Introduction to
Algorithms and
Complexity

IN3130 Algorithms and Complexity

Introduction to Algorithm
Theory

e Our approach - modeling

e The subject matter - what is this all about
e Historical introduction

e How to model problems

e How to model solutions

10of 14

Our approach

practice

abstraction j Xinterpretation

models €&—> results

proof

§ . .
-9 High-Level Information
h Basic insights
I Big picture
S
O
. Low-Level Information

Proofs, techniques
Technical details

Lectures — Mainly high-level understanding
Group sessions — Practice skills: proofs,
problems
Studying strategy: Don’t memorize pensum —
try to understand the whole!

2 of 14

Subject matter

How to solve information-processing
problems efficiently.

‘:‘“:;755’;'12».

abstraction
formalisation
modeling

Problems ~~ interesting, ™~ formal
natural languages
problems (EL.s)

(EX. MATCHING, SORTING, T.S.P.)

Solutions ~~ algorithms ~- Turing
machines

Efficiency ™~ complexity ™~ complexity
classes

Unsolvable (impossible)

Problems, Intractable (horrible)

F.L.s
Nice

3 of 14

Historical introduction

In mathematics (cooking, engineering, life)
solution = algorithm

Examples:
® /253 —
eax’+bxr+c=0

e Euclid’s g.c.d. algorithm — the earliest
non-trivial algorithm?

4 of 14

Applications of Euclid’s
algorithm

From Wikipedia:

“The Euclidean algorithm has many
theoretical and practical applications. It may
be used to generate almost all the most
important traditional musical rhythms used
in different cultures throughout the world. It
is a key element of the RSA algorithm, a
public-key encryption method widely used in
electronic commerce. It is used to solve
Diophantine equations, such as finding
numbers that satisfy multiple congruences
(Chinese remainder theorem) or
multiplicative inverses of a finite field. The
Euclidean algorithm can also be used in
constructing continued fraction, in the Sturm
chain method for finding real roots of
polynomials, and in several modern integer
factorization algorithms. Finally, it is a basic
tool for proving theorems in modern number
theory, such as Lagrange’s four-square
theorem, and the fundamental theorem of
arithmetic (unique factorization).”

5 of 14

Origins of undecidability
theory

1 algorithm? — metamathematics

e K. Godel (1931): nonexistent theories

e A. Turing (1936): nonexistent algorithms
(article: “On computable Numbers...”)

Unsolvable
Turing’s results &
techniques

Solvable

6 of 14

Origins of complexity they

e Von Neumann (ca. 1948): first computer

e Edmonds (ca. 1965): an algorithm for
MAXIMUM MATCHING

Ann X Billy
Mary Joe
Moe *—e Bob

Edmonds’ article rejected based on existence
of trivial algorithm: Try all possibilities!

e n = 100 boys
oen! =100 x 99 x --- x 1 > 10" possibilities

e assume < 10'? possibilites tested per
second

o < 10124232 <107 tested per century

e running time of trivial algorithm for
n = 100is > 10729 = 10°" centuries!

Compare: “only” ca. 10" years since Big Bang!

7 of 14

Edmonds: My algorithm is a
polynomial-time algorithm, the trivial
algorithm is exponential-time!

e 1 polynomial-time algorithm for a given
problem?

e Cook / Levin (1972): N"P-completeness

Intractable

Cook/Levin results &

techni
P echniques

8 of 14

AR

Problems, formal languages

All the world’s Ex. compute salaries,
information-processing control Lunar
problems module landing
graphs,
numbers ...
“Interesting’, MATCHING
“natural” TSP
problems SORTING
tp.
2P
Functions (sets of I/O pairs)
| : output=
YES/NO
Formal languages (sets of 'YES-strings’)

Problem = set of strings (over an alphabet).
Each string is (the encoding of) a
YES-Instance.

9 of 14

Def. 1 Alphabet = finite set of symbols

Ex. > ={0,1}; 2= {A,...,Z}

Coding: binary < ASCII
Def. 2 " = all finite strings over "

S * =1{¢,0,1,00,01, - - - } — in lexicographic
order

Def. 3 A formal language L. over) is a subset
of =

L is the set of all “YES-instances”.

Set of all
problems

10 of 14

Algorithm

11
397

397 + 46 = 46 443
443

input output

computation ¢ rules

Tlll‘illg machine - intwitive description

b ;
g ToTiToTaTs mg,/(lnput/output)

tape

/ &read/write head

"processor" or
¢ finite state control

\

"loaded _ 0(s,0) =(q,, b, R)

states pI'Ogl‘am" 8(q1 ’1):(q27 ba R)
or rules \Z\ :

steps of
computation

11 of 14

We say that Turing machine M decides
language L if (and only if) M computes the
function

[:>X*—>{Y,N}and foreachz € L: f(x) =Y
foreachxz ¢ L: f(x) =N

Language L is (Turing) decidable if (and only
if) there is a Turing machine which decides it.

We say that Turing machine M accepts
language L if M halts if and only if its input is
an string in L.

Language L is (Turing) acceptable if (and

only if) there is a Turing machine which
accepts it.

12 of 14

A Turing machine M which decides
L = {010}.

S JoJo1Jola]n] 3

S

h

q, 4

d; 9
M= (.1, 0Q,4) 5 - {0, 1)
F:{O,l,b,}/,N} Q:{S,h, q1, 42, 43, q(e}

d

0 1 b
s | (q1,0, R) | (qe, b, R) | (h, N, —)
q1 | (ge, b, R) | (q2,0, R) | (h, N, —)
q2 (QSa b, R) (Qea b, R) (ha N, _)
q3 (Qea ba R) (Qea ba R) (h7 Yv —)
Qe || (qe; 0, R) | (Ge, b, R) | (R, N, —)

('—"means “don’t move the read/write head”)

13 of 14

Church’s thesis

Turing machines can compute every function
that can be computed by some algorithm or
program or computer.

Turing complete programming languages.
Neural networks are Turing complete
(McCulloch-Pitts neuron).

If a Turing machine cannot compute f, no
computer can!

14 of 14

Undecidability

IN3130 Algorithms and Complexity

Review

techniques — how to prove that a problem is
unsolvable

insights — what sort of problems are

unsolvable
Unsolvable
Solvable
unsolvable ~~» undecidable
(by algorithms) languages
problems
solvable ~» decidable
problems languages

10f 13

e All algorithms in the world live in the
basket

e Infinitely many of them — most of them
are unknown to us

e Meaning of unsolvability: No algorithm in
the basket solves the problem (decides L)

e Meaning of solvability: There is an
algorithm in the basket that solves the
problem (but we don't necessarily know
what the algorithm looks like)

2d13

To prove that

e L is solvable: Show an algorithm

e L is unsolvable: Difficulty: Cannot check
all the algorithms in the basket. Cannot
even see most of them, because they have
not yet been constructed ...

1. Show Ly (HALTING problem) undecidable
using diagonalisation .

2. Show another langauge L. undecidable by
reduction: If /. kan be solved, so can ..

3of 13

A

Step 1: HALTING is unsolvable
Def. 1 (HALTING)
Ly = {(M,x)|M halts on input x}

Theorem 1 The Halting Problem is
undecidable.

