IN3070/4070 - Logic - Autumn 2022

Lecture: Slide set for the Exam

Martin Giese

12th December 2022

Disclaimer

This slide set contains a selection of

- ► Syntax
- Semantics
- Calculi

for many of the logics discussed in the lecture. These slides will be available in Inspera during the exam. There is *no* guarantee that all of these will be needed or useful for the exam.

Propositional Logic

Syntax — Formulae

Formulae are made up of atomic formulae and the logical connectives \neg (negation), \land (conjunction), \lor (disjunction), \rightarrow (implication).

Definition 1.1 (Atomic Formulae).

Let $\mathcal{P} = \{p_1, p_2, ...\}$ be a countable set of symbols called atomic formulae (or atoms), denoted by lower case letters p, q, r, ...

Definition 1.2 (Propositional Formulae).

The propositional formulae, denoted A, B, C, F, G, H, are inductively defined as follows:

- 1. Every atom $A \in \mathcal{P}$ is a formula.
- 2. If A and B are formulae, then $(\neg A)$, $(A \land B)$, $(A \lor B)$ and $(A \to B)$ are formulae.

Let \mathcal{F} be the set of all (legal) formulae.

Semantics — Truth Value

Definition 1.3 (Interpretation).

Let A be a formula and \mathcal{P}_A the set of atoms in A.

An interpretation for A is a total function $\mathcal{I}_A : \mathcal{P}_A \to \{T, F\}$ that assigns one of the truth values T or F to every atom in \mathcal{P}_A .

Definition 1.4 (Truth Value).

Let \mathcal{I}_A be an interpretation for $A \in \mathcal{F}$. The truth value $v_{\mathcal{I}_A}(A)$ (shortly v(A)) of A under \mathcal{I}_A is defined inductively as follows. For an atomic formula A, $v_{\mathcal{I}_A}(A) = \mathcal{I}_A(A)$. For composite formulae:

Α	$v(A_1)$	$v(A_2)$	<i>v</i> (<i>A</i>)
$\neg A_1$	T		F
$\neg A_1$	F		T
$A_1 \lor A_2$	F	F	F
$A_1 \vee A_2$	otherwise		T

	Α	$v(A_1)$	$v(A_2)$	<i>v</i> (<i>A</i>)
	$A_1 \wedge A_2$	T	T	T
	$A_1 \wedge A_2$	otherwise		F
Ì	$A_1 o A_2$	T	F	F
	$A_1 o A_2$	otherwise		T

LK – Axiom and Propositional Rules

axiom

$$\overline{\Gamma, A \Rightarrow A, \Delta}$$
 axiom

▶ rules for ∧ (conjunction)

$$\frac{\Gamma, A, B \Rightarrow \Delta}{\Gamma, A \land B \Rightarrow \Delta} \land \text{-left} \qquad \frac{\Gamma \Rightarrow A, \Delta}{\Gamma \Rightarrow A \land B, \Delta} \land \text{-right}$$

▶ rules for ∨ (disjunction)

$$\frac{\Gamma, A \Rightarrow \Delta \qquad \Gamma, B \Rightarrow \Delta}{\Gamma, A \vee B \Rightarrow \Delta} \vee \text{-left} \qquad \frac{\Gamma \Rightarrow A, B, \Delta}{\Gamma \Rightarrow A \vee B, \Delta} \vee \text{-right}$$

▶ rules for → (implication)

$$\frac{\Gamma \Rightarrow A, \Delta \qquad \Gamma, B \Rightarrow \Delta}{\Gamma, A \rightarrow B \Rightarrow \Delta} \rightarrow \text{-left} \qquad \frac{\Gamma, A \Rightarrow B, \Delta}{\Gamma \Rightarrow A \rightarrow B, \Delta} \rightarrow \text{-right}$$

▶ rules for ¬ (negation)

$$\frac{\Gamma \Rightarrow A, \Delta}{\Gamma, \neg A \Rightarrow \Delta} \neg \text{-left}$$

$$\frac{\Gamma, A \Rightarrow \Delta}{\Gamma \Rightarrow \neg A, \Delta} \neg \text{-right}$$

First-order Logic

Syntax — Terms

Terms are built up of constant (symbols), variable (symbols), and function (symbols).

