-dimensional case, it is possible to define alternative distance metrics, including the L^1 Manhattan distance.

We may proceed and identify 4-dimensional space with the set of all 4-tuples of numbers. Of course, 4-dimensional space does not render itself to nice drawings and it is hard to get a geometric understanding of it, but the mathematics works similarly to 2D and 3D space. It does not stop at 4 dimensions, we may define n-dimensional space for any positive natural number. In particular, the definition of distance generalizes to n dimensions.

$$d((x_1, x_2, \dots, x_n), (y_1, y_2, \dots y_n)) = \sqrt{(x_1 - y_1)^2 + (x_2 - y_2)^2 + \dots + (x_n - y_n)^2}$$
(6)

for any two numbers (x_1, x_2, \dots, x_n) and $(y_1, y_2, \dots y_n)$ in n-space.

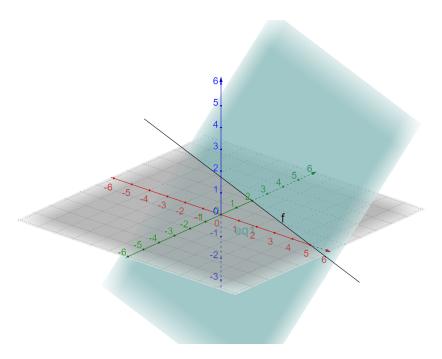


Figure 6: A plane (Made with GeoGebra)

1.4 Planes in space

In the plane, the equation (3) defines a straight line. In space, a similar equation defines a plane; i.e., if not a = b = c = 0, the points (x, y, z) satisfying

$$ax + by + cz + d = 0 (7)$$

is a plane. Figure 6 illustrates the plane 2x + 5y + 4z - 10 = 0. Similarly to the 2D case, we may determine the intercepts with the axis. Considering $y_1 = z_1 = 0$, we find the intercept with the x-axis, $x_1 = -\frac{d}{a} = -\frac{-10}{2} = 5$, and the intercept with the y-axis, 2, and with the z-axis, 2.5. By the way, what does the planes 2x + 5y - 10 = 0 and 2x - 10 = 0 look like?

Some observations:

- If d=0, the plane will pass through the origin.
- If $k \neq 0$, ax + by + cz + d = 0 and kax + kby + kcz + kd = 0 describe the same plane.
- If $d \neq e$, ax + by + cz + d = 0 and ax + by + cz + e = 0 describe parallel planes.
- Two planes that are not parallel, intersect in a straight line.

As an illustration of the last point, it should be possible in figure 6 to see how the plane 2x + 5y + 4z - 10 = 0 intersects the plane z = 0 in the straight line 2x + 5y - 10 = 0. Figure 7 shows how the plane 2x - 5y + 10z, which passes through the origin, intersects the plane z - 1 = 0 in a straight line, which does not pass the origin.

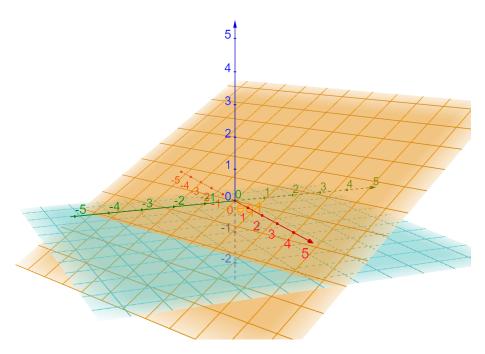


Figure 7: Crossing planes (Made with GeoGebra)

Remark It is not always easy to make good 2D-drawings of 3D-phenomena, and you might find it hard to interpret some of our figures. You might, however, go to GeoGebra.org and make similar figures and play with them yourself. There you rotate the figures and watch them from different angles.

1.5 Python

We may represent points in n-dimensional space by tuples of length n in python. It is straightforward to define a distance function for these representations which works independently of n. We first present it in a procedural way.

```
def dist_proc(a, b):
    # Euclidean distance in a procedural way
    s = 0
    for (x,y) in zip(a,b):
        s += (x - y) ** 2
    return s ** 0.5
```

This might be similar to the way you are used to implement such functions from earlier courses. In Python, it is possible to write this more compactly using list comprehension.

```
def distance_L2(a, b):
    "L2-distance using comprehension"
    s = sum((x - y) ** 2 for (x,y) in zip(a,b))
```

We will use list comprehension a lot in this course, and you should make sure you are able to read, understand, and use it.

We wait with the representation of lines and planes in Python until we have introduced some more theory.