Proof (by diagonalization): Given a Turing
machine M’ that decides Ly we can construct
a Turing machine A" as follows:

NO halt
input I7M’ T
4 ﬂ
YESQ

M!?

QUESTION: What does M"” do when given
M", M" as input?

CONCLUSION: Since the assumption that M’

exists leads to a contradiction (i.e. an
impossible machine), it must be false.

4 of 13

e M, works like an ordinary computer: It
takes a code (program) M and a string x as
input and simulates (runs) M on input z.

e M, exists by Church’s thesis.

¢ To prove existence of M, we must
construct it. Here is a 3-tape M,:

g b () 1 olb| - itapeofM

g -+ State=g" 4| counters - é

5of 13

Alternative proof of Theorem 1:

e (0 |1 |00 01 |10 {11 |0O0O0]---

€
0
1

001 |0 [0 [f0]lo |1 |o |o
o1jlo |1 [o |1 [pt]1 |1 Jo
10
11
000

e We have strings as column labels

e We have Turing machine (codes) as row
labels

e The 1’s in each row define the set of strings
each TM accepts.

e After flipping the diagonal elements, the 1's
on the diagonal represents those machines
which don’t accept their own code as input

e No Turing machine can possibly accept
that diagonal language!

6 of 13

(=5
~

Meaning
An example with [T = 3.14159265359. . .

L1 = {X|X is a substring of the decimal
expansion of I1}

L, = { K| There are K consecutive zeros
in the decimal expansion of 11}

Classify Ly, L as
e not acceptable

e acceptable but not decidable

e decidable

Note: Only problems which take an infinite
number of different inputs can possibly be
unsolvable.

7 of 13

Reductions

L e =

— 2| Mr | ML

(M,X) - > NO
My

Image: You meet an old friend with a brand
new Mj-machine under his shoulder.
Without even looking at the machine you say:
“It is fake!”

Image (an old riddle): You are standing at a
crossroad deep in the forest. One way leads to
the hungry crocodiles, the other way to the
castle with the huge piles of gold. In front of
you stands one of the two twin brothers. One
of them always lies, the other always tells the
truth. You can ask one question. What do you
say?

8 of 13

A

A typical reduction

Lg = { M |M (eventually) writes a $§ when
started with a blank tape}

Claim: Lg is undecidable

Proof:
(M,X) M’ YES}—>YES
o TP T
NO | > NO

M H

Simulate M on input Xx;
IF M halts THEN write a $;

Important points:

e M’ must not write a $ during the
simulation of M!

e 'Write a $’ is an arbitrarly chosen action!

9 of 13

Output the M, code modified as follows:
Instead of reading its input M and z, the
modified M, has them stored in its finite
control and it writes them on its tape. After
that the modified M, proceeds as the

ordinary M, untill the simulation is finished.

Then it writes a $.

Given areduction from ; to L,. Then Mp
computes a function

which is such that

xr € L= frlx) € Ly
X ¢L1:>f3(37) ¢L2

10 of 13

AR

Undecidability in a Nutshell

e show L unsolvable by diagonalization

e show [unsolvable by reduction

N

(M.x) M S
g T I
> NO

MH

Simulate M on input Xx;
Do <ACTION>;

11 of 13

Theorem 2 Equivalence of programs (Turing
machines) is undecidable.

Proof:
(PA;K) M’ ’YES“ﬂﬂ%YEE
———> My 5—9IIIIEIt::: ,
NO | NO
M”
My

Simulate M on input x;
Accept,;

Accept;

e M" accepts all inputs.
e M and z are constants to M.

e M’ accepts all inputs if and only if A/ halts
on input z.

12 of 13

A solvable problem

Ls = { M| Ms(eventually) moves its R/W head
when started with a blank tape}

“Proof” that L. is undecidable:

Simulate M on input x;
Move the R/W head;

“Proot” that L. is decidable:

Simulate M, on empty string as input;
for |I'| x |Q| steps;

13 of 13

NP-Completeness

IN3130 Algorithms and Complexity

Sl O B AN R

<

by | b

b| P 1
¢|blb (;ltglpes)
0|b|b

0|b]|b

>

configuration (tape,
state, r/w head)

Turing machine rules (9) become templates:

q1
d(s,0) = (g1, b, R) is‘and !
110

Y

but also

XY

S
0

and

S
0
S ands
Y0l Z 0l Z|w

forallX,Y,Zand W € {1,0, b}.

Y

We also have

Y Z

forall XY, Z € {1,0,b}.

alting c -ati
Halting configuration

e row with square g

e finitely many rows (matrix is bounded in
vertical direction)

An unsolvable Tiling problem

Input: A finite set of tiles with one designated
tile (which must be placed by the entrance
door). The tiles cannot be rotated or flipped.

.1 Yes! No!

Question: Is the set of tiles complete? (Given
an unlimited supply of each tile, can any
room be tiled?)

The Tiling problem (L7) is unsolvable
because we can make the reduction

LHC — LT

y

An unsolvable grammar (language
definition) problem
Grammar G = (T, N, R)

T, set of terminal symbols

N, set of nonterminal symbols, containing
the start symbol S

R, set of derivation rules:

S—(S) R
S (S R
S > e R3

A derivation of the string (()()):

Rs R, R3
St (8)F (08) £ (09) £ (00)

The language defined by G is the set of all
strings that are derived by G.

In context-free grammars the left-hand side
of each rule consists of exactly one
non-terminal.

[\

Can machines think?
Example: Theorem proving in a formal
system

(z+y)* = 2° + 2y + y° (Theorem)
(a+b)(c+d) =alc+d)+ blc+d)
(Rules/axioms)

ab = ba

Question: Can algorithms prove/verify
theorems?

Answer: Not if the rules can encode a Turing
machine ... But algorithms can accept
theorems.

Algorithms can also enumerate theorems.
Example: Theoremhood in first-order logic is

undecidable (IN 394)

Question: What about automatic program
correctness proving?

Review of unsolvability

-

To prove unsolvability: show a reduction.
To prove solvability: show an algorithm.

Unsolvable problems (main insight)

e Turing machine (algorithm) properties

e Pattern matching and replacement (tiles,
formal systems, proofs etc.)

1 of 24

Complexity

Unsolvable

Horrible (intractable)
Nice (tractable)

e Horrible problems are solvable by
algorithms that take billions of years to
produce a solution.

e Nice problems are solvable by “proper”
algorithmes.

e We want techniques and insights

Complexity «—— resources: time, space
|

complexity classes:

P(olynomial time), NP-complete,

Co-NP-complete, Exponential time,

PSPACE, ...

2 of 24

EXP TIME

PSPACE

Map of classes
‘ = complete or "hardest"
problems in a class

3 of 24

Complexity: techniques

Pl Impossible

Horrible (intractable)
Nice (tractable)

Intractable , best algorithms are infeasible
Tractable , solved by feasible algorithms

Problems Complexity classes
Horrible ~ N'P-complete, N'P-hard,
PSPACE-complete,
EXP-complete, ...