Definition 2.1 (Terms).

```
Let A = \{a, b, ...\} be a countable set of constant symbols, \mathcal{V} = \{x, y, z, ...\} be a countable set of variable symbols, and \mathcal{F} = \{f, g, h, ...\} be a countable set of function symbols.
```

Terms, denoted t, u, v, are inductively defined as follows:

- 1. Every variable $x \in V$ is a term.
- 2. Every constant $a \in A$ is a term.
- 3. If $f \in \mathcal{F}$ is an n-ary function (symbol) n>0 and t_1, \ldots, t_n are terms, then $f(t_1, \ldots, t_n)$ is a term.

Example: a, x, f(a,x), f(g(x),b), and g(f(a,g(y))) are terms.

Syntax — First-Order Formulae

Formulae are built up of atomic formulae and the logical connectives, \land , \lor , \rightarrow , and \forall (universal quantifier), \exists (existential quantifier).

Definition 2.2 (Atomic Formulae).

Let $\mathcal{P} = \{p, q, r, \ldots\}$ be a countable set of predicate symbols. If $p \in \mathcal{P}$ is an n-ary predicate (symbol) $n \ge 0$ and t_1, \ldots, t_n are terms, then $p(t_1, \ldots, t_n)$, \top , and \bot are atomic formulae (or atoms).

Definition 2.3 ((First-Order) Formulae).

(First-order) formulae, denoted A, B, C, F, G, H, are inductively defined as follows:

- 1. Every atomic formula p is a formula.
- 2. If A and B are formulae and $x \in V$, then $(\neg A)$, $(A \land B)$, $(A \lor B)$, $(A \to B)$, $\forall x A$, and $\exists x A$ are formulae.

Semantics — Interpretation

An interpretation assigns concrete objects, functions and relations to constant symbols, function symbols, and predicate symbols.

Definition 2.4 (Interpretation/Structure).

An interpretation (or structure) $\mathcal{I} = (D, \iota)$ consists of the following elements:

- 1. Domain D is a non-empty set
- 2. Interpretation of constant symbols assigns each constant $a \in A$ an element $a^{\iota} \in D$
- 3. Interpretation of function symbols assigns each n-ary function symbol $f \in \mathcal{F}$ with n > 0 a function $f^{\iota} : D^n \to D$
- 4. Interpretation of propositional variables assigns each 0-ary predicate symbol $p \in \mathcal{P}$ a truth value $p^t \in \{T, F\}$
- 5. Interpretation of predicate symbols assigns each n-ary predicate symbol $p \in \mathcal{P}$ with n > 0 a relation $p^{\iota} \subseteq D^n$

Semantics — Variable Assignments, Value of Terms

The interpretation doesn't tell what to do about variables. We need something additional.

Definition 2.5 (Variable Assignment).

Given the set of variables V, and an interpretation $\mathcal{I} = (D, \iota)$, a variable assignment α for \mathcal{I} is a function $\alpha : V \to D$.

Ben-Ari (7.18) writes this $\sigma_{\mathcal{I}_A}$

Definition 2.6 (Term Value).

Let $\mathcal{I} = (D, \iota)$ be an interpretation, and α an variable assignment for \mathcal{I} . The term value $v_{\mathcal{I}}(\alpha, t)$ of a term $t \in \mathcal{T}$ under \mathcal{I} and α is inductively defined:

- 1. $v_{\mathcal{I}}(\alpha, x) = \alpha(x)$ for a variable $v \in \mathcal{V}$
- 2. $v_{\mathcal{I}}(\alpha, \mathbf{a}) = \mathbf{a}^{\iota}$ for a constant symbol $\mathbf{a} \in \mathcal{A}$
- 3. $v_{\mathcal{I}}(\alpha, f(t_1, \ldots, t_n)) = f^{\iota}(v_{\mathcal{I}}(\alpha, t_1), \ldots, v_{\mathcal{I}}(\alpha, t_n))$ for an n-ary $f \in \mathcal{F}$

Semantics — Modification of an assignment

Definition 2.7 (Modification of a variable assignment).