2 Vectors

2.1 Vector operations

Vectors and vector spaces are key concept in modern mathematics. These concepts developed gradually from the Cartesian geometry over more than 200 years. Vectors and vector spaces are quite general concepts and there are many different vector spaces. We will mainly be considered with vectors as tuples of real numbers, and we start with the simplest ones, pairs of reals. Pairs of real numbers can be consider as vectors if we equip them with two operations, addition and multiplication with real numbers. In the context of vectors, we call the reals for *scalars*, and multiplication by them for *scalar multiplication*. The two operations are defined componentwise by

Addition:
$$(x_1, y_1) + (x_2, y_2) = (x_1 + x_2, y_1 + y_2)$$

Scalar multiplication: a(x,y) = (ax,ay)

We see that this also yields other operations, like subtraction and division by a non-zero scalar, and that there is an identity element (0,0) for addition:

- $(x_1, y_1) (x_2, y_2) = (x_1, y_1) + (-1)(x_2, y_2)$
- (x,y)/a = (1/a)(x,y)
- (x,y) + (0,0) = (x,y)

We can also observe that the operations are in many respects "well-behaved". Given three vectors \mathbf{u} , \mathbf{v} and \mathbf{w} , and two scalars c and d, then

- $\mathbf{u} + \mathbf{v} = \mathbf{v} + \mathbf{u}$ (Commutativity)
- $\mathbf{u} + (\mathbf{v} + \mathbf{w}) = (\mathbf{u} + \mathbf{v}) + \mathbf{w}$ (Associativity)
- $c(d\mathbf{u}) = (cd)\mathbf{u}$ (Associativity)
- $c(\mathbf{u} + \mathbf{v}) = c\mathbf{u} + c\mathbf{v}$ (Distributivity)
- $(c+d)\mathbf{u} = c\mathbf{u} + d\mathbf{u}$ (Distributivity)

The set of pairs of real numbers with these operations is a vector space. We will call it V_2 . We can similarly consider all triples of real numbers together with componentwise addition and multiplication with scalars. They make up a vector space V_3 different from V_2 . More generally, for any natural number n, we have a vector space consisting of all n-tuples with the componentwise operations.

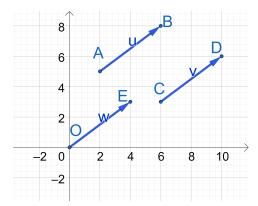


Figure 8: Equivalent vectors (Made with GeoGebra).

2.2 Vectors in the plane

We can define vectors as pairs of numbers without bringing in geometry. But it also a tradition to use vectors to describe entities that have a direction and magnitude, for example forces, velocity, acceleration, to mention a few examples. These vectors can be depicted as arrows in the plane, or more generally, the space, where the magnitude is reflected by the length of the vector. Any ordered pair (A, B) of points in the plane (or space) define an Euclidean, or geometric, vector with A as starting point and B as end point. The direction from starting point to end point is indicated with an arrowhead.

The important move which links this to vectors as pairs of triples of numbers, is to consider two vectors that have the same direction and length as equivalent. Thus the three vectors in figure 8 are all equivalent. For all our practical purposes, they can be considered to be the same vector, and can be identified with the vector \overrightarrow{OE} in the figure. We can refer to vectors starting in the origin, (0,0), by their endpoint, thus to \overrightarrow{OE} by E=(4,3).

The geometric interpretation of addition and multiplication with scalars may be illustrated as by figure 9. It is only the direction and length of the result that matters.

A word on notation. Traditionally, one has used an arrow or a bar over the name of the vector to distinguish between vectors and scalars—at least in handwriting. In printing, it has become more usual to use bold face for vectors. Thus \mathbf{w} , \vec{w} , \overrightarrow{OE} and E are variations of notations for the vector (4,3) in the figure 8.

Vectors in the plane have a *length*. The length of the vector is also called the

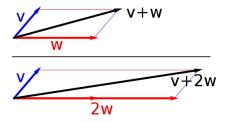


Figure 9: Vector addition and multiplication with scalars (Wikipedia).

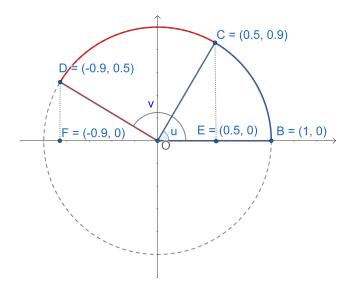


Figure 10: Angles and cosine (Made with GeoGebra)

norm of the vector. For a vector \mathbf{v} , the norm is written $||\mathbf{v}||$ in symbols. It should be no surprise that this is the same as the distance between the end-points of the vector. Thus, for the vector \mathbf{v} from (x_1, y_1) to (x_2, y_2) , we get

length of
$$\mathbf{v} = ||\mathbf{v}|| = d((x_1, y_1), (x_2, y_2)) = \sqrt{(x_2 - x_1)^2 + (y_2 - y_1)^2}$$
 (8)

For a vector $\mathbf{v} = (x, y)$ starting in (0, 0) this reduces to

$$||\mathbf{v}|| = \sqrt{x^2 + y^2} \tag{9}$$

2.3 Cosine

We take one step back and consider angles and trigonometric functions in the plane, in particular the cosine function. In a right-angled triangle, as the one in figure 2, the cosine of the angle A is the ratio of the (length of) the adjacent side and the hypotenuse, and the sine of the angle A is the ratio of the (length of) the opposite side and the hypotenuse.

$$\cos(A) = \frac{b}{h}, \ \sin(A) = \frac{a}{h} \tag{10}$$

When h = 1, $\cos(A) = b$ and $\sin(A) = a$.

