
IN3120/4120 -
Search technology
Group 2, Second session
TA: Markus Sverdvik Heiervang

Today’s plan

● In depth coverage of inverted indices

● Inverted index walkthrough in jupyter notebook

● Merging of postings

● Index compression

● Q&A, eventually topics you want me to cover

Inverted index: what is it?

● A data structure which lets you effectively find every document of a corpus that contains a given

term

● Posting: typically a collection containing document id, and optionally additional information such

as term frequency, term position in the document, etc.

Inverted index: what is it?

Inverted index as opposed to forward index

Examples and how to build

Postings merging
Necessary when
searching for documents
containing both term a
and b, using the query:
a AND b

Example:
You’ve heard rumors that your favorite
rapper Tupac is dead. To find out if it is true
or not, you search using an intersectional
query:
Tupac AND Dead

Figure 2: pseudocode from the book

Postings merging

Figure 3: pseudocode from the book

the query:
a and b and c and d
will be evaluated as such:
(((a and b) and c) and d)

Problem: what if you want an intersection of n > 2 terms?
Solution:

Index compression

● When working with big data and limited memory, compression can be very useful
● Typical when serializing an inverted index (i.e. storing the inverted index on a disk)

Say we have a posting list for a given term t, containing only document ids, in an index of a relatively large

corpus. There are many words that occur rarely, such as t

Postings(t) = [7, 40, 7000, 43021, 140236, 2773002]

Large numbers take up much space: 7 == 111, 2773002 == 1010100101000000001010.

The idea is to keep the first id, and then only keep the differences compressed

Differences(Postings(t)) = [7-0, 40-7, 7000-40, 43021-7000, …]

Then we apply a number-compression algorithm on these differences. You will learn more in the lecture
about compression

What more do we need for a search engine?

● A ranker

● A filter for cheats

● A query processor
○ e.g. if the query is “Tupac dead”
○ search (Tupac AND dead), then (Tupac OR dead)
○ NLP/NLU

● etc ...

Tomorrows lecture

In tomorrows lecture, Aleksander will cover most of the string algorithms in this course

 important algorithms for assignment B:

● Suffix arrays

● Tries and aho-corasick algorithm

I will go further in depth on some of these topics on the next group session