Given an interpretation $\mathcal{I}=(D,\iota)$ and a variable assignment α for \mathcal{I} . Given also a variable $y\in\mathcal{V}$ and a domain element $d\in D$. The modified variable assignment $\alpha\{y\leftarrow d\}$ is defined as

$$\alpha\{y \leftarrow d\}(x) = \begin{cases} d & \text{if } x = y\\ \alpha(x) & \text{otherwise} \end{cases}$$

- $ightharpoonup \mathcal{I} = (\mathbb{N}, \iota)$
- $\mathcal{V} = \{x, y\}$
- ▶ $\alpha(x) = 3 \in \mathbb{N}$ and $\alpha(y) = 5 \in \mathbb{N}$ is an assignment for \mathcal{I}

Semantics — Truth Value

Definition 2.8 (Truth Value).

Let $\mathcal{I} = (D, \iota)$ be an interpretation and α an assignment for \mathcal{I} . The truth value $v_{\mathcal{I}}(\alpha, A) \in \{T, F\}$ of a formula A under \mathcal{I} and α is defined inductively as follows:

- 1. $v_{\mathcal{I}}(\alpha, p) = T$ for 0-ary $p \in \mathcal{P}$ iff $p^{\iota} = T$, otherwise $v_{\mathcal{I}}(\alpha, p) = F$
- 2. $v_{\mathcal{I}}(\alpha, p(t_1, \dots, t_n)) = T$ for $p \in \mathcal{P}$, n > 0, iff $(v_{\mathcal{I}}(\alpha, t_1), \dots, v_{\mathcal{I}}(\alpha, t_n)) \in p^{\iota}$, otherwise $v_{\mathcal{I}}(\alpha, p(t_1, \dots, t_n)) = F$
- 3. $v_{\mathcal{I}}(\alpha, \neg A) = T$ iff $v_{\mathcal{I}}(\alpha, A) = F$, otherwise $v_{\mathcal{I}}(\alpha, \neg A) = F$
- 4. $v_{\mathcal{I}}(\alpha, A \wedge B) = T$ iff $v_{\mathcal{I}}(\alpha, A) = T$ and $v_{\mathcal{I}}(\alpha, B) = T$, otherwise $v_{\mathcal{I}}(\alpha, A \wedge B) = F$
- 5. $v_{\mathcal{I}}(\alpha, A \lor B) = T$ iff $v_{\mathcal{I}}(\alpha, A) = T$ or $v_{\mathcal{I}}(\alpha, B) = T$, otherwise $v_{\mathcal{I}}(\alpha, A \lor B) = F$
- 6. $v_{\mathcal{I}}(\alpha, A \rightarrow B) = T$ iff $v_{\mathcal{I}}(\alpha, A) = F$ or $v_{\mathcal{I}}(\alpha, B) = T$, otherwise $v_{\mathcal{I}}(\alpha, A \rightarrow B) = F$
- 7. $v_{\mathcal{I}}(\alpha, \forall x A) = T$ iff $v_{\mathcal{I}}(\alpha \{x \leftarrow d\}, A) = T$ for all $d \in D$, otherwise $v_{\mathcal{I}}(\alpha, \forall x A) = F$
- 8. $v_{\mathcal{I}}(\alpha, \exists x A) = T$ iff $v_{\mathcal{I}}(\alpha \{x \leftarrow d\}, A) = T$ for some $d \in D$, otherwise $v_{\mathcal{I}}(\alpha, \exists x A) = F$
- 9. $v_{\mathcal{I}}(\alpha, \top) = T$ and $v_{\mathcal{I}}(\alpha, \bot) = F$