These concepts can be generalized to obtuse (non-acute) angles by considering the unit circle in the Cartesian plane, cf. figure 10. Since the radius of the circle is 1, the cosine of the angle u ($\angle BOC$) is the x-coordinate of C, i.e., 0.5. This is generalized to the obtuse angle, such that the cosine of the angle $v = \angle BOD$ is the x-coordinate of D, which equals -0.9. This makes perfectly sense. The cosine of an angle v

- equals 1 if and only if the angle is 0;
- equals 0 if and only if the angle is a right angle, in radians $\pi/2$;

- is between 0 and 1 if an only if the angle is acute (i.e., between 0 and $\pi/2$);
- is negative if the angle is obtuse, between $\pi/2$ and π .

As you see, we choose to use radians when talking about the size of an angle—not degrees. The radians of the angle u (= $\angle BOC$) equal the length of the arc BC divided with the radius of the circle, OB. When we use the unit circle, the radius OB has length 1 and the radian of u equals the length of the arc BC. For this particular choice of C, this is $\pi/3$.

2.4 Dot product

We return to the vectors and introduce the important and useful concept of *dot* product, which is also called *inner product*, or scalar product. For two vectors in the plane, $\mathbf{a} = (a_1, a_2)$ and $\mathbf{b} = (b_1, b_2)$, it is defined to be

$$\mathbf{a} \cdot \mathbf{b} = a_1 b_1 + a_2 b_2 \tag{11}$$

Beware that the dot product is <u>not</u> a vector, it is real number, a scalar.

The dot product is related to the cosine according to the following formula for all non-zero vectors \mathbf{a} and \mathbf{b} , where v is the angle between the two vectors.

$$\mathbf{a} \cdot \mathbf{b} = ||\mathbf{a}|| \ ||\mathbf{b}|| \cos(v) \tag{12}$$

This is equivalent to

$$\cos(v) = \frac{\mathbf{a} \cdot \mathbf{b}}{||\mathbf{a}|| \ ||\mathbf{b}||} \tag{13}$$

We can immediately verify that this is correct for the angles u and v in figure 10, e.g.,

$$\frac{\overrightarrow{OB} \cdot \overrightarrow{OD}}{||\overrightarrow{OB}|| \ ||\overrightarrow{OD}||} = (1,0) \cdot (-0.9,0.5) = -0.9 = \cos(v)$$

But it also holds in general. (Look up a suitable text book for a proof if you are in doubt.) So for example, we get

$$\cos(u-v) = \cos(\angle COB) = \frac{\overrightarrow{OC} \cdot \overrightarrow{OD}}{||\overrightarrow{OC}|| \ ||\overrightarrow{OD}||} = (0.5, 0.9) \cdot (-0.9, 0.5) = 1$$

(By the way, the calculation is correct, but the numbers are not exact, they are approximations; they have been rounded by GeoGebra. When C's x-coordinate is 0.5, its y-coordinate should have been $\sqrt{1-x^2} = \sqrt{1-0.5^2} = \frac{1}{2}\sqrt{3}$, which has here been rounded off to 0.9.)

A few observations regarding the dot product. First, there is a connection between the dot product and the length of a vector.

$$\mathbf{a} \cdot \mathbf{a} = a_1 a_1 + a_2 a_2 = ||\mathbf{a}||^2 \tag{14}$$

We could have defined the length from the dot product.

Secondly, we observe that for any vector \mathbf{a} , the vector $\frac{\mathbf{a}}{\|\mathbf{a}\|}$ is a vector of length 1 pointing in the same direction as \mathbf{a} .

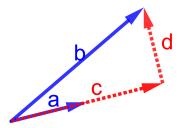


Figure 11: Decomposing a vector (Made with GeoGebra)

Thirdly, given two vectors \mathbf{a} and \mathbf{b} . The vector \mathbf{b} can be written as the sum of two vectors \mathbf{c} , pointing in the same direction as \mathbf{a} , and \mathbf{d} , orthogonal to \mathbf{a} , see figure 11. We call \mathbf{c} the projection of \mathbf{b} along \mathbf{a} . We can calculate the length of \mathbf{c} to be

$$||\mathbf{c}|| = ||\mathbf{b}|| \cos(\mathbf{v}) = ||\mathbf{b}|| \frac{\mathbf{a} \cdot \mathbf{b}}{||\mathbf{a}|| \ ||\mathbf{b}||} = \frac{\mathbf{a} \cdot \mathbf{b}}{||\mathbf{a}||}$$

and \mathbf{c} to be

$$c = ||\mathbf{c}|| \frac{\mathbf{a}}{||\mathbf{a}||} = \frac{\mathbf{a} \cdot \mathbf{b}}{||\mathbf{a}||^2} \mathbf{a} = \frac{\mathbf{a} \cdot \mathbf{b}}{\mathbf{a} \cdot \mathbf{a}} \mathbf{a}$$
(15)

If a has length 1,

$$\mathbf{c} = (\mathbf{a} \cdot \mathbf{b})\mathbf{a} \tag{16}$$

This is the projection of \mathbf{b} in the direction of \mathbf{a} .

