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3.1 Six Basic NP-Complete Problems

When seasoned practitioners are confronted with a problem II to be ,
proved NP-complete, they have the advantage of having a wealth of eXperi- 1 !
ence to draw upon. They may well have proved a similar problem IT' NP- i |

try to prove II NP-complete by mimicking the NP-completeness proof for ;‘
IT" or by transforming IT' itself to II. In many cases this may lead rather -
easily to an NP-completeness proof for II. i

All too often, however, no known NP-complete problem similar to IT '
can be found (even using the extensive lists at the end of this book). In &

suggest that these six can serve as a “‘basic core’ of known NP-complete '55f
problems for the beginner.

3-SATISFIABILITY (3SAT) i
INSTANCE: Collection C = {erep oo, ¢} of clauses on a finite set U of b
variables such that | ¢; =3 for 1 < < m
QUESTION: Is there a truth assignment for U that satisfies all the clauses ©
in C?

3-DIMENSIONAL MATCHING (3DMD) B
INSTANCE: A set M C Wx ¥x Y, where W, X, and Y are disjoint sets
having the same number q of elements.

QUESTION: Does M contain a matching, that is, a subset M’ C M such
that [M'| = ¢ and no two elements of M agree in any coordinate?

VERTEX COVER (VC)

INSTANCE: A graph G = (V.E) and a positive integer X < | 7.
QUESTION: Is there a vertex cover of size K or less for G, that is, a subset

V'S V such that | V| < K and, for each edge {1} € £, at least one of u
and v belongs to V9

= itive i J< |l
: Agraph G = (V,E) and a positive integer J < | V.
NSTATI;ISIE' Dc%es G contain a cligue of size J or more’, that‘ is, a subset
UCE:SV such that | 7’| > J and every two vertices in ¥’ are joined by an
v c

edge in £7

HAMILTONIAN CIRCUIT (HC)

: h G = (V,E). ) ) .
gﬁggfgg ADgész contain a Hamiltonian circuit, that is, an ordering

<V, V2, - -

i = that
.,v,> of the vertices of G, where n=|V|, such

(v,,v1} € E and {v;,v,41} € E forall i, 1<i<n?
ns

TITION
E\IASI'}"ANCE: A finite set 4 and a ‘‘size” s(a) € Z* for each a € 4.

QUESTION: Is there a subset A' C A such that

25(0) = 2 S(a) ?

ac€A' a€A—A'
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Lemma 3.1 For any graph G =(V,E) and subset V'CV, the following
statements are equivalent: '

(a) V'is a vertex cover for G.

(b) V—V"is an independent set for G. d

() V—V'"is a clique in the complement G¢ of G, where G¢ = (V,E¢) =
with E¢= {{u,v}: u,v€V and {u,v}¢E). ¥

Thus we see that, in a rather strong sense, these three problems might
be regarded simply as ‘‘different versions’’ of one another. Furthermore, * §
the relationships displayed in the lemma make it a trivial matter to
transform any one of the problems to either of the others. /

For example, to transform VERTEX COVER to CLIQUE, let
G =(V,E) and K<|V/| constitute any instance of VC. The corresponding
instTncle of CLIQUE is provided simply by the graph G¢ and the integer
J=|V|-K.

This implies that the NP-completeness of all three problems will follow
as an immediate consequence of proving that any one of them is NP-
complete. We choose to prove this for VERTEX COVER.
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Theorem 3.3 VERTEX COVER is NP-complete.
Proof: It is easy to see that VC € NP since a nondeterministic algorithm
need only guess a subset of vertices and check in polynomial time whether j
that subset contains at least one endpoint of every edge and has the ap- |
propriate size.

We transform 3SAT to VERTEX COVER. Let U={u,u,, ... R
and C={cy,c,,...,c,} be any instance of 3SAT. We must construct a
graph G=(V,E) and a positive integer K < | V| such that G has a vertex
cover of size K or less if and only if C is satisfiable.

As in the previous proof, the construction will be made up of several
components. In this case, however, we will have only truth-setting com- §
ponents and satisfaction testing components, augmented by some additional ’;?
edges for communicating between the various components.

For each wvariable u, €U, there is a truth-setting component
T;=(V,,E), with V,={u,,u;} and E,={{y;,7;}}, that is, two vertices joined
by a single edge. Note that any vertex cover will have to contain at least
one of u; and u; in order to cover the single edge in E;.

For each clause c;€C, there is a satisfaction testing component
§;= (V},Ej), consisting of three vertices and three edges joining them to
form a triangle:
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CIRCUIT was shown to be NP-complete by restricting its instances to
directed graphs in which each arc (u,v) occurs only in conjunction with the
oppositely directed arc (v,u), thereby obtaining a problem identical to the
undirected HAMILTONIAN CIRCUIT problem.

Thus proofs by restriction can be seen to embody a different way of
looking at things than the standard NP-completeness proofs. Instead of try-
ing to discover a way of transforming a known NP-complete problem to our
target problem, we focus on the target problem itself and attempt to restrict
away its “‘inessential’’ aspects until a known NP-complete problem appears.

We now give a number of additional examples of problems proved
NP-complete by restriction, stating each proof with the brevity it deserves.

(1) MINIMUM COVER

INSTANCE: Collection C of subsets of a set S, positive integer K.
QUESTION: Does C contain a cover for S of size K or less, that is, a

subset €' € C with |C'| < K and such that | J ¢ = §? \

ceC’
Proof: Restrict to X3C by allowing only instances having |c|=3 for all

c€C and having K = |S|/3.

(2) HITTING SET

INSTANCE: Collection C of subsets of a set S, positive integer K.
QUESTION: Does S contain a hitting set for C of size K or less, that
is, a subset §'C S with |S'| < K and such that S’ contains at least
one element from each subset in C ?