First-order LK – Rules for Universal and Existential Quantifier

rules for ∀ (universal quantifier)

$$\frac{\Gamma, A[x \backslash t], \forall x \ A \ \Rightarrow \ \Delta}{\Gamma, \forall x \ A \ \Rightarrow \ \Delta} \ \forall \text{-left} \quad \frac{\Gamma \ \Rightarrow \ A[x \backslash a], \Delta}{\Gamma \ \Rightarrow \ \forall x \ A, \Delta} \ \forall \text{-right}$$

- t is an arbitrary closed term
- **Eigenvariable condition** for the rule \forall -right: *a* must not occur in the conclusion, i.e. in Γ , Δ , or A
- ▶ the formula $\forall x A$ is preserved in the premise of the rule \forall -left
- rules for ∃ (existential quantifier)

$$\frac{\Gamma, A[x \setminus a] \Rightarrow \Delta}{\Gamma, \exists x A \Rightarrow \Delta} \exists \text{-left} \quad \frac{\Gamma \Rightarrow \exists x A, A[x \setminus t], \Delta}{\Gamma \Rightarrow \exists x A, \Delta} \exists \text{-right}$$

- ▶ t is an arbitrary closed term
- **Eigenvariable condition** for the rule \exists -left: *a* must not occur in the conclusion, i.e. in Γ , Δ , or *A*
- ▶ the formula $\exists x A$ is preserved in the premise of the rule \exists -right

The First-Order Resolution Calculus

The resolution rule is generalized by performing unification as part of the rule and an additional factorization rule is added.

Definition 2.9 (First-Order Resolution Calculus).

▶ a resolution proof for a set of clauses S is a derivation of S in the resolution calculus; the substitution σ is local for every rule application; variables in every clause C can be renamed

Modal Logic

Modal Logic

Kripke Frames

Definition 3.1 (Kripke Frame).

A (Kripke) frame F = (W, R) consists of

- ► a non-empty set of worlds W
- ightharpoonup a binary accessibility relation $R \subseteq W \times W$ on the worlds in W

Definition 3.2 (Reminder: Propositional Interpretation).

A propositional interpretation is a function $\mathcal{I}: \mathcal{P} \to \{T, F\}$ that assigns a truth value to every propositional variable.

Definition 3.3 (Modal Interpretation).

A modal interpretation (Kripke model) $\mathcal{I}_M:=(F, \{\mathcal{I}(w)\}_{w\in W})$ consists of

- ightharpoonup a Kripke frame F = (W, R)
- ightharpoonup one propositional interpretation $\mathcal{I}(w)$ for each $w \in W$

Modal Truth Value

Definition 3.4 (Modal Truth Value).

Let $\mathcal{I}_M = ((W,R), \{\mathcal{I}(w)\}_{w \in W})$ be a Kripke structure. The modal truth value $v_{\mathcal{I}_M}(w,A)$ of a formula A in the world w in the structure \mathcal{I}_M is T (true) if "w forces A under \mathcal{I}_M ", denoted $w \Vdash A$, and F (false), otherwise.

The forcing relation $w \Vdash A$ is defined inductively as follows:

- \blacktriangleright $w \Vdash p \text{ for } p \in \mathcal{P} \text{ iff } \mathcal{I}(w)(p) = T$
- \triangleright $w \Vdash \neg A$ iff not $w \Vdash A$
- \blacktriangleright $w \Vdash A \land B$ iff $w \Vdash A$ and $w \Vdash B$
- \triangleright $w \Vdash A \lor B$ iff $w \Vdash A$ or $w \Vdash B$
- $ightharpoonup w \Vdash A
 ightharpoonup B$ iff not $w \Vdash A$ or $w \Vdash B$
- \blacktriangleright $w \Vdash \Diamond A$ iff $v \Vdash A$ for some $v \in W$ with $(w, v) \in R$
- ▶ $w \Vdash \Box A$ iff $v \Vdash A$ for all $v \in W$ with $(w, v) \in R$

Satisfiability and Validity

In modal logic a formula F is valid, if it evaluates to true in all worlds of all Kripke structures.

Definition 3.5 (Satisfiable, Model, Unsatisfiable, Valid, Invalid).