2.5 Lines and vectors

We will see how lines can be defined in terms of vectors. We will in the following not distinguish between points and vectors (starting in the origin). Consider a vector $\mathbf{u} = A = \overrightarrow{OA} = (a_1, a_2)$ starting in the origin. This determines a straight line where a point (x, y) is on the line if and only if it is of the form $t\mathbf{u} = t(a_1, a_2)$ for some real number t, cf. figure 12.

Vectors yield yet another possibility for characterizing lines. Consider a vector $N=(n_1,n_2)$ orthogonal to the vector $A=(a_1,a_2)$. Since they are orthogonal, $N\cdot A=0$. Moreover, for any point X on the line through O and A, we have X=tA for some t, hence $X\cdot N=tA\cdot N=0$. Conversely, we can show that if $X\cdot N=0$, X has to be on the form tA for some t and be on the line. Hence, a line through the origin is completely determined by a normal vector N to the line. It consists of all points X such that $X\cdot N=0$.

What if the line does not pass through the origin? It is determined by a vector, $\mathbf{u} = (a_1, a_2)$ and a point on the line $B = (b_1, b_2)$. A point (x, y) is on the line if and only if it is of the form

$$B + tA = (b_1, b_2) + t(a_1, a_2)$$
(17)

for some real t.

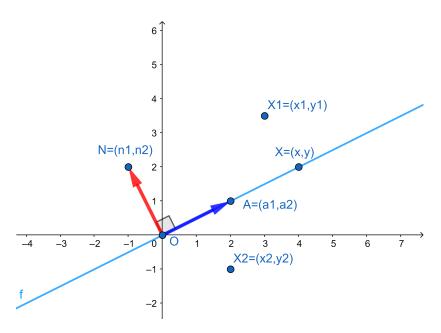


Figure 12: Vector definition of line through the origin (Made with GeoGebra)

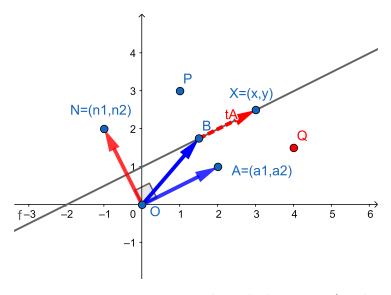


Figure 13: Line not through the origin. (Made with GeoGebra)

Also the line not passing through the origin can be characterized by a normal vector, N A point $X \neq B$ will be on the line if and only if the vector \overrightarrow{BX} is orthogonal to N; hence if and only if $(X - B) \cdot N = 0$.

In other words, a point X will be on the line if and only if $X \cdot N = B \cdot N$. The real number $X \cdot N$ will be the same, say s, for all numbers X on the line.

For points not on the line, we use the orientation of the normal vector N to talk about points above or below the line. For a point above the line, e.g. point P in figure 12, $P \cdot N > s$, while for a point below the line, $Q \cdot N < s$.

Observe the importance of the orientation of the normal vector N. We could equally well have used the normal vector $N_2 = -N$ to define the same line. Then a point X would be on the line if and only if $X \cdot N_2 = -s$. But now $Q \cdot N_2 > B \cdot N_2$, while $Q \cdot N < B \cdot N$.

2.6 Vectors in space; lines and planes

Three-dimensional vectors have a similar geometric interpretation in 3D-space. Much of what we saw for 2D-vectors in the plane carry over to vectors in space. Dot product is defined similarly. For two vectors in the space, $\mathbf{a} = (a_1, a_2, a_3)$ and $\mathbf{b} = (b_1, b_2, b_3)$, it is defined to be

$$\mathbf{a} \cdot \mathbf{b} = a_1 b_1 + a_2 b_2 + a_3 b_3 \tag{18}$$

The relationships between dot product and length and between dot product and cosine, cf. equations 12 and 13, also hold in space.

A line in space can be characterized by the same vector equation 17 as in the plane. A normal vector does not suffice to determine a line uniquely, however.

A plane in space can be defined similarly by a point C and two vectors A and B that are not parallel.

$$C + sA + tB = (c_1, c_2) + s(a_1, a_2) + t(b_1, b_2)$$
 for any t and s . (19)

A plane is uniquely determined by three points in the plane not on a straight line. Given three points P, Q, R, we get the plane by setting C = P, $A = \overrightarrow{PQ}$ and $B = \overrightarrow{PR}$ in equation 19.

Let N be a vector which is orthogonal to A and to B. For any X in the plane

$$(X - C) \cdot N = (C + sA + tB - C) \cdot N = sA \cdot N + tB \cdot N = 0 \tag{20}$$

Conversely, any X satisfying equation 20 will be in the plane defined by equation 19. We will call N a normal vector to the plane. We see that the plane can be defined by the normal vector similarly to the way the line in the 2D plane could be defined by a normal vector.

We also see that for all X in the plane $X \cdot N = C \cdot N$, call this e.g. d. A point X will be above the plane, defined by the direction of N, if and only if $X \cdot N > d$ and below the plane if and only if $X \cdot N < d$.