Proof: Restrict to VC by allowing only instances having |c|=2 for all
ceC.

(3) SUBGRAPH ISOMORPHISM
INSTANCE: Two graphs, G = (V},E,;) and H = ( V,,E,).
QUESTION:. Does G contain a subgraph isomorphic to H, that is, a
subset V' C ¥ and a subset E C E; such that |V|=] Val|E| =|E,),
and there exists a one-to-one function S V=V satisfying {u,v]} € E,
if and only if {f(u),f(v)} € E?
Proof: Restrict to CLIQUE by allowing only instances for which H is

a complete graph, that is, E, contains all possible edges joining two
members of V.

(4) BOUNDED DEGREE SPANNING TREE

INSTANCE: A graph G=(V,E) and a positive integer K <|V|-1.
QUESTION: Is there a spanning tree for G in which no vertex has
degree exceeding K, that is, a subset £' C E such that |E'|=|V]|-1,
the graph G'=(V E') is connected, and no vertex in V is included in
more than K edges from E'? .
Proof: Restrict to HAMILTONIAN PATH by allowing only instances
in which K =2. A\
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Al.2 SUBGRAPHS AND SUPERGRAPHS

[GT19] cLIQUE

INSTANCE: Graph G = 1% e
QUESTION: p e ( £, Positive mte_tgerKg]V[_

with | V| > g
Reference: [Karp, 1972]. Transfor

1, we are asked whether G
complete for any fixed value of ,.

[GT20] INDEPENDENT SET

INSTANCE: Graph G=(V,g

), positive inte <
QUESTION: Does G ‘contain il ’VI

an independen;t set of size x Or more, ie., a Subset

- R
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V'SV such that | V| > g ang Such that no two vertices in V' are joined by ap

edge in £?
Reference:  Transformation from VERTEY COVER (see Chapter 3).
Comment: Remains NP-complete for cubic planar graphs [Garey, Johnson, angd

[GT21] INDUCED SUBGRAPH WITH PROPERTY 11 *)

INSTANCE:  Graph G = (V,E), positive integer K < | |,
QUESTION: Is there asubset V'C ¥ with | V' > K such that the subgraph of G
induced by V”’ hag property II (see comments for possible choices for IT)?

Reference: [Yannakakis, 1978a], [Yannakakis, 1978b], [Lewis, 1978]. Transfor-
mation from 3SAT.

Comment: NP-hard for any property IT that holds for arbitrarily large graphs, doeg
not hold for ajj graphs, and is “hereditary,” i.e., holds for all induced subgraphs of
G whenever it holds for G. Ir in addition one can determine in polynomial time
whether IT holds for a graph, then the problem is NP-complete. Examples of such
properties II include “G isa clique,” “@G is an independent set,” “G is planar,”’
“G is bipartite,” @G s outerplanar,” “@ is an edge graph,” «G is chordal,” «“@
isa comparabiljty graph,” and @ is a forest.” The same general results hold if G
is restricted to planar graphs and IT satisfies the above constraints for planar graphs,
orif G is restricted to acyclic directed graphs and I satisfies the above constraints
for such graphs. A weaker result holds when G is restricted to bipartite graphs
[Yannakakis, 1978b].
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[SP10] COMPARATIVE CONTAINMENT

INSTANCE:  Two collections R ={Ry,R,, ... ,R,} and §={8,8,...,8} of

subsets of a finite set X, weights w(R;) € Z*+, 1 < i < k,and w(S;)) € Z+, 1 < < L.
QUESTION: Is there a subset ¥ C X such that

2 wR) = ¥ w(s)?

YCR, Ycs;
Reference: [Plaisted, 1976]. Transformation from VERTEX COVER.
Comment: Remains NP-complete even if all subsets in R and S have weight 1
[Garey and Johnson, —1.

[SP11] 3-MATROID INTERSECTION

INSTANCE: Three matroids (E,F)),(E,F)),(E,F;), positive integer K < |E|. (A
matroid (E,F) consists of a set £ of elements and a non-empty family F: of subsets
of E such that (1) S € F implies all subsets of S are in F and (2) if two sets
S,S'€F satisfy |S|=|S'|+1, then there exists an element ¢ € § — S’ such that
(S'uleh) e F.)

QUESTION: Is there a subset E' C E such that |E'|=K and E' € (FiNF,NFy)?
Reference: Transformation from 3DM.

Comment: The related 2-MATROID INTERSECTION problem can be solved in
polynomial time, even if the matroids are described by giving polynomial time algo-
rithms for recognizing their members, and even if each element e € £ has a weight
w(e) € Z*, with the goal being to find an E' € (FyNF,) having maximum total
weight (e.g., see [Lawler, 1976a]).

A3.2 WEIGHTED SET PROBLEMS

[SP12] PARTITION

INSTANCE: Finite set 4 and a size s(a) € Z* for each a€Ad.
QUESTION: Is there a subset 4' C 4 such that Y, easl@a) =3 o, _s(a)?

Reference: [Karp, 1972]. Transformation from 3DM (see Section 3.1.5).
Comment: Remains NP-complete even if we require that |4'|=14]/2, or if the
elements in 4 are ordered as a1,4y, - . ., ay, and we require that 4’ contain exact-
ly one of ay;_j,a,; for 1<i< n. However, all these problems can be solved in
pseudo-polynomial time by dynamic programming (see Section 4.2).

[SP13] SUBSET SUM

INSTANCE: Finite set 4, size s(a) € Z* for each a € A, positive integer B.
QUESTION: Is there a subset 4' C 4 such that the sum of the sizes of the ele-
ments in 4’ is exactly B?

Reference: [Karp, 1972]. Transformation from PARTITION.

Comment: Solvable in pseudo-polynomial time (see Section 4.2).