Let A be a formula. and \mathcal{I}_M be a Kripke structure.

- ▶ \mathcal{I}_M is a model in modal logic for A, denoted $\mathcal{I}_M \models A$, iff $v_{\mathcal{I}_M}(w, A) = T$ for all $w \in W$.
- ▶ A is satisfiable in modal logic iff $\mathcal{I}_M \models A$ for some Kripke structure \mathcal{I}_M .
- ► A is unsatisfiable in modal logic iff A is not satisfiable.
- ▶ A is valid, denoted \models A, iff $\mathcal{I}_M \models$ A for all modal interpretations \mathcal{I}_M .
- ► A is invalid/falsifiable in modal logic iff A is not valid.

More Modal Logics

modal logic	condition on R	axioms
K	(no condition)	-
K4	transitive	$\Box A ightarrow \Box \Box A$
D	serial	$\Box A \rightarrow \Diamond A$
D4	serial, transitive	$\Box A \rightarrow \Diamond A, \ \Box A \rightarrow \Box \Box A$
Т 1	reflexive	$\Box A o A$
S4	reflexive, transitive	$\Box A \rightarrow A$, $\Box A \rightarrow \Box \Box A$
S5	equivalence (reflexive, euclidean)	$\Box A \rightarrow A$, $\Diamond A \rightarrow \Box \Diamond A$

(A relation $R \subseteq W \times W$ is *serial* iff for all $w_1 \in W$ there is some $w_2 \in W$ with $(w_1, w_2) \in R$; a relation $R \subseteq W \times W$ is *euclidean* iff for all $w_1, w_2, w_3 \in W$ the following holds: if $(w_1, w_2) \in R$ and $(w_1, w_3) \in R$ then $(w_2, w_3) \in R$.)

Lemma: if a relation is reflexive and euclidean, it is also symmetric and transitive, i.e. an equivalence relation.

A Sequent Calculus for K

- \blacktriangleright Let \mathcal{L} be a set of labels
- ▶ A labeled formula is a pair u : A where $u \in \mathcal{L}$ and A a formula.
- ▶ An accessibility formula has the shape uRv for two labels $u, v \in \mathcal{L}$.
- ▶ Use labeled sequents, containing labeled formulae and accessibility formulae
- Propositional rules for labeled formulas: just copy labels, e.g.

$$\frac{\Gamma \Rightarrow u : A, \Delta \qquad \Gamma \Rightarrow u : B, \Delta}{\Gamma \Rightarrow u : A \land B, \Delta} \land \text{-right}$$

The ⋄-left rule creates a new label:

$$\frac{\Gamma, uRv, v : A \Rightarrow \Delta}{\Gamma, u : \Diamond A \Rightarrow \Delta} \diamondsuit \text{-left} \qquad \text{for a fresh label } v$$

► The □-left rule transfers info to other labels:

$$\frac{\Gamma, uRv, v : A, u : \Box A \Rightarrow \Delta}{\Gamma, uRv, u : \Box A \Rightarrow \Delta} \Box \text{-left}$$

Axioms require same labels: $u : A, \Gamma \Rightarrow u : A, \Gamma$

Rules for the Succedent

► The □-right rule creates a new label:

$$\frac{\Gamma, uRv \Rightarrow v : A, \Delta}{\Gamma \Rightarrow u : \Box A, \Delta} \Box \text{-right} \qquad \text{for a fresh label } v$$

► The ⋄-right rule transfers info to other labels:

$$\frac{\Gamma, uRv \Rightarrow v : A, u : \Diamond A, \Delta}{\Gamma, uRv \Rightarrow u : \Diamond A, \Delta} \diamondsuit \text{-right}$$

Intuitionistic Logic

Kripke Semantics

▶ is a formal semantics created in the late 1950s and early 1960s by Saul Kripke and André Joyal; was first used for modal logics, later adapted to intuitionistic logic and other non-classical logics

Definition 4.1 (Kripke Frame).