Say that N has the coordinates N=(a,b,c). Then $N\cdot X=ax+by+cz$ and we recognize that $X\cdot N=d$ gets the form ax+by+cz=d, similarly to the equation for a plane in equation 7.

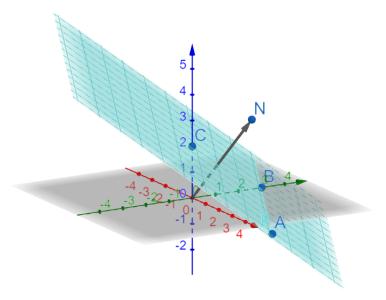


Figure 14: A plane with a normal vector. (Made with GeoGebra)

2.7 Higher dimensions

It is not easy to imagine what spaces of higher dimensions than three look like. But many of the concepts from two and three dimensional space can be generalized to these higher dimensional spaces. First, dot product is straightforwardly generalized by

$$(a_1, a_2, \dots a_n) \cdot (b_1, b_2, \dots c_n) = a_1 b_1 + a_2 b_2 + \dots + a_n b_n$$
 (21)

Even though it is hard to imagine vectors and angles in these spaces, we can define the angles between vectors from the dot product by formula 13, repeated here.

$$\cos(v) = \frac{\mathbf{a} \cdot \mathbf{b}}{||\mathbf{a}|| \ ||\mathbf{b}||} \tag{22}$$

It can be shown that with this definition many of the properties of angles from two and three dimensional spaces carry over. In particular, the dot product between two vectors will be zero if and only if one of them is a scalar multiple of the other. It makes meaning to say that two vectors are orthogonal if and only if their dot product equals zero, and the cosine will always take values between -1 and 1.

The concept of a line in 2D and a plane in 3D can be generalized to a hyperplane. Given a vector $N = (a_1, a_2, \dots a_n)$. All points $X = (x_1, x_2, \dots x_n)$ such that

$$N \cdot X = (a_1, a_2, \dots a_n) \cdot (x_1, x_2, \dots x_n) = 0 \tag{23}$$

defines a hyperplane through the origin with N as normal vector.

Given a point C such that $N \cdot C = d$. Then all points $X = (x_1, x_2, \dots x_n)$ such that

$$N \cdot X = (a_1, a_2, \dots a_n) \cdot (x_1, x_2, \dots x_n) = d$$
 (24)

defines a hyperplane through C with N as normal vector. As before, a point X will be above the plane if and only if $X \cdot N > d$ and below the plane if and only $X \cdot N < d$. The hyperplane will separate the n-dimensional space into two halves, the points above the hyperplane and the points on or below the hyperplane.

2.8 General vector spaces

The set of pairs of real numbers with the two operations is an example of a *vector space*. The set of triples of real numbers with addition and scalar multiplication defined componentwise makes another vector space. For any natural number n, the set of n-tuples with the componentwise operations makes a vector space.

In mathematics, a vector space, or linear space, is any mathematical structure satisfying a certain set of axioms. First, one has to determine the scalars. These can be the reals, but it can alternatively be the complex numbers or rationals or any structure which in mathematics is called a *field*. Then, one has to define the two operations of addition and scalar multiplication such that they satisfy a set of axioms.

For example, the set of all continuous function from real numbers to real numbers makes a vector space, where addition and scalar multiplication is defined as

$$(f+g)(x) = f(x) + g(x)$$
$$(cf)(x) = cf(x)$$

In this course, we will mainly consider vector spaces of n-tuples of reals.

2.9 NumPy

NumPy is a Python package for efficient numerical computation. It has arrays as basic data structures and is convenient for representing vectors. We will not give a tutorial on NumPy here; there exist many. But we will point out how vectors can be represented.

A Python list or tuple can be converted into an NumPy array, which can be considered as a vector.

```
In [1]: import numpy as np
In [2]: a = np.array([1,2,3])
In [3]: a
Out[3]: array([1, 2, 3])
In [4]: b = np.array((4.5, 6, 7))
In [5]: b
Out[5]: array([4.5, 6. , 7. ])
```

Observe that all entries in an array has to be of the same type. In the definition of b, we mixed integers and floats, but NumPy casted the integers to floats in the construction of b.

Vector addition can be represented by '+' and multiplication by scalars by '*'.

```
In [6]: a+b
Out[6]: array([ 5.5,  8. , 10. ])
In [7]: c = 5.0
In [8]: c*a
Out[8]: array([ 5., 10., 15.])
```

This is interpreted very differently to what happens if we use the same symbols between lists, e.g.

```
In [9]: [1,2,3]+[4.5,6,7]
Out[9]: [1, 2, 3, 4.5, 6, 7]
```

These NumPy operations look like they are taylor-made for vectors, but they are, in fact, examples of more general NumPy mechanisms of componentwise operations. For example, one may multiply arrays componentwise or add a scalar to a vector though these operations do not correspond to vector operations.

```
In [10]: a*b
Out[10]: array([ 4.5, 12. , 21. ])
In [11]: a+c
Out[11]: array([6., 7., 8.])
```

One may also apply a function to an array resulting in a componentwise application.

```
In [12]: np.cos(a)
Out[12]: array([ 0.54030231, -0.41614684, -0.9899925 ])
```

