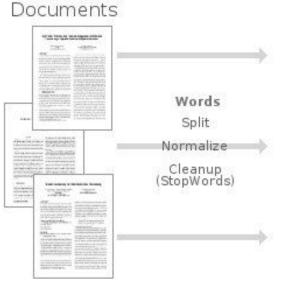
IN3120/4120 -Search technology

Group 2, Second session
TA: Markus Sverdvik Heiervang

Today's plan

- In depth coverage of inverted indices
- Inverted index walkthrough in jupyter notebook
- Merging of postings
- Index compression


• Q&A, eventually topics you want me to cover

Inverted index: what is it?

 A data structure which lets you effectively find every document of a corpus that contains a given term

• Posting: typically a collection containing document id, and optionally additional information such as term frequency, term position in the document, etc.

Inverted index: what is it?

Inverted Index

Term	Document: Locations	
voided	{'doc1': [221]}	
coach	{'doc3': [12]}	
house	{'doc2': [248]}	
singletary	{'doc1': [23, 206, 342]}	
	{'doc3': [143]}	
innovations	{'doc2': [78]}	
edition	{'doc2': [10]}	
niners	{'doc1': [0]}	
week	{'doc2': [148],'doc1': [178, 186]}	
	{'doc3': [384]}	
energy	{'doc2': [410]}	
football	{'doc1': [326]}	
coast	{'doc2': [26]}	
	{'doc1': [256]}	
one	{'doc3': [234], 'doc1': [366]}	
green	{'doc2': [32, 65]}	
team	{'doc1': [335]}	
	{'doc1': [23, 206, 342]}	
topics	{'doc2': [307]}	
	{'doc3': [48, 153, 401]}	

Inverted index as opposed to forward index

docID	geo-scopel[
1	Europe
2	Europe
3	France
4	England
5	Portugal
6	Quebec
7	Europe
8	Spain

geo-scopelD docID

Europe 1 2 7

France 3

Portugal 5

England 4

Quebec 6

Spain 8

Forward Index

Inverted Index

Examples and how to build

Postings merging

```
INTERSECT(p_1, p_2)
                                                             Necessary when
                                                             searching for documents
      answer \leftarrow \langle \rangle
                                                             containing both term a
      while p_1 \neq \text{NIL} and p_2 \neq \text{NIL}
                                                             and b, using the query:
      do if docID(p_1) = docID(p_2)
                                                             a AND b
             then ADD(answer, docID(p_1))
  5
                    p_1 \leftarrow next(p_1)
                                                             Example:
  6
                    p_2 \leftarrow next(p_2)
                                                             You've heard rumors that your favorite
                                                             rapper Tupac is dead. To find out if it is true
             else if docID(p_1) < docID(p_2)
                                                             or not, you search using an intersectional
                       then p_1 \leftarrow next(p_1)
                                                             query:
  9
                       else p_2 \leftarrow next(p_2)
                                                             Tupac AND Dead
 10
      return answer
```

Figure 2: pseudocode from the book

Postings merging

Figure 3: pseudocode from the book

Index compression

- When working with big data and limited memory, compression can be very useful
- Typical when serializing an inverted index (i.e. storing the inverted index on a disk)

Say we have a posting list for a given term t, containing only document ids, in an index of a relatively large corpus. There are many words that occur rarely, such as t

Postings(t) = [7, 40, 7000, 43021, 140236, 2773002]

Large numbers take up much space: 7 == 111, 2773002 == 101010010100000001010.

The idea is to keep the first id, and then only keep the differences compressed

Differences(Postings(t)) = [7-0, 40-7, 7000-40, 43021-7000, ...]

Then we apply a number-compression algorithm on these differences. You will learn more in the lecture about compression

What more do we need for a search engine?

- A ranker
- A filter for cheats
- A query processor
 - o e.g. if the query is "Tupac dead"
 - o search (Tupac AND dead), then (Tupac OR dead)
 - NLP/NLU
- etc...

Tomorrows lecture

In tomorrows lecture, Aleksander will cover most of the string algorithms in this course

important algorithms for assignment B:

- Suffix arrays
- Tries and aho-corasick algorithm

I will go further in depth on some of these topics on the next group session