Nice ™~ P (Polynomial time)

Organize problems into complexity classes.
e Put problems of a similiar complexity into
the same class.

e Complexity reveals what approaches to
solution should be taken.

Complexity theory will give us an organized
view of both problems and algorithms.

4 of 24

We say that Turing machine M recognizes
language L in time £(n) if givenany z € °
as input M halts after at most ¢(|z|) steps
scanning 'Y’ or ‘N’ on its tape, scanning 'Y’ if
and only if x €L.

(|z| is the input length — the number of TM
tape squares containing the characters of x)

Note: We are measuring worst-case behavior
of M, i.e. the number of steps used for the
most “difficult” input.

We say that language L has time complexity
t(n) and write L € TIME(¢(n)) if there is a
Turing machine M which recognizes L in
time O (t(n)).

Polynomial time P= | TIME (n")
E

Note: P (as well as every other complexity
class) is a class (a set) of formal languages.

5 of 24

Real time on e Turing machine time
a PC/Mac/Cray/ (number of steps)

Hypercube/...

All reasonable computer models are
polynomial-time equivalent (i.e. they can
simulate each other in polynomial time).

Consequence: P is robust (i.e. machine
independent).

Worst-case s Real-world
complexity difficulty

Feasible . Polynomial-time
solution algorithm

e i(n) O (t(n))
Argument: “for large-enough n...”

o n'% < ploen Yes, but only for n > 2%,
Argument: Functions like n'® or n'°¢™ don’t
tend to arrise in practice.

n? < 2" already for small
or medium-sized inputs:

6 of 24

We say that Turing machine M computes
function f(x) in time £(n) if, when given x as
input, M halts after ¢(|x|) = {(n) steps with
f(z) as output on its tape.

Function f(x) is computable in time ¢(n) if
there is a TM that computes f(z) in time

O (t(n)).

For constructing the complexity theory we

need a suitable notion of an efficient
Teduction’:

ML

1

We say that 1, is polynomial-time reducible
to 1., and write L; o< Ls if thereis a
polynomial-time computable reduction from
L1 to LQ.

7 of 24

For arguments of the type
Ly is hard/complex = L, is hard/complex

we need the following lemma:

Lemma 1 A composition of polynomial-time
computable functions is polynomial-time
computable.

Proof:

e | f1(x)| < 11(|x|) because a Turing machine
can only write one symbol in each step.

e “polynomial PyPOmial — holvnomial” or
z
(nF)! = b

e {5(|f1(x)]) is a polynomial.

e TIME (1) = t1(|z]) + t2(| f1(x)]) is a
polynomial because the sum of two
polynomials is a polynomial.

8 of 24

(computationally)
hard

«—We want to make a cut!

easy

all solvable
problems

It is the same as before (in uncomputability):

e Prove that a problem L is easy by showing
an efficient (polynomial-time) algorithm
for L.

e Prove that a problem L is hard by showing
an efficient (polynomial-time) reduction
(L1 o« L) from a known hard problem L, to
L.

Finding the first truly/provably “hard”
problem.

Completeness & Hardness

9 of 24

AR

N P-completeness

How to prove that
a problem is hard?

e TS &]
" 5)

We say that language L is hard for class C
with respect to polynomial-time reductions'
or C-hard, if every language in C is
polynomial-time reducible to L.

We say that language L is complete for class
C with respect to polynomial-time

reductions’, or C-complete, if . <C and L is
C-hard.

T Other kinds of reductions may be used

A Note:

e If L is C-complete/C-hard and L is easy
(L. € P) then every language in C is easy.

e [, is C-complete means that 1. is “hardest
in” C or that L “characterizes” C.

)

10 of 24

A

A non-deterministic Turing machine (NTM)
is defined as deterministic TM with the
following modifications:

e NTM has a transition relation A instead
of transition function ¢

A - {(<s,0), (1.6, R)), ((5,0), (g2, 1, L)), .. }

e NTM says ‘Yes’ (accepts) by halting

Note: A NTM has many possible
computations for a given input. That is why it
is non-deterministic.

initial
config. \

e Mathematician doing a proof ~»NTM

e The original TM was a NTM

11 of 24

We say that a non-deterministic Turing
machine M accepts language L if there exists
a halting computation of A on input z if and
onlyif x € L.

Note: This implies that NTM M never stops if
x ¢ L (all paths in the tree of computations
have infinite lengths).

We say that a NTM M accepts language L in
(non-deterministic) time t(n) if M accepts L
and for every x € L there is at least one
accepting computation of M on x that has
t(|x|) or fewer steps.

We say that L € NTIME(¢(n)) if L is
accepted by some non-deterministic Turing
machine M in time O (t(n)).

NP = | NTIME (n")
k

Note: All problems in NP are decision
problems since a NTM can answer only "Yes’
(there exists a halting computation) or 'No’
(all computations “run” forever).

12 of 24

Many people have tried to solve
N'P-complete problems efficiently without
succeeding, so most people believe N'P+£P,
but nobody has proven yet that
NPCproblems need exponential time to be

solved.

L is computationally hard (L €
NP-complete):

LeP=NP=P

Checking if x € L is easy, given a certificate.

13 of 24

Vs l
WL

e A deterministic algorithm “must” do
exhaustive search:
V1 — Vg — VU3 — U9 — backtrack

n! possibilities (exponentially many!)

e A non-deterministic algorithm can guess
the solution/certificate and verify it in
polynomial time.

\ Vq V5 .
1 <— bactracking
Vs Vi tov
1

time Vi :
Certificate: (1,1,1,1,1)

Note: A certificate is like a ticket or an ID.

14 of 24

Proving N/P-completeness

1.LeNP
Prove that L. has a “short certificate of
membership”.

Ex.: HAMILTONICITY certificate =
Hamiltonian path itself.

2. L € N'P-hard
Show that a known N'P-complete language
(problem) is polynomial-time reducible to
L, the language we want to show N"P-hard.

First NP-complete
language

’_—_~

15 of 24

e Transforming problems into each other.

e Seeing unity in the midst of diversity: A
variety of graph-theoretical, numerical, set
& other problems are just variants of one
another.

But before we can use reductions we need the
first A“P-hard problem.

As before:

¢ 'Cook up’ a complete Turing machine
problem

e Turn it into / reduce it to a natural/known
real-world problem (by using the familiar
techniques).

16 of 24

Lpy = {(M,z,1%)|NTM M accepts string «
in k steps or less }

Note: 1* means k written in unary, i.e. as a
sequence of k 1’s.

Theorem 1 Ly is N'P-complete.
Proof:

e Lpy € NP
C (initial config.)

Certificate: (4,2, 1,2). The certificate, which
consists of £ numbers, is “short enough”
(polynomial) compared to the length of
the input because £ is given in unary in the
input!

17 of 24

o Lpy € NP-hard

Y ES

X (M x,1PMm(xD)y > YES
—>—>M r > MBHC
NO [> NO

M;

— For every L. € NP there exists by
definition a pair (M, Py;) such that NTM
M accepts every string « that is in . (and
only those strings) in Py (|z|) steps or
less.

— Given an instance z of L the reduction
module My computes (M, z, 17#{#])) and
feeds it to Mpy. This can be done in
time polynomial in the length of x.