Observe that a * b is not the dot product. NumPy contains a function for calculating the dot product, which may be written two different ways.

```
In [13]: np.dot(a,b)
Out[13]: 37.5
In [14]: a.dot(b)
Out[14]: 37.5
```

Newer version of Python/NumPy also has a possibility for expressing this with the infix operator @. This makes longer expressions more readable and compact.

```
In [15]: a @ b Out[15]: 37.5
```

3 Matrices

3.1 Basic definitions and notation

A matrix is a rectangular array of scalars. It is normally enclosed in square brackets, as in the following example

$$B = \begin{bmatrix} 11 & 12 & 13 \\ 21 & 22 & 23 \end{bmatrix} \tag{25}$$

Sometimes—particularly in hand-writing—ordinary parentheses are used instead of square brackets as in the following example

$$C = \begin{pmatrix} 11 & 12 & 13 \\ 21 & 22 & 23 \\ 31 & 32 & 33 \end{pmatrix} \tag{26}$$

B has 2 rows and 3 columns; and its dimension is said to be 2×3 , which is read two by three. Matrix C has dimension 3×3 .

A scalar may be multiplied with a matrix componentwise to get a matrix of the same dimension, e.g.,

$$5B = \begin{bmatrix} 55 & 60 & 65\\ 105 & 110 & 115 \end{bmatrix} \tag{27}$$

Two matrices with the same dimensions can also be added componentwise, e.g.

$$B + \begin{bmatrix} 11 & 22 & 33 \\ 21 & 22 & 23 \end{bmatrix} = \begin{bmatrix} 22 & 34 & 46 \\ 42 & 44 & 46 \end{bmatrix}$$
 (28)

Thus, the set of matrices over a given set of scalars with the same dimensions can be considered a vector space.

Some words on notation. It is not a strict rule, but it is usual to use capitals to denote matrices (and to use bold face lowercase letters for vectors). We refer to the elements of the matrix by two indices, one for row and for column as in the following example for an $m \times n$ matrix.

$$X = \begin{bmatrix} x_{1,1} & x_{1,2} & x_{1,3} & \cdots & x_{1,n} \\ x_{2,1} & x_{2,2} & x_{2,3} & \cdots & x_{2,n} \\ x_{3,1} & x_{3,2} & x_{3,3} & \cdots & x_{3,n} \\ \vdots & \vdots & \vdots & \ddots & \vdots \\ x_{m,1} & x_{m,2} & x_{m,3} & \cdots & x_{m,n} \end{bmatrix}$$

$$(29)$$

Thus $x_{3,2}$ is the element in the third row and second column, and, more generally, $x_{i,j}$ is the element in the *i*th row and *j*th column. It will sometimes be convenient to refer to this element also by $X_{i,j}$, in particular when we consider the product of two matrices, e.g., to refer to element i,j of AB, we use $(AB)_{i,j}$

In mathematics, it is usual to start counting at 1, while in programming, for example Python, the counting starts at 0 and the indices in the first row will run from $x_{0,0}$ to $x_{0,n-1}$.

By interchanging rows and columns in a matrix A, we get the *transposed* of A, in symbols A^T . For example, the transposed of B is the following.

$$B^T = \begin{bmatrix} 11 & 21 \\ 12 & 22 \\ 13 & 23 \end{bmatrix} \tag{30}$$

A general definition of the transposed is that for a $m \times n$ matrix A, the transposed of A is the matrix A^T given by $(A^T)_{j,i} = A_{i,j}$ for all i, j such that $1 \le i \le m, 1 \le j \le n$.

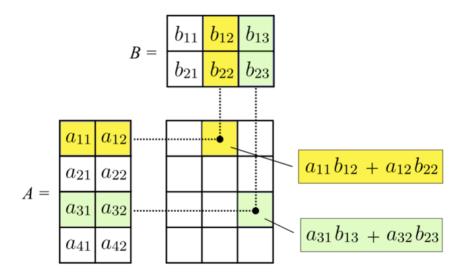


Figure 15: Matrix multiplication (Wikipedia)

3.2 Matrix multiplication

When A is an $m \times n$ matrix and B is an $n \times p$ matrix, we cn define the product C = AB. This is a $m \times p$ matrix. This is defined by the following definition for each entry

$$c_{i,j} = \sum_{k=1}^{n} a_{i,k} b_{k,j}$$
 for all i , such that $1 \le i \le m, 1 \le j \le p$

Observe that this does not have to equal BA. The product BA is not even defined unless also n = p.

3.3 Linear transformations and matrices

Matrices serve many purposes in mathematics and will be important in our understanding of machine learning. A basis for understanding them is to see how they are used to represent linear mappings. The notation

$$T: V \to W \tag{31}$$

is used to indicate that T is a mapping of elements in V to elements in W; for $v \in V$, $T(v) \in W$. We will be interested in the case where V and W are vector spaces with the same scalars. The mapping T is then called *linear* provided

- $T(\mathbf{u} + \mathbf{v}) = T(\mathbf{u}) + T(\mathbf{v})$
- $T(c\mathbf{u}) = cT(\mathbf{u})$

for all vectors \mathbf{u}, \mathbf{v} in V and scalars c.

