
2020

[end]

IN3130 Exercise set 2

We start with a few short exercises on algorithm running times and running time analysis.
This math is central to complexity theory, and important to have a good understanding of.
As you know we usually use O-notation (more correctly, asymptotic notation) to indicate
running times of algorithms. A short note on the course web page describes four variants of
asymptotic notation: O, Θ, Ω and o.

Exercise 1
a) Show that n×3, n+3 both are O(n).
b) Show that 2n log n is O(n2) .
c) Is 2n+1 = O(2n) ?

d) Is 10n +16n3

2
 = O(n2)	?

Exercise 2
a) What do we know about the running time of an algorithm if it is O(n!) ?
b) What do we know about the running time of an algorithm if it is Ω(n) ?
c) What do we know about the running time of an algorithm if it is Θ (2n) ?
d) What do we know about the running time of an algorithm if it is O(n2) ?
e) The statement “This algorithm has a running time of at least O(n2).” may seem odd.

Does it make sense?

We continue with a few exercises on string search, partially from the textbook.

Exercise 3
Spend some time repeating/discussing why/how the different shift strategies of Knuth-
Morris-Pratt and simplified Boyer-Moore (Horspool) work. Pay attention to what parts of the
pattern P and T overlap with what, and why that is necessary for a match to be possible.

Exercise 4
Find the overlapping prefixes and suffixes (as defined in the Knuth-Morris-Pratt-algorithm)
for the string “ababc”

Exercise 5 (Knuth-Morris-Pratt, Exercise 20.3 in Berman & Paul)
Simulate CreateNext pages 637-8 in Berman & Paul – calculate the Next[]-array for the
pattern “abracadabra”.

Exercise 5 (Horspool)
Simulate CreateShift page 639 in Berman & Paul – calculate the array Shift[a:z] for the
patterns P1 = "announce", and P2 = "honolulu".

Exercise 6
Draw uncompressed suffix trees for the strings "BABBAGE" and "BAGLADY". And check if
"BAG" is a common substring. Can you make do with only one tree?