— If My says 'YES’, M answers 'YES'. If
Mgy says 'NO’, M answers 'NO’.

18 of 24

The first real-world problem shown to be
NP-complete.

Instance: A set C' = {(C,...,C,,} of clauses. A
clause consists of a number of literals over a
finite set U of Boolean variables. (If v is a
variable in U, then » and —u« are literals over
U.)

Question: A clause is satisfied if at least one
of its literals is TRUE. Is there a truth
assignment T, T : U — {TRUE, FALSE}, which
satisfies all the clauses?

I =CuU
(= {(xl \/ —|332)7 (—1561 \V4 —15172), (561 \Y4 5[72)}
U:{ajth}

T = x1 — TRUE, xy — FALSE is a satisfying
truth assignment. Hence the given instance /
is satisfiable, i.e. [€ SAT.

[, - {Cl — {(SEl V CEQ), (271 \V/ _lwg), <_|£U1)}
U/ — {331,562}

is not satisfiable.

19 of 24

Theorem 2 (Cook 1971) SATISFIABILITYJ?’iS
N'P-complete.

Proof - main ideas:

BOUNDED HALTING SATISFIABILITY
Thereis a Thereis a
computation” truth assignment”

computation ™ (computation) matrix

Example: input (M, 010, 1%)

plol|o|ololo|p]|v]|s
blolo|olels|ol?]s
plolololel|s|Els]b
plololo|e|to]s]s
plololplol1]o]|s]s

Computation matrix A is polynomial-sized
(in length of input) because a TM moves only
one square per time step and k& is given in
unary.

20 of 24

Ex. Square A(2,6) gives variables B(2,6,0),

B(2,6,b), B(2,6, %), etc. - but only
polynomially many.

Ex. A(1,5) = 8 gives clause (B(1, 5, 8)) e C,

Note that any satisfying truth assignment
must map B(1, 5, 8) to TRUE.

d
Ex.

alb

C

gives ((B(z’ —1,4,a) A B(i, §,b)

AB(i+1,4,¢)) = B(i,j +1, d)) cC.

Note: (u ANV Aw) = 2z2=-uV-wV-wVz

Since the tile can be anywhere in the matrix,

we must create clauses for all 2 < ¢ < 2k and
1 < 7 < k, but only polynomially many.

21 of 24

Ex.

G(1) F T
GQ2) F/\T F /AT

G (t) tells us what non-deterministic choice
was taken by the machine at step ¢t. We extend
the “if-then clauses” with £ choice variables:

(G(t) A“D A“D” A S = ad») \/ (_‘G<t) A s)

Note: We assume a canonical NTM which

e has exactly 2 choices for each
(state,scanned symbol)-pair.

e halts (if it does) after exactly & steps.

22 of 24

Further (basic) reductions

BOUNDED HALTING

l

SATISFIABILITY (SAT)

l

3SAT

7N\

3-DIMENSIONAL VERTEX COVER (VC)

MATCHING (3DM)
1 N\

HAMILTONICITY CLIQUE
PARTITION

L1 < Lo means that

e 2:3 " — > "suchthat
r e li= fR(QC) c Ly and
v & L= fr(x) & Ly

e R € P, 1.e. R(x)1s polynomial computable

23 of 24

Proving NP-
completeness

IN3130 Algorithms and Complexity

[\

NP-completeness (review)

have no

feasible
solvable Q NP-

solutions
have
problems complete

feasible
solutions

L € N'Pand
L
ENPC e L € N'P-hard

e I € N'P: show that there is a “short”’
certificate of membership in L (“id card”).

e I. ¢ NP-hard: show that there is an
“efficient”’ reduction from a known

NP-hard problem L, to L.
 polynomial (length, time...)

Autumn 2012 1 of 23

e Transforming problems into each other.

e Seeing unity in the midst of diversity: A
variety of graph-theoretical, numerical, set
& other problems are just variants of one
another.

But before we can use reductions we need the
first AP-hard problem.

I =CUU
C' = {(@1 V —x2), (mx1 V —22), (21 V 22) }
U — {xlaxQ}

T = x1 — TRUE, x» — FALSE is a satisfying
truth assignment. Hence the given instance /

is satisfiable, i.e. / € SAT.
Autumn 2012 2 of 23

Autumn 2012

Further (basic) reductions

BOUNDED HALTING

l

SATISFIABILITY (SAT)

l

3SAT

7N

3-DIMENSIONAL VERTEX COVER (VC)

MATCHING (3DM)
| N\

HAMILTONICITY CLIQUE
PARTITION

L1 < L, means that

e 2:% " — > "suchthat
r e = fR(CC) c Ly and
v & L= [rlx) & Ly

L
@

*k

)Y

e R € P, 1.e. R(x)1s polynomial computable

3 of 23

SAT 3SAT
Clauses withany . Clauses with
number of literals exactly 3 literals

e (; is the j’th SAT-clause, and C; is the
corresponding 3SAT-clauses.

o o /
e y; are new, fresh variables, only used in (.

/

Cj Cj
(23‘1 \/332V$3) — (wl\/xQ \/xg)

(1Va) +— (T VaVyy), (01 V2V -y

(1) — (551\/11} V?/?),("El\/ ﬂy}Vyi),
(w1 Vo Vv —ws), (o1 V -y vV oy

(€1 V- Vag) — (a3 Vaa V), (ty VasVys),
(Y VsV y)), (Y Vas V),

(—y; Ve V), (- VoV oas)

Question: Why is this a proper reduction?

Autumn 2012 4 of 23

Instance: A set M of triples (a, b, ¢) such that
a€ A be B,ce (. All 3sets have the same
size q (|A] = [B| = |C| = ¢).

Question: Is there a matching in M, i.e. a
subset M/’ C M such that every element of A,
B and C'is part of exactly 1 triple in M'?

Ui
X1 °® <1
e ® <2
X3 ® <3

M = {(!1?1,'1/1121)9 (21, Y2, 22),
(T2, 1o, 22), (X3, Y3, 23), (T3, Yo, Z1)}

We will use sets with 3 elements to visualize
triples:

Autumn 2012

5 of 23

one language to another. The same

Reductions are like translations from
A properties must be expressed.

3SAT 3DM
variables zi,---,x, —— variables 3, a’, b?, c
literals 21, -2 —— variables z7, —x
clauses — triples (], b;, b)
Cj = (x1V —x9 V —3) (—ad, b}, b?)
“There exists a sat. "Thereis a

—

truth assignment” matching”
e 1T :{xy, -+ ,x,} — {TRUE, FALSE}

e T'(x;) = TRUE < T(—x;) = FALSE

The second property is easily translated to
the 3DM-world:

T(X;) = TRUE +—— gjisnot “married”
Autumn 2012 6 of 23

A literal x; can be used in many clauses. In
3DM we must have as many copies of x; as
there are clauses:

e Either all the black triples must be chosen
(“married”) or all the red ones!

e If T'(x;) = TRUE then we choose all the red
triples, and the black copies of x; are free to
be used later in the reduction. And vice
versa.

e We make one such truth setting
component for each variable x; in 3SAT.