To make the discussion easier, we will assume that V has dimension 3 and W has dimension 2, but it should be easy to see how this carries over to any finite m and n. Call the basis elements in V for $\mathbf{e}_1 = (1,0,0)$, $\mathbf{e}_2 = (0,1,0)$, and $\mathbf{e}_3 = (0,0,1)$, respectively. A general element in V has the form $(x_1, x_2, x_3) = x_1\mathbf{e}_1 + x_2\mathbf{e}_2 + x_3\mathbf{e}_3$. If

T is a linear mapping, it follows that $T((x_1, x_2, x_3)) = x_1 T(\mathbf{e}_1) + x_2 T(\mathbf{e}_2) + x_3 T(\mathbf{e}_3)$. In other words, the value of T for any element in V is totally determined by the value of T for the three basis elements.

Call the basis elements in W for $\mathbf{f}_1 = (1,0)$ and $\mathbf{f}_2 = (0,1)$. Then $T(\mathbf{e}_1) = a\mathbf{f}_1 + b\mathbf{f}_2$ for some a and b. Let us write $a_{1,1}$ for a and $a_{2,1}$ for b, i.e., $T(\mathbf{e}_1) = a_{1,1}\mathbf{f}_1 + a_{2,1}\mathbf{f}_2$, and similarly $T(\mathbf{e}_2) = a_{1,2}\mathbf{f}_1 + a_{2,2}\mathbf{f}_2$ and $T(\mathbf{e}_3) = a_{1,3}\mathbf{f}_1 + a_{2,3}\mathbf{f}_2$.

A general element x_1, x_2, x_3 in V is then mapped to

$$T(x_1, x_2, x_3)$$
= $x_1(a_{1,1}\mathbf{f}_1 + a_{2,1}\mathbf{f}_2) + x_2(a_{1,2}\mathbf{f}_1 + a_{2,2}\mathbf{f}_2) + x_3(a_{1,3}\mathbf{f}_1 + a_{2,3}\mathbf{f}_2)$
= $(x_1a_{1,1} + x_2a_{1,2} + x_3a_{1,3})\mathbf{f}_1 + (x_1a_{2,1} + x_2a_{2,2} + x_3a_{2,3})\mathbf{f}_2)$

We see that this corresponds to the matrix

$$m(T) = A = \begin{bmatrix} a_{1,1} & a_{1,2} & a_{1,3} \\ a_{2,1} & a_{2,2} & a_{2,3} \end{bmatrix}$$
 (32)

Each column in A tells what the corresponding basis element in V should be mapped to, and each row in A tells what will end up with the corresponding basis element in W.

Any linear transformation T corresponds to such a matrix. Conversely, any $m \times n$ matrix A defines a linear mapping T_A from V_m to V_n where

$$(T_A((x_1, x_2, \dots, x_n)))_i = (x_1 a_{i,1} + x_2 a_{i,2} + \dots + x_n a_{i,n}) = \sum_{j=1}^n x_j a_{i,j}$$
(33)

3.4 Composition of mappings and multiplication of matrices

To get a better grip of what is going on, let us consider some examples. We will consider vectors in the plane because it is easy to visualize, what is going on, i.e., we will consider transformations from V_2 to V_2 , and start with two matrices.

$$A = \begin{bmatrix} 2 & 0 \\ 0 & 1 \end{bmatrix}, \quad B = \begin{bmatrix} 0 & -1 \\ 1 & 0 \end{bmatrix}$$
 (34)

Each of them represents a mapping from V_2 to V_2 , call them T_A and T_b , resp. What do these mappings do to the vectors? We see that $T_A((x,y)) = (2x,y)$ it doubles the x-value, but leaves the y-value unaltered. While $T_B((x,y)) = (-y,x)$. This corresponds to rotating the vector $\pi/2$ counterclockwise. These illustrate some of the transformations one can do by linear mappings.

We can also repeat these mappings. For example $T_A(T_A((x,y))) = (4x,y)$ and $T_B(T_B((x,y)) = (-x,-y)$ corresponding to a rotation of π . What happens if we combine the two mappings? We see that $T_B(T_A((x,y)) = (-y,2x)$ and $T_A(T_B((x,y)) = (-2y,x)$.

In general, let U, V, and W be vector spaces and $T: U \to V$ and $S: V \to W$. Write ST for the mapping from U to W defined by $ST(\mathbf{u}) = S(T(\mathbf{u}))$. The example illustrates two important properties of ST. Firstly, when S and T are linear maps, then so is ST. Secondly, in general, ST is not the same as TS.