A (Kripke) frame F = (W, R) consists of a

- ▶ a non-empty set of worlds W
- ▶ a binary accessibility relation $R \subseteq W \times W$ on the worlds in W

Definition 4.2 (Intuitionistic Frame).

An intuitionistic frame $F_J = (W, R)$ is a Kripke frame (W, R) with a reflexive and transitive accessibility relation R.

 $(R \subseteq W \times W \text{ is reflexive iff } (w_1, w_1) \in R \text{ for all } w_1 \in W; R \text{ is transitive iff for all } w_1, w_2, w_3 \in W : \text{ if } (w_1, w_2) \in R \text{ and } (w_2, w_3) \in R \text{ then } (w_1, w_3) \in R)$

Intuitionistic Interpretation

Definition 4.3 (Intuitionistic Interpretation).

An intuitionistic interpretation (J-structure) $\mathcal{I}_J:=(F_J, \{\mathcal{I}_C(w)\}_{w\in W})$ consists of

- ightharpoonup an intuitionistic frame $F_J = (W, R)$
- ▶ a set of class. interpretations $\{\mathcal{I}_C(w)\}_{w \in W}$ with $\mathcal{I}_C(w) := (D^w, \iota^w)$ assigning a domain D^w and an interpretation ι^w to every $w \in W$

Furthermore, the following holds:

- 1. cumulative domains, i.e. for all $w, v \in W$ with $(w, v) \in R$: $D^w \subseteq D^v$
- 2. interpretations only "increase", i.e. for all $w, v \in W$ with $(w, v) \in R$:
 - a. $a^{\iota^w} = a^{\iota^v}$ for every constant a
 - b. $f^{\iota^{w}} \subseteq f^{\iota^{v}}$ for every function f
 - c. $p^{\iota^{w}} = T$ implies $p^{\iota^{v}} = T$ for every $p \in \mathcal{P}^{0}$
 - d. $p^{\iota^w} \subseteq p^{\iota^v}$ for every predicate $p \in \mathcal{P}^n$ with n > 0
 - $(g \subseteq h \text{ holds for } g \text{ and } h \text{ iff } g(x) = h(x) \text{ for all } x \text{ of the domain of } g)$

Intuitionistic Truth Value

Definition 4.4 (Intuitionistic Truth Value).

Let $\mathcal{I}_J = ((W,R),\{(D^w,\iota^w)\}_{w\in W})$ be a *J*-structure. The intuitionistic truth value $v_{\mathcal{I}_J}(w,G)$ of a formula G in the world W under the structure \mathcal{I}_J is T (true) if "W forces G under \mathcal{I}_J ", denoted $W \Vdash G$, and F (false), otherwise. $v_{\mathcal{I}_J}(w,t)$ is the (classic) evaluation of the term t in world W.

The forcing relation $w \Vdash G$ is defined as follows:

- $ightharpoonup w \Vdash p ext{ for } p \in \mathcal{P}^0 ext{ iff } p^{\iota^w} = T$
- \blacktriangleright $w \Vdash p(t_1,...,t_n)$ for $p \in \mathcal{P}^n$, n > 0, iff $(v_{\mathcal{I}_J}(w,t_1),...,v_{\mathcal{I}_J}(w,t_n)) \in P^{\iota^w}$
- ▶ $w \Vdash \neg A$ iff $v \not\Vdash A$ for all $v \in W$ with $(w, v) \in R$
- \blacktriangleright $w \Vdash A \land B$ iff $w \Vdash A$ and $w \Vdash B$
- \triangleright $w \Vdash A \lor B$ iff $w \Vdash A$ or $w \Vdash B$
- ▶ $w \Vdash A \rightarrow B$ iff $v \Vdash A$ implies $v \Vdash B$ for all $v \in W$ with $(w, v) \in R$
- ▶ $w \Vdash \exists x A \text{ iff } w \Vdash A[x \backslash d] \text{ for some } d \in D^w$
- ▶ $w \Vdash \forall x A$ iff $v \Vdash A[x \setminus d]$ for all $d \in D^v$ for all $v \in W$ with $(w, v) \in R$

Satisfiability and Validity

In intuitionistic logic a formula F is valid, if it evaluates to true in all worlds and for all intuitionistic interpretations.