Autumn 2012 7 of 23

We translate each clause (example:
Ciy = (21 V2V ﬂxS)) 1nto 3 trlples

By
bl b2

e b; and b; can be married if and only if at
least one of the literals in C; is not married

in the truth setting component.

e [f we have a satisifiable 3SAT-instance ,
then all b} and b3-variables (1 < j < m) can
be married.

e If we have a negative 3SAT-instance , then
some b; and b3-variables will not be
married.

Autumn 2012

8 of 23

There are many x; who are neither married in
the truth settting components nor in the
“clause-satisfying” part. We introduce a
number of fresh c-variables who can marry
“everybody”:

e There are m x n unmarried z-variables
after the truth setting part.

e [f all m clauses are satisfiable then there
will remain (m x n) —m =m(n — 1)
unmarried z-variables.

eSoweletl <k <m(n—1).

Autumn 2012 9 of 23

Instance: A finite set A and sizes s(a) € Z™ for
each a € A.

Question: Can we partition the set into two
sets that have equal size, i.e. is there a subset
A" C A such that

> sla)=) sla)

ac A ac A\ A’

We first reduce 3DM to SUBSET SUM where
we are given A, as in PARTITION, but also a
number B, and where we are asked if it is
possible to choose a subset of A with sizes
that add up to B.

3DM SUBSET SUM
sets and
triples (subsets) +~—— numbers

“There is “There is
a matching M7 +—— asubsetwith
total size B”

Autumn 2012 10 of 23

Autumn 2012

Difficulty: We need to translate from subsets
with 3 elements (triples) to numbers.

Solution: Use the characteristic
function of a set!

Given set U = {xy, x9,...,x,} and subset

S = {x1, z3, z4}. The characteristic function of
S is a binary number with » digits and bit 1, 3
and 4 set to 1: iOllQQ (),

n

, There is a subset M’
There is a matching M’ «——

Z sizes = BB
M/

n

. frmmN—
Itis natural toset B ="111---11, since each
element in the universe is used in exactly one
of the triples in the matching.

Technicality: Carry bits!

01, + 10, = 11, butalso 01, + 01, + 01, = 11,.

11 of 23

3DM-instance:
MCWxXxY

W = {’UJl,UJQ,“’ awq}
Y = {y19y27”’ 7yq}

4 = {21722,"’ MZQ'}

M = {mlam%”’ 7m/€}

e For each triple m; € M we construct a
binary number:

(logy k) + 1
I A—
i 11of 11 1ol {1 lolaoiolf - {1 { 1ol {1{1f{{lo] --{]]o
wi " Wy wa Ty Ty Lg | Y1~ Y2 Yq

e This PARTITION/SUBSET SUM number
corresponds to the triple (wy, z2, y1).

e By adding log, k zeros between every
“characteristic digit”, we eliminate
potential summation problems due to
overflow / carry bits.

e We make B as follows:

| |
daoltiaoiolif - Jolotoldooftidaiofif -+ folotol doloiololofolf -+ folefol

wi b wy ! Twgla Tt Ta Tt Ty,

Autumn 2012 12 of 23

e We introduce two new elements b; and b.

e We choose s(by) and s(by) so big that every
partition into to equal halves must have
s(b1) in one half and s(by) in the other.

S(01)

B

S(02)

2.5) - B

e Welets(b)) + B =s(by)+ (> sla) — B).

e We can pick a subset of A which adds up to
B if and only if we can split A U {b;, b, } into
two equal halves.

Autumn 2012

13 of 23

Instance: A graph G with a set of vertices V
and a set of edges F, and an integer K < |V/|.

Question: Is there a vertex cover of G of size
< K7?

“Can we place guards on at most K of the
intersections (vertices) such that all the
streets (edges) are surveyed?”

Autumn 2012 14 of 23

3SAT VERTEX COVER

literals —— vertices
clauses —— subgraphs
“There exists a sat. "There is a VC
. H .
truth assignment” of size K”
—
o——0
U; Uy

¢ A guard must be placed in either u; or —wu;
for the street between u; and —u; to be
surveyed.

e If we only allow |V'| guards to be used for
all |V| streets of this kind, then we cannot
place guards at both ends.

e Placing a guard on u; corresponds to the
3SAT-literal u; being TRUE.

e Placing a guard on —u; corresponds to the
3SAT-literal —u,; being TRUE (and the
u;-variable being assigned to FALSE).

Autumn 2012 15 of 23

>

For clause C; = (1 V —x2 V —x3) we make the
following subgraph:

—T3
L1
; T X9

e We need guards on two of three nodes in
the triangle to cover all three (blue) edges.

—|§Ij3

e If we are allowed to place only two guards
per triangle, then we cannot cover all three
outgoing edges.

e All 6 edges can be covered if and only if at
least one edge (red) is covered from the
outside vertex.

¢ By connecting the subgraph to the
“truth-setting” components, this translates
to one of the literals being TRUE (guarded)!

Autumn 2012 16 of 23

3SAT-instance:
U=A{x1,x0, 23,24} (=4
C = {{xl, —To, 7x3}, { 0T, o, ﬁ;(;4}} (m —2)

J
;; X1 L2 & L9

e Total number of guards K = n + 2m = 8.

e Should check that the reduction can be
computed in time polynomial in the length
of the 3SAT-instance...

Autumn 2012 17 of 23

For G = (V, F/) and subset V; C V, the
following statements are equivalent:

(a) V; is a vertex cover of G

(b) V — V; is an independent setin G
(c) V — Vjisaclique in G°.

Corollary:

CLIQUE and INDEPENDENT SET are
NP-complete.

Autumn 2012 18 of 23

Instance: Graph G = (V, F).

Question: Is there a Hamiltonian cycle/path
in G?

Is there a “tour” along the edges such that all
vertices are visited exactly once? (a
Hamiltonian cycle requires that we can go
back from the last node to the first node)

Autumn 2012 19 of 23

VC HAMILTONICITY
edges —— edge gadgets
vertices —— how gadgets are connected
K guards +— K selector nodes

—

U1
U1 U9
—
U9

A Hamiltonian path can visit the vertices in
the edge gadget in one of three ways:

U1 U9 (o] a?? U9 U1 U9

We want this to correspond to guards being
placed on v; or v, or both vy and v»,

respectively.
Autumn 2012 20 of 23

—

For each vertex v,, we connect together in
serial all edge gadgets corresponding to
edges from vy: .

1 U1 U2

U9 U3

\

e Any Hamiltonian path entering at the
vo-side (red arrow) can visit (if necessary)
all vertices in the serially-connected
gadgets and will eventually exit at bottom
on the v,-side.

e This corresponds to the VC-property that a
guard on vy covers all outgoing edges from
U9.

Autumn 2012 21 of 23

A

We finish the construction by introducing K

selector nodes a; which are connected with all
“loose” edges:

(S />

U1

Autumn 2012 22 of 23

ThereisaVC - Thereis a
which uses K guards Hamiltonian cycle

Autumn 2012 23 of 23

Coping with NP-
completeness 1

IN3130 Algorithms and Complexity

L\

Coping with Intractability

Branch:

Leaf nodes = possible solutions

Bound:

e Bactracking

e Pruning ("avskjaering’)

1 of 22

e Building up a solution from solutions from
subproblems

e Principle: Every part of an optimal solution
must be optimal.