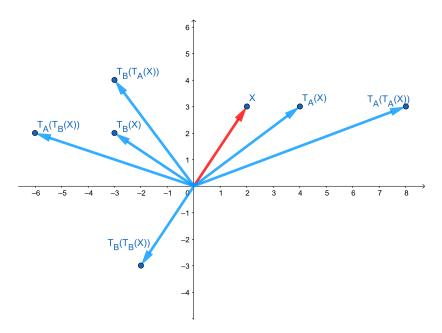


Figure 16: Linear mappings (Made with GeoGebra)

Suppose that the three vector spaces have finite dimensions, say $\dim(U) = n$, $\dim(V) = p$, $\dim(W) = m$. Then there will be a $m \times p$ matrix, such that $S = T_A$ and a $p \times n$ matrix, such that $T = T_B$. Since ST is a linear map, there has to be a $m \times n$ matrix C such that $ST = T_C$. We will call this matrix C = AB, the matrix product of A and B. If we inspect in detail the effects of applying first T_B and then T_A we can find the entries in the matrix C. For each entry i, j in C

$$c_{i,j} = \sum_{k=1}^{p} a_{i,k} b_{k,j} \tag{35}$$

In prose, to find the element i, j in C = AB, we multiply each element in row i of A with each element in column j of B and sum them. If we consider the elements in the rows of A and columns of B as vectors, the element i, j can be considered the dot product of the two vectors.

We have already observed that even when A and B both have the same dimension of the form $n \times n$, AB and BA do not have to be equal. Moreover, if A and B have different dimensions, say 2×3 and 3×2 , resp., AB will have dimension 3×3 while BA will have dimension 2×2 .

Multiplication of matrices do, however, have some nice properties. In particular, when the expressions are meaningful

$$A(BC) = (AB)C (36)$$

A word of warning. Matrix multiplication generalizes the dot product in the sense the each entry in the product matrix can be considered the dot product of rows and columns in the factor matrices. But the matrix multiplication itself is <u>not</u> a dot product. The dot product is a scalar. The matrix product is a new (two-dimensional) matrix.

3.5 Row and column vectors

A column vector is an $n \times 1$ matrix, e.g.

$$X = \begin{bmatrix} x_{1,1} \\ x_{2,1} \\ \vdots \\ x_{n,1} \end{bmatrix}$$

$$(37)$$

A row vector is a $1 \times n$ matrix, e.g.

$$Y = \begin{bmatrix} y_{1,1} & y_{1,2} & \cdots & y_{1,n} \end{bmatrix} \tag{38}$$

They can be used to represent vectors, e.g. X can represent $\mathbf{x} = (x_{1,1}, x_{2,1}, \dots x_{n,1})$. This can simplify (the description) of certain operations, as they can be described as multiplication of matrices. Several texts just identify a vector and the corresponding column vector. Other texts use row vectors as primary, and take column vectors as derived. From an applied perspective, it does not matter whether one considers column vectors or row vectors as primary. In particular, because the transposed of a row vector is a column vector (and the other way around). But it is important to be aware of the differences when one moves from one book that takes row vectors as primary to one that takes column vectors as primary. There is a danger of mixing things up and getting confused.

As humans, we can move easily between the vector and the column (or row) vector representing it. When we are to implement vectors and matrices, we have to be more careful, though. There is a difference between the n-dimensional vector, which is a one-dimensional array of n numbers, and the column (or row) vector, which is a two-dimensional array of numbers. When implementing matrices in Python or in NumPy, we have to be fully aware of the difference, as we soon will see.

3.6 Matrices in NumPy

NumPy represents matrices similarly to vectors. We can for example transform a list of lists to a matrix.

We can read out that this is a 2×3 matrix by the *shape* attribute.

In [5]: a.shape
Out[5]: (2, 3)

There is a simple attribute for finding the transposed of a matrix

The *reshape* attribute makes it possible to change the shape of a matrix. In particular, we can reshape a vector into an $m \times n$ matrix.

Matrix multiplication can be expressed with np.dot, or @, similarly to the dot product between vectors. That is a somewhat strange design choice, as a dot product between vectors is a scalar, while the product of two matrices makes a new matrix. It works fine, but one should always keep in mind the dimension/shape of the objects one considers.

Returning to the *reshape*, a convenient trick when we do not know the exact number of entries in a matrix, is to use -1 for the last dimension. NumPy will then choose the dimension that harmonize with the other dimensions.

```
In [13]: c.reshape(4,-1)
Out[13]:
array([[ 0,   1,   2],
        [ 3,   4,   5],
        [ 6,   7,   8],
        [ 9, 10, 11]])
```

In particular, this is useful if we want to transfer a vector to a column (or row vector).

```
In [14]: col = c.reshape(-1,1)
In [15]: col
Out[15]:
array([[ 0],
       [1],
       [2],
       [3],
       [4],
       [5],
       [6],
       [7],
       [8],
       [ 9],
       [10],
       [11]])
In [16]: col.shape
Out[16]: (12, 1)
In [17]: c.shape
Out[17]: (12,)
Finally, the following example shows how we can add a column of -1-s to the front
of a matrix, corresponding to adding a bias feature of -1.
In [18]: m = a.shape[0]
In [19]: bias = - np.ones((m,1)) # Makes a m*1 matrix of (-1)s
In [20]: new = np.concatenate([bias, a], axis=1)
In [21]: new
Out [21]:
```

This is a first version. All comments and corrections are welcome!

array([[-1., 11., 12., 13.],

[-1., 21., 22., 23.]])