
Advanced_python

August 26, 2020

1 Useful utilites and functionalities in Python for IN3120/IN4120

1.1 Python iterators

Every iterable datastructure has an __iter__() method.

In [1]: # To get the iterator we call the iter() function
mylist = ["Welcome", "to", "search", "technology"]

my_iterator = iter(mylist)
for i in my_iterator:

print(i)

Welcome
to
search
technology

In [2]: # The iterator can be exhausted
for i in my_iterator: print(i)

Note: when you for loop through an iterable, python calls iter and next under the hood

Manual traversal of iterator we call next to get the next element from the iterator

In [3]: # Load a fresh iterator
myit = iter(mylist)
myit

Out[3]: <list_iterator at 0x7f9e301e3a90>

In [4]: # When the iterator is empty, StopIteration is raised
In for loops it is caught and makes the loop terminate
current = next(myit)
current

Out[4]: 'Welcome'

1

In [5]: next(myit)

Out[5]: 'to'

In [6]: next(myit)

Out[6]: 'search'

In [7]: next(myit)

Out[7]: 'technology'

In [8]: next(myit)

StopIteration Traceback (most recent call last)

<ipython-input-8-ec9104da3bd7> in <module>
----> 1 next(myit)

StopIteration:

In [10]: # Problem: we don't want an error raised when the iterator is empty
Solution: add a default value to the next function
i.e. iter(<iterable>, <value-if-empty>)
myit = iter(mylist)

In [11]: next(myit, "Iterator is empty")

Out[11]: 'Welcome'

In [12]: next(myit, "Iterator is empty")

Out[12]: 'to'

In [13]: next(myit, "Iterator is empty")

Out[13]: 'search'

In [14]: next(myit, "Iterator is empty")

Out[14]: 'technology'

In [15]: next(myit, "Iterator is empty")

Out[15]: 'Iterator is empty'

2

In [16]: # None is a typical default value
That makes it easy to check if the iterator is empty
current = next(myit, None)
if current:

print("Iterator is not empty")
else:

print("Iterator is empty")

Iterator is empty

1.1.1 Generators

A generator is an iterator, but not all iterators are generators

In [17]: def my_iterator():
return iter(range(5))

def my_generator():
for i in range(5):

yield i
Note: use of nonlocal variable
for i in ["Welcome", "to", "search", "technology"]:

yield i

my_generator

Out[17]: <function __main__.my_generator()>

In [18]: my_gen = my_generator()
my_gen

Out[18]: <generator object my_generator at 0x7f9e30130190>

In [19]: next(my_gen)

Out[19]: 0

In [20]: for i in my_gen:
print(i)

1
2
3
4
Welcome
to
search
technology

3

In [21]: # Extra: if you want to yield all elements from an iterable, use "yield from syntax"
def example():

yield from range(1, 10)
yield from range(10, 0, -1)

list(example())

Out[21]: [1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 9, 8, 7, 6, 5, 4, 3, 2, 1]

1.2 Zip function

Ever wanted to iterate from two iterables simultaneously?
Or perhaps wrap two lists into a list of pairs?
Or perhaps wrap n lists into a list of n-tuples?

In [22]: numbers = [5, 6, 7]
chars = ["b", "c", "d"]

Basic method
for i in range(len(numbers)):

print(numbers[i], chars[i])

Equivalent with zip
for n, c in zip(numbers, chars):

print(n, c)

5 b
6 c
7 d
5 b
6 c
7 d

In [23]: # Zip returns an iterator
it = zip(numbers, chars)

In [24]: # Note that the pairs are tuples and not lists
next(it)

Out[24]: (5, 'b')

In [25]: list(zip(numbers, chars))

Out[25]: [(5, 'b'), (6, 'c'), (7, 'd')]

4

1.3 List comprehensions

In [26]: # % is the modulo opreand: it returns the remainder of the left number divided by the right number
def is_odd(n):

return n % 2

In [27]: # say we want a list of squares of 0 through 9
[i*i for i in range(10)]

Out[27]: [0, 1, 4, 9, 16, 25, 36, 49, 64, 81]

In [28]: # say we only want odd
[i*i for i in range(10) if not is_odd(i)]

Out[28]: [0, 4, 16, 36, 64]

In [29]: # say if the number is odd, it is swapped out with 0
[i*i if i % 2 == 0 else 0 for i in range(10)]

Out[29]: [0, 0, 4, 0, 16, 0, 36, 0, 64, 0]

2 syntax:

[(expression) for i in (iterable)]
[(expression) for i in (iterable) if (condition)]
[(expression) if (condition) else (expression) for i in (iterable)]
[(expression) for (iterable) in (nestediterable) for i in (iterable)]

2.1 Dict comprehensions

In [30]: {i:i.upper() for i in mylist}

Out[30]: {'Welcome': 'WELCOME',
'to': 'TO',
'search': 'SEARCH',
'technology': 'TECHNOLOGY'}