0 <
o Xans

S
o

SV Vi

2 of 22

[\

Restricting

e Idea: Perhaps the hard instances don’t
arise in practice?

e Often restricted versions of intractable
problems can be solved efficiently.

e CLIQUE on graphs with edge degrees
bounded by constant is in P:
const. C'= (/1) = O (n) is a polynomial!
e Perhaps the input graphs are
— planar
— sparse
— have limited degrees

e Perhaps the input numbers are
— small
— limited

3 of 22

Def. 1 Let I be an instance of problem L, and
let MAXINT(I) be (the value of) the largest
integer in 1. An algorithm which solves L in
time which is polynomial in |I| and
MAXINT() is said to be a pseudo-polynomial
algorithm for L.

Note: If MAXINT(I) is a constant or even a
polynomial in [[| for allT € L, then a
pseudo-polynomial algorithm for L is also a
polynomial algorithm for L.

4 of 22

In 0-1 KNAPSACK we are given integers

wi, Wy, . .., w, and K, and we must decide
whether there is a subset S of {1,2,...,n}
such that) ;.gw; = K. In other words: Can
we put a subset of the integers into our
knapsack such that the knapsack sums up to
exactly K, under the restriction that we
include any w; at most one time in the
knapsack.

Note: This decision version of 0-1 KNAPSACK
is essentially SUBSET SuM.

0-1 KNAPSACK can be solved by dynamic
programming. Idea: Going through all the w;
one by one, maintain an (ordered) set M of all
sums (< K) which can be computed by using
some subset of the integers seen so far.

5 of 22

Algorithm DP A

1.Let My :={0}.
2.For y=1,2,...,n do:

Let Mj = Mj_l.

For each element u € M;_y:

Add v =w; +u to M; if v < K and
v is not already in M;.

3.Answer ’Yes’ if K € M,,, ’No’
otherwise.

Example: Consider the instance with w;’s
11,18,24,42,15,7and K = 56. We get the
following M;-sets:

M() . {O}

My :{0,11} (0 + 11 = 11)

My {0,11,18,29} (0 + 18 = 18, 11 + 18 = 29)
Ms : {0,11,18, 24,29, 35, 42, 53}

My - {0,11,18,24,29, 35,42, 53}

Ms - {0,11, 15, 18,24, 26, 29, 33,

35, 39,42, 44, 50, 53}

Mg - {0,7, 11,15, 18,22, 24, 25,26, 29, 31, 33,

35, 36,39, 40, 42, 44, 46, 49, 50, 51, 53}

Theorem 1 DP is a pseudo-polynomial
algorithm. The running time of DP is
O (nK log K).

Proof: MAXINT()= K ...

6 of 22

Def. 2 A problem which has no
pseudo-polynomial algorithm unless P = NP
is said to be N"P-complete in the strong sense
or strongly NP -complete.

Theorem 2 TSP is strongly N'P-complete.

Proof: In the standard reduction HAM TSP
the only integers are 1, 2 and n, so
MAXINT(I)= n. Hence a pseudo-polynomial
algorithm for TSP would solve
HAMILTONICITY in polynomial time (via
the standard reduction).

a b c d

N d al2 1 2 1
I I x bl 2 1 2
b c cl2 1 2 1
dijll1 2 1 2

K =n(=4)

7 of 22

Alternative approaches to
algorithm design and analysis

e Problem: Exhaustive search gives typically
O (n!) = O (n")-algorithms for
N'P-complete problems.

e So we need to get around the worst case /
best solution paradigm:
— worst-case — average-case analysis
— best solution — approximation
— best solution — randomized algorithms

8 of 22

Approximation

OPT
< { | AY)
A ‘¢.OPT 'e.0PT ’/

Def. 3 Let L. be an optimization problem. We
say that algorithm M is a polynomial-time
e-approximation algorithm for L if M runs
in polynomial time and there is a constant

e > 0 such that M is guaranteed to produce,
for all instances of L, a solution whose cost is
within an e-neighborhood from the optimum.

Note 1: Formally this means that the relative

error 'tM(%);TOPT' must be less than or equal to

the constant .

Note 2: We are still looking at the worst case,
but we don’t require the very best solution
any more.

Example: TSP with triangle inequality has a
polynomial-time approximation algorithm.

cf Eb c<a-+b

a

9 of 22

Algorithm TSP-A:

Phase I: Find a minimum spanning tree.
Phase II:. Use the tree to create a tour.

The cost of the produced solution can not be
more than 2-OPT, otherweise the OPT tour
(minus one edge) would be a more minimal
spanning tree itself. Hence ¢ = 1.

Opt. tour

10 of 22

Theorem 3 TSP has no polynomial-time
e-approximation algorithm for any ¢ unless
P=NP.

Proof:

Idea: Given ¢, make a reduction from
HAMILTONICITY which has only one solution
within the e-neighborhood from OPT, namely
the optimal solution itself.

a b C d
Id aj2+4en 1 2+en 1

xb| 1 2+en 1 2+en
c Cl|24en 1 24en 1
dl 1 24en 1 2+4en

K =n(=4)

The error resulting from picking a non-edge
is: Approx.solutin - OPT =
m—14+24+en)—n=(1+¢en>en

Hence a polynomial-time e-approximation
algorithm for TSP combined with the above
reduction would solve HAMILTONICITY in

polynomial time.

11 of 22

e Heuristics are a common way of dealing with
intractable (optimization) problems in
practice.

e Heuristics differ from algorithms in that they
have no performance guarantees, i.e. they
don't always find the (best) solution.

A greedy heuristic for VERTEX COVER-0pt.:

Heuristic VC-H1:

Repeat until all edges are covered:
1.Cover highest-degree vertex v;
2.Remove v (with edges) from

graph;

Theorem 4 The heuristic VC-H1 is not an
e-approximation algorithm for VERTEX
COVER-opt. for any fixed e.

12 of 22

N
Proof:

Show a counterexample, i.e. cook up
A an instance where the heuristic per-

forms badly.

Counterexample:

e A graph withnodes ay,...,a, and by, . .., b,.
e Node b, is only connected to node a;.

¢ A bunch of e-nodes connected to a-nodes in
the following way:

— Node ¢; is connected to a; and a,. Node ¢ is
connected to as and a4, etc.

— Node ¢, /5, is connected to a4, a; and as.
Node ¢, /2,9 18 connected to a4, as and ag, etc.

— Node ¢,,_; is connected to aq, as, . . . ay_1.

— Node ¢,, is connected to all a-nodes.

13 of 22

e The optimal solution OPT requires
n guards (on all a-nodes).

e VC-H1 first covers all the c-nodes (starting
with ¢,,) before covering the a-nodes.

e The number of c-nodes are of order n log n.

e Relative error for VC-H1 on this instance:
VC-H1| — |OPT| (nlogn +n)—n
|OPT| B n
- nlogn

— = logn # ¢
n

e The relative error grows as a function of n.

