
2020

 1

IN3130 Exercise set 7

Exercise 1

Solve exercise 6.19 in Mark Allen Weiss Algorithms and Datastructures in Java (the INF 2220

book).

Exercise 2

Solve exercise 6.25 in MAW.

We are technically allowed to construct a normal binary heap (using the normal

buildHeap()-method that percolates down all subtree roots, starting at the bottom.)

Convince yourself that this is the case. The following method, however, constructs a tree

that is more leftist:

2

11

17 12

18

5

8

15

4

9

10 18

31

6

11

21

The following trees are merged

The result is as follows, after merging and swapping, the original right path marked

with red.

2

11

17 12

18

5

8

15

4

9

10 18

31

6

11

21

2020

 2

The time complexity is: �2 ∙ ��1� � �4 ∙ ��2� � �8 ∙ ��3� � ⋯ � ���� .

We omit the O’s and write �2 ∙ 1 � �4 ∙ 2 � �8 ∙ 3 � ⋯

 ⇕ Let � � 2�, this is worst case – full trees 2�
2 ∙ 1 � 2�

4 ∙ 2 � 2�
8 ∙ 3 � ⋯

 ⇕ 2��� ∙ 1 � 2��� ∙ 2 � 2��� ∙ 3 � ⋯

 ⇕ Writtten in summation form

� 2��� ∙ �
���

���

 ⇕ Use the old Σ � 2Σ � Σ ploy…

�� 2�
�

���
� � 2��������� � 1�

 ⇕

1 2 3 4 5 6 7 8

Insert the nodes into a queue.

(Numbers indicate initial

place in queue, not priority

[key].)

1

2 3 4 5 6 7 8

Merge 1 and 2 (leftist

manner, maintain heap

property!) and insert at end

of queue.

Merge 3 and 4 and insert.

6

5

7

8

1

2

3

4

5, 6 and 7, 8 (5.key < 6.key)

6

5

7

8

3

4

1

2

(1,2) and (3,4)

7

8

6

5

(5,6) and (7,8)

3

4

1

2

(1,2,3,4) and (5,6,7,8)

7

8

6

5

3

4

1

2

1

2

3

4 5 6 7 8

2020

 3

�� 2�
�

���
� � 2�� � 1�

 ⇕ The old Σ � 2Σ � Σ ploy, again… �2��� � 4� � 2�� � 1�

 ⇕ 2�2� � 2� � 2�� � 1�

 ⇕ � � 2�, � � log � 2�2$%& ' � 2� � 2�log � � 1�

 ⇕ 2�� � 2� � 2�log � � 1�

 ⇕ 2� � 4 � 2 log � � 2 � 2� � 2 log � � 2 � ���� .

Exercise 3

Solve exercise 6.30 in MAW.

This should be obvious (“one can easily see…”), but we give a short induction proof. (The

trees are constructed in an inductive manner that lends itself well to this proof technique.)

Basis: B1 has B0 as a child (subtree) from the root.

Step: Assume Bi has B0,...,B(i-1) subtrees of the root.

 Must show that B(i+1) has B0,...,Bi as subtrees of the root.

B(i+1) is constructed by connecting a Bi to the root of another Bi, therefore B(i+1) will consist of

one Bi that we connected to the root of the other Bi, plus the subtrees that already are conn-

ected to the root of the other Bi (the root one), these are (by the assumption): B0,...,B(i-1).

Therefore B(i+1) must have the subtrees B0,...,Bi.

Exercise 4

Write a non-recursive implementation of merge() for leftist heaps.

We do this kind of merge with a two pass method.

1) The nodes in the right paths of the heaps can be viewed as lists. the root is the head,

the .right pointers in the nodes is next.

The lists are merged (elements in lexicographic order). Always choose the smallest

and copy into a new tree (a new list).

2) Traverse the new path (list), from the end towards the root (we need a pointer this

way – doubly linked lists). Check that the leftist-property holds (null path lengths of

children), swap left and right children if property is violated.

2020

 4

Rough pseudo code can be something like this:

function merge(h1,h2)

 var list result

 while h1 <> nil and h2 <> nil

 if h1.key <= h2.key

 append h1.first to result // assuming .first works

 h1 = h1.right

 else

 append h2.first to result

 h2 = h1.right

 if h1 <> nil

 append h1 to result

 if h2 <> nil

 append h2 to result

 var elem node

 elem = result.last

 while elem <> result.first

 if elem.left.npl < elem.right.npl

 swapChildren(elem);

 elem = elem.parent // assuming a parent pointer

 return result

end

Exercise 5

Professor Pinocchio claims that the height of an N-node Fibonacci heap is O(log N). Prove the

professor wrong by showing that for every positive integer N, there is a sequence of

Fibonacci heap operations constructing a heap that is one long chain of N nodes.

(Some applets exists on the internet that visualize Fibonacci heaps, most require javascript.)

A kind of induction is also at the basis of this construction. We build our chain by using the

structure of binomial trees as model.

Our basis is a tree consisting of two nodes. We can construct this tree by inserting three

nodes in an empty heap, and then run deleteMin().

The step in our construction (induction) consists on inserting three nodes with a lower key

than the nodes already in the heap, name them a, b, c (sorted by key, increasing order), and

run deleteMin(), this results in a tree with two branches, the root is b, one branch is the

tree we started with, the other branch is c. Now erase c. Repeat as many times as necessary.

2020

 5

Exercise 6

Discuss the notions of average and amortized time briefly.

Left for the group to discuss. Look for instance at series of operations on an imaginary data

structure with the following running times:

Series 1: 1, 1, 1, 3, 2, 1

Series 2: 1, 2, 3, 1, 1, 1

Series 3: 100, 100, 100, 1, 1, 1

Assume the operations are three inserts and three deletes, and look at possible subsets of

the series, for instance the first four operations.

[end]