Syntax:

{(key expression):(value expression) for i in (iterable)}

2.2 Generator comprehensions

Like list comprehension, but uses parentheses instead of brackets

In [31]: myit = (i*i if (i%2==0) else 0 for i in range(10))

5

2.3 Passing generator comprehensions

you dont need to put parentheses if the generator comprehension is the only argument for a func-
tion This lets us create comprehensions for any datastrucutre that can take iterables as inputs. Very
elegant and pythonic

In [32]: sum(i*i for i in range(10))

Out[32]: 285

In [33]: set(i*i for i in range(10))

Out[33]: {0, 1, 4, 9, 16, 25, 36, 49, 64, 81}

2.4 Counters

Counter is a subclass of dict in python. It takes in an iterable of anything hashable and creates
each unique element as key and its frequency as value

In [34]: from collections import Counter

documents = [
"I am a document",
"I am an an an as",
"I'm very very happy",
"Ha ha ha ha"

]

Counter(documents)

Out[34]: Counter({'I am a document': 1,
'I am an an an as': 1,
"I'm very very happy": 1,
'Ha ha ha ha': 1})

In [35]: # Normalization and tokenization
tokenized_documents = [doc.lower().split() for doc in documents]
tokenized_documents

Out[35]: [['i', 'am', 'a', 'document'],
['i', 'am', 'an', 'an', 'an', 'as'],
["i'm", 'very', 'very', 'happy'],
['ha', 'ha', 'ha', 'ha']]

In [36]: c1 = Counter(token for tokens in tokenized_documents for token in tokens)
c1

Out[36]: Counter({'i': 2,
'am': 2,
'a': 1,

6

'document': 1,
'an': 3,
'as': 1,
"i'm": 1,
'very': 2,
'happy': 1,
'ha': 4})

In [37]: c2 = Counter([0,1,1,2,6,6,5,4, "i", "i"])
c2

Out[37]: Counter({0: 1, 1: 2, 2: 1, 6: 2, 5: 1, 4: 1, 'i': 2})

In [38]: # Counters support additions, so that you can merge two counters
c1 + c2

Out[38]: Counter({'i': 4,
'am': 2,
'a': 1,
'document': 1,
'an': 3,
'as': 1,
"i'm": 1,
'very': 2,
'happy': 1,
'ha': 4,
0: 1,
1: 2,
2: 1,
6: 2,
5: 1,
4: 1})

In [39]: mylist = [[1,2,3], [4,5,6], [7,8,9]]

In [40]: flatlist = []
for sublist in mylist:

for i in sublist:
flatlist.append(i)

In [41]: [i for sublist in mylist for i in sublist]

Out[41]: [1, 2, 3, 4, 5, 6, 7, 8, 9]

2.5 Type hints

Type hints can be great for readability and is used quite a lot in the assignments.
It is a quite new python feature, but does not actually affect how the code runs

7

In [42]: def numerical_function(n: int, k: float) -> complex:
return n + k + 1j

def numerical_function_without_type_hints(n, k):
return n + k + 1j

In [43]: # You can call the help function and see the type hints
help(numerical_function)
help(numerical_function_without_type_hints)

Help on function numerical_function in module __main__:

numerical_function(n: int, k: float) -> complex

Help on function numerical_function_without_type_hints in module __main__:

numerical_function_without_type_hints(n, k)

In [44]: # Type hints are only for the reader of the code. There is no type checking
def numerical_function(n: int, k: float) -> complex:

return "kødda"

In [45]: # For some typing, you will have to import auxiliary typing classes
Say if you'd like to know what is in the list that you are returning
def list_of_letters() -> list:

return ["a", "b", "c"]

from typing import List
def list_of_letters() -> List[str]:

return ["a", "b", "c"]

2.6 Abstract classes

Unlike java, abstract classes are not built in the syntax of python.
However, there is a built in module that makes this possible

In [46]: from abc import ABC, abstractmethod

In [47]: class Shape(ABC):

def foo(self):
return 42

@abstractmethod
def area(self):

pass

In equivalent java code:

8

abstract class Shape {
public int foo() {

return 42;
}

public abstract double area();
}

In [48]: class Square(Shape):
def __init__(self, length):

self.length = length

Square(5)

TypeError Traceback (most recent call last)

<ipython-input-48-a8d2e950dea7> in <module>
3 self.length = length
4

----> 5 Square(5)

TypeError: Can't instantiate abstract class Square with abstract methods area

In [49]: class Square(Shape):
def __init__(self, length):

self.length = length

def area(self):
return self.length ** 2

Square(5).area()

Out[49]: 25

In []:

In []:

9

	Useful utilites and functionalities in Python for IN3120/IN4120
	Python iterators
	Generators

	Zip function
	List comprehensions

	syntax:
	Dict comprehensions
	Generator comprehensions
	Passing generator comprehensions
	Counters
	Type hints
	Abstract classes