Heuristic VC-H2:
Repeat until all edges are covered:
1.Pick an edge e¢;
2.Cover and remove
both endpoints of e.

e Since at least one endpoint of every edge
must be covered, [VC-H2| <2 - |OPT]|.

e S0 VC-H2 is a polynomial-time
e-approximation algorithm for VC with € = 1.

e Surpisingly, this “stupid-looking” algorithm is

the best (worst case) approximation
algorithm known for VERTEX COVER-opt.

14 of 22

solution within

< Algorithm e-neighborhood
—

T’ M from OPT
Running time of M is O(P.(|I|))
where P.(n) is a polynomial in n and
also a function of .

Def. 4 M is a polynomial-time
approximation scheme (PTAS) for
optimization problem L if given an instance I
of L. and value ¢ > 0 as input

1. M produces a solution whose cost is within
an e-neigborhood from the optimum (OPT)
and

2. M runs in time which is bounded by a
polynomial (depending on ¢) in |I|.

M is a fully polynomial-time approximation
scheme (FPTAS) if it runs in time bounded by
a polynomial in |I| and 1 /e.

Example: 0-1 KNAPSACK-optimization has a
FPTAS.

15 of 22

Instance: 2n | 1 integers: Weights w, ..., w,
and costs ¢y, . . ., ¢, and maximum weight K.

Question: Maximize the total cost

n
E :Cﬂ?j
7=1

subject to

n
Z”LU]'LUJ' < Kandxj = 0,1
=1

Image: We want to maximize the total value
of the items we put into our knapsack, but the
knapsack cannot have total weight more than
K and we are only allowed to bring one copy
of each item.

Note: Without loss of generality, we shall
assume that all individual weights w; are < K.

0-1 KNAPSACK-opt. can be solved in
pseudo-polynomial time by dynamic
programming. Idea: Going through all the
items one by one, maintain an (ordered) set
M of pairs (5, (') where S is a subset of the
items (represented by their indexes) seen so
far, such that S is the “lightest” subset having
total cost equal C.

16 of 22

Algorithm DP-OPT
1.Let My :={(0,0)}.
2.For 3=1,2,...,n do steps (a)-(c):
(a) Let M;:= M,;_;.
(b) For each elem.(S,C) of M;_;:
If) e wi +w; <K, then add
(SU{j}.C+cj) to M.
(c) Examine M, for pairs of
elements (5,C) and (5, C)
with the same 2nd component.
For each such palr, delete
(Sl, C) 1f ZZES’ Wy Z ZZES Wy
and delete (5,C') otherwise.
3.The optimal solution is S where (S, C)
is the element of M, having the larges
second component.

e The running time of DP-OPT is
O (n*Cy, log(nC,W,,)) where C,, and W,
are the largest cost and weight,
respectively.

17 of 22

Example: Consider the following instance of
0-1 KNAPSACK-opt.

ilil2]3]4
w1132 K=5
¢; l6]11]17]3

Running the DP-OPT algorithm results in the
following sets:

)}

), ({1},6)}
), ({1},6), ({2}, 11), ({1, 2}, 1) }
), ({14, 6), ({2}, 11), ({1, 2}, 17),
C({2,3},29), ({1,2,3},34)
0),({4},3), ({1},6), ({1,4},9),
2,4} 14), ({1,2},17), ({1,2, 4}, 20),
({2,3},29), ({1,2,3},34)}

Hence the optimal subsetis {1,2, 3} with
D jes G = 34

18 of 22

The FTPAS for 0-1 KNAPSACK-optimization
combines the DP-OPT algorithm with
rounding-off of input values:

jllv]2lsla]s]e|7
will 4 {172 3]2]1]2 K=10
c; 12091731 159|221 {13789 | 157

The optimal solution S = {1, 2, 3,6, 7} gives
S e = TTT.

illrl2]3l4]5]6]7

will 4 (1] 2]3]2]1]2 K=10
¢, [200]70]150{220] 130 |80 150

The best solution, given the trunctation of the
last digit in all costs, is S" = {1, 3, 4, 6} with
ZjGS/ Cj — 740.

19 of 22

A

Algorithm APPROX-DP-OPT

e Given an instance I of 0-1 KNAPSACK-opt
and a number ¢, truncate (round off
downward) ¢ digits of each cost ¢;in I.

e Run the DP-OPT algorithm on this
truncated instance.

e Give the answer as an approximation of
the optimal solution for I.

Idea:

e Truncating ¢ digits of all costs, reduces the
number of possible “cost sums” by a factor
exponential in ¢. This implies that the
running time drops exponentially.

e Truncating error relative to reduction in
instance size is “exponentially small”:

Cr = 53501 87959
half of length
but only 10~° of
precision

20 of 22

Theorem 5 APPROX-DP-OPT is a FPTAS for
0-1 KNAPSACK-opt.

Proof: Let S and S’ be the optimal solution of
the original and the truncated instance of 0-1
KNAPSACK-opt., respectively. Let ¢; and ¢; be
the original and truncated version of the cost
associated with element j. Let ¢ be the
number of truncated digits. Then

(1) (2) (3)
DD =D P

jes jes’ jeS jes

(4) (5)

Z Z(Cj — 10t> Z Z c; —n- lOt
jeS JjeS

1. because S is a optimal solution

2. because we round off downward (¢; < ¢,
for all y)

3. because S’ is a optimal solution for the
truncated instance

4. because we truncate ¢ digits
5. because S has at most n elements

This means that the have an upper bound on
the error:

Z A Z ¢; <n-10°

jes jes’

21 of 22

e Running time of DP-OPT is
O (n*Cy, log(nC, W)) where C,,, and W,
are the largest cost and weight,
respectively.

e Running time of APPROX-DP-OPT is
O (n*Cy, log(nC,,W,,,)107") because by
truncating ¢ digits we have reduced the
number of possible “cost sums” by a factor
10,

e Relative error cis

ZjeS Cj — ZjES’ Cj (2 n - 10° N
zjes Cj - Cm
1. because our assumption that each
individual weight w, is < K ensures that
D ies Cj = Cp (the item with cost O,

always fits into an empty knapsack).

€

e Given any ¢ > 0, by truncating
t = |log,, <= | digits APPROX-DP-OPT is an
e-approximation algorihtm for 0-1
KNAPSACK-opt with running time

O (n3 log(nCme)) .

€

22 of 22

Coping with NP-
completeness 2

IN3130 Algorithms and Complexity

Alternative approaches to
algorithm design and analysis

e Problem: Exhaustive search gives typically
O (n!) ~ O (n™)-algorithms for
NP-complete problems.

e SO0 we need to get around the worst case /
best solution paradigm:
— worst-case — average-case analysis
— best solution — approximation
— best solution — randomized algorithms

10of 17

Average-case analysis &

algorithms

W)(st case

2d17

e Problem = (L, P,) where P, is a probability
function over the input strings:

P> —0,1].

> ey I(x) = 1 (the probabilities must sum
up to 1).

e Average time of an algorithm:

TA(TL) — Z TA(SL’)PT(QE‘)
{zedx””

jz[=n}

¢ Key issue: How to choose P, so thatitis a
realistic model of reality.

e Natural solution: Assume that all instances of

length n are equally probable (uniform
distribution).