Definition 4.5 (Satisfiable, Model, Unsatisfiable, Valid, Invalid).

Let F be a closed (first-order) formula.

- ▶ Let \mathcal{I}_J be an intuitionistic interpretation. \mathcal{I}_J is an intuitionistic model for a F, denoted $\mathcal{I}_J \models F$, iff $v_{\mathcal{I}}(w, F) = T$ for all $w \in W$.
- ▶ F is intuitionistically satisfiable iff $\mathcal{I}_J \models F$ for some intuitionistic interpretation \mathcal{I}_J .
- ► F is intuitionistically unsatisfiable iff F is not intuit. satisfiable.
- ▶ F is intuitionistically valid, denoted $\models F$, iff $\mathcal{I}_J \models F$ for all intuitionistic interpretations \mathcal{I}_J .
- ► F is intuitionistically invalid/falsifiable iff F is not intuit. valid.

LJ - Rules for Conjunction and Disjunction

▶ rules for ∧ (conjunction)

$$\frac{\Gamma, A, B \Rightarrow D}{\Gamma, A \land B \Rightarrow D} \land \text{-left} \qquad \frac{\Gamma \Rightarrow A \qquad \Gamma \Rightarrow B}{\Gamma \Rightarrow A \land B} \land \text{-right}$$

▶ rules for ∨ (disjunction)

$$\frac{\Gamma, A \Rightarrow D \qquad \Gamma, B \Rightarrow D}{\Gamma, A \lor B \Rightarrow D} \lor \text{-left}$$

$$\frac{\Gamma \Rightarrow A}{\Gamma \Rightarrow A \vee B} \vee \text{-right}_1 \qquad \frac{\Gamma \Rightarrow B}{\Gamma \Rightarrow A \vee B} \vee \text{-right}_2$$

IN3070/4070 :: Autumn 2022

LJ - Rules for Implication and Negation, Axiom

▶ rules for → (implication)

$$\frac{\Gamma, A \to B \Rightarrow A \qquad \Gamma, B \Rightarrow D}{\Gamma, A \to B \Rightarrow D} \to -\text{left} \qquad \frac{\Gamma, A \Rightarrow B}{\Gamma \Rightarrow A \to B} \to -\text{right}$$

▶ rules for ¬ (negation)

$$\frac{\Gamma, \neg A \Rightarrow A}{\Gamma, \neg A \Rightarrow D} \neg \text{-left}$$

$$\frac{\Gamma, A \Rightarrow}{\Gamma \Rightarrow \neg A} \neg \text{-right}$$

▶ the axiom

$$\overline{\Gamma, A \Rightarrow A}$$
 axiom

LJ - Rules for Universal and Existential Quantifier

rules for ∀ (universal quantifier)

$$\frac{\Gamma, A[x \setminus t], \forall x A \Rightarrow D}{\Gamma, \forall x A \Rightarrow D} \forall \text{-left} \quad \frac{\Gamma \Rightarrow A[x \setminus a]}{\Gamma \Rightarrow \forall x A} \forall \text{-right}$$

- ▶ t is an arbitrary closed term
- Eigenvariable condition for the rule ∀-right: a must not occur in the conclusion, i.e. in Γ or A
- ▶ the formula $\forall x A$ is preserved in the premise of the rule \forall -left
- rules for ∃ (existential quantifier)

$$\frac{\Gamma, A[x \setminus a] \Rightarrow D}{\Gamma, \exists x A \Rightarrow D} \exists \text{-left} \quad \frac{\Gamma \Rightarrow A[x \setminus t]}{\Gamma \Rightarrow \exists x A} \exists \text{-right}$$

- ▶ t is an arbitrary closed term
- **Eigenvariable condition** for the rule \exists -left: *a* must not occur in the conclusion, i.e. in Γ , *D*, or *A*
- ▶ the formula $\exists x A$ is not preserved in the premise of the rule \exists -right