3 of 17

e Every graph G has equal probability

e [f the number of nodes = n, then

- 1 1 ny n(n—1)
P”'”(G) - #graphs 9(8)’ where (2) 2

e UPM is more natural for interpretation

e Every possible edge in a graph ' has equal
probabilility p of occuring

e The edges are independent in the sense that
for each pair (s, t) of vertices, we make a new
toss with the coin to decide whether there will
be an edge between s and .

e For p = IEPM is identical to UPM:

CEONONEF

e I[IEPM is easier to work with

4 of 17

[y,
a5

In 3-COLORABILITY we are given a graph as input
and we are asked to decide whether it is possible
to color the nodes using 3 different colors in
such a way that any two nodes have different
colors if there is an edge between them.

Theorem 1 3-COLORABILITY, which is an

NP -complete problem, is solvable in constant
average (expected) time on the IEPM with

p = 1/2 by a branch-and-bound algorithm (with
exponential worst-case complexity).

Proof:

Strategy (for a rough estimate): Use the indep.
edge prob. model. Estimate expected time for
finding a proof of non-3-colorability.

? d K, (aclique of size 4) is a proof
of non-3-colorability.
b C

5of 17

e The probability of 4 nodes being a Ky:
PKy) =276 =276 — L

e Expected no. of 4-vertex sets examined before
a K, is found:

Si(278 et =270y (1 270
=l

=1

* 96 !
(1—(1—275)
1 212
__o—F6 - o6
— (2_6)2 =55 = 20 = 128

— (1 — 275"'2-6 ig the probability that the
first K, is found after examining exactly i
4-vertex sets.

— (%) is correct due to the following formula
(g = 1 — 279 from mathematics (MA100):

Oo-z—lioozé(Q)

|
(1 —q)?

6 of 17

Conlusion: Using IEPM with p = ; we need to
check 128 four-vertex sets on average before we
find a K4.

Note: Random graphs with constant edge
probability are very dense (have lots of edges).
More realistic models has p as a function of n
(the number of vertices),i.e. p=1/y/norp=>5/n.

7 of 17

as a link between probabilistic and deterministic
thinking.

Example: “Almost all” graphs are

e not 3-colorable
e Hamiltonian

e connected

e ...

Def. 1 A property of graphs or strings or other
kind of problem instances is said to have a
zero-one law if the limit of the probability that a
graph/string/problem instance has that property
is either 0 or 1 whenn tends to infinity (lim,,_...).

8 of 17

a linear expected-time algorithm for random
graphs with p = 1/2.

e Difficulty: The probability of
non-Hamiltonicity is too large to be ignored,
e.g. P.(d atleast 1 isolated vertex) = 27",

e The algorithm has 3 phases:

— Phase 1: Construct a Hamiltonian path in
linear time. Fails with probability P;(n).

— Phase 2: Find proof of non-Hamiltonicity
or construct Hamiltonian path in time
O (n*). Unsuccessful with probability P(n).

— Phase 3: Exhaustive search (dynamic
programming) in time O (2%").

e Expected running time is
§ O (n) ~+ O (nQ) Pl(n) - O (22n) Pl(N)PQ(N)
= O(n) if Pi(n) - O (n*) = O (n)
and Pl(n)Pg(n) - O (22n) =N, (n)

e Phase 2 is necessary because
O 2™ -0 (2") =0 (2.

e After failing to construct a Hamiltonian path
fast in phase 1, we first reduce the probability
of the instance being non-Hamiltonian (phase
2), before doing exhaustive search in phase 3.

9 of 17

Randomized computing

Machines that can toss coins (generate random
bits/numbers)

e Worst case paradigm

o Aliydys give the correct (best) solution

10 of 17

Idea: Toss a coin & simulate
non-determinism

—

?

(x +y)* £ 2+ 2xy + y°
?
§é$2+y2

e What is the “classical” complexity of the
problem?

e Fast, randomized algorithm:

— Guess values for x and y and compute
left-hand side (LHS) and right-hand side
(RHS) of equation.

— If LHS +# RHS, then we know that the
polynomials are different.

— If LHS = RHS, then we suspect that the
polynomials are identical, but we don’t
know for sure, so we repeat the experiment
with other x and y values.

e Idea works if there are many witnesses.

11 0of 17

o witnesses

Let f(n) be a polynomial in » and let the
probability of success after f(n) steps/coin
tosses be > 3. After f(n) steps the algorithm
either

e finds a witness and says “Yes, the polynomials
are different”, or

e halts without success and says “No, maybe
the polynomials are identical”.

This sort of algorithm is called a Monte Carlo
algorithm.

Note: The probability that the Monte
Carlo algorithm succeeds after f(n)
\ steps is independent of input (and
~ dependent only on the coin tosses).

e Therefore the algorithm can be repeated on
the same data set.

e After 100 repeated trials, the probability of
failure is < 271 which is smaller then the
probability that a meteorite hits the computer
while the program is running!

12 of 17

Metaheuristics

e Analogy with physical annealing
e 'Temperature’ T, annealing schedule

¢ ‘Bad moves’ with probability exp (=0 f/T)

e Analogy with Darwinian evolution

e 'individuals), "fitness’, 'cross breeding’

e Analogy with human mind

e ‘neurons), 'learning’

e Analogy with culture

e adaptive memory, responsive exploration

13 of 17

A

Parallel computing

e some problems can be efficiently parallelized

e some problems seems inherently sequential

e Alternating TMs

¢ Boolean Circuits
output

"time" =3

inputs: 1 29 x3
— Boolean Circuit complexity: “time” (length

of longest directed path) and hardware (#
of gates)

14 of 17

¢ Parallell Random Access Machines (P.

3 [2N BN J

— Read/Write conflict resolution strategy

— PRAM complexity: time (# of steps) and
hardware (# of processors)

Example: Parallel summation in time O (log n)

m0:3 m1:5 m2:2 m3:7 m4:6 m5:1 m6:2 mm7:5
N/ N/ \/ \/
Py i Py P
Tr10:8 7721:9 mglz7 m3I:7
Py b
I
mol. 17 mq 14
time \ /
logy n 1: L
A Ty - 31
Result: Boolean Circuit complexity = PRAM
complexity.

15 0of 17

parallel time <« sequential space
Example: HAMILTONICITY can easily be solved in
parallel polynomial time:

e On a graph with n nodes there are at most n!
possible Hamiltonian paths.

e Use n! processors and let each of them check 1
possible solution in polynomial time.

e Compute the the OR of the answers in parallel
time O (log(n!)) = O (nlog n).

Theorem 2 With polynomial many processors
parallel poly. time = sequential poly. time
Proof:

e | processor can simulate one step of m
processors in sequential time ¢1(m) = O (m)

e Let ty(n) be the polynomial parallel time of the
computation. If m is polynomial then
t1(m) - to(n) = polynomial.

16 of 17

Parallel complexity classes

Def. 2 A language is said to be in class N Cif it is
recognized in polylogarithmic, O (log"(n)),
parallel time with uniform polynomial
hardware.

P-hard, Ex: CIRCUIT VALUE

o P = NC

17 of 17

