
1 of 14

Introduction to Algorithm
Theory

Overview
• Our approach - modeling

• The subject matter - what is this all about

• Historical introduction

• How to model problems

• How to model solutions

2 of 14

Our approach

Modeling

models

abstraction interpretation

proof

practice

results

Perspective

In
fo

rm
at

io
n

H
ie

ra
rc

h
y

Proofs, techniques
Technical details

High-Level Information
Basic insights
Big picture

Low-Level Information

Lectures → Mainly high-level understanding

Group sessions → Practice skills: proofs,

problems

Studying strategy: Don’t memorize pensum –

try to understand the whole!

3 of 14

Subject matter
How to solve information-processing
problems efficiently.

formalisation
modeling

abstraction

Problems ; interesting, ; formal

natural languages

problems (F.L.s)

(Ex. MATCHING, SORTING, T.S.P.)

Solutions ; algorithms ; Turing

machines

Efficiency ; complexity ; complexity

classes

Unsolvable (impossible)

Nice

Problems,
F.L.s

Intractable (horrible)

4 of 14

Historical introduction
In mathematics (cooking, engineering, life)
solution = algorithm

Examples:

•
√

253 =

• ax2 + bx + c = 0

• Euclid’s g.c.d. algorithm — the earliest
non-trivial algorithm?

5 of 14

Applications of Euclid’s
algorithm
From Wikipedia:

“The Euclidean algorithm has many
theoretical and practical applications. It may
be used to generate almost all the most
important traditional musical rhythms used
in different cultures throughout the world. It
is a key element of the RSA algorithm, a
public-key encryption method widely used in
electronic commerce. It is used to solve
Diophantine equations, such as finding
numbers that satisfy multiple congruences
(Chinese remainder theorem) or
multiplicative inverses of a finite field. The
Euclidean algorithm can also be used in
constructing continued fraction, in the Sturm
chain method for finding real roots of
polynomials, and in several modern integer
factorization algorithms. Finally, it is a basic
tool for proving theorems in modern number
theory, such as Lagrange’s four-square
theorem, and the fundamental theorem of
arithmetic (unique factorization).”

6 of 14

Origins of undecidability
theory
∃ algorithm? → metamathematics

• K. Gödel (1931): nonexistent theories

• A. Turing (1936): nonexistent algorithms
(article: “On computable Numbers . . . ”)

Unsolvable

techniques
Turing’s results &

Solvable

7 of 14

Origins of complexity theory
• Von Neumann (ca. 1948): first computer

• Edmonds (ca. 1965): an algorithm for
MAXIMUM MATCHING

Ann •
Mary •
Moe •

Billy•
Joe•
Bob•

hhhh
e
e
e
e
e,

,
,

,

hhhh

Edmonds’ article rejected based on existence
of trivial algorithm: Try all possibilities!

Rough complexity analysis of trivial
algorithm
• n = 100 boys

• n! = 100 × 99 × · · · × 1 ≥ 1090 possibilities

• assume ≤ 1012 possibilites tested per
second

• ≤ 1012+4+2+3+2 ≤ 1023 tested per century

• running time of trivial algorithm for
n = 100 is ≥ 1090−23 = 1067 centuries!

Compare: “only” ca. 1013 years since Big Bang!

8 of 14

Edmonds: My algorithm is a
polynomial-time algorithm, the trivial
algorithm is exponential-time!

• ∃ polynomial-time algorithm for a given
problem?

• Cook / Levin (1972): NP-completeness

P

Intractable

Cook/Levin results &
techniques

9 of 14

Problems, formal languages

All the world’s Ex. compute salaries,

information-processing control Lunar

problems module landing

numbers ...

graphs,

“Interesting”, MATCHING

“natural” TSP

problems SORTING

inp. outp.

Functions (sets of I/O pairs)

output=

YES/NO

Formal languages (sets of ’ YES-strings’)

Problem = set of strings (over an alphabet).
Each string is (the encoding of) a
YES-instance.

10 of 14

Def. 1 Alphabet = finite set of symbols

Ex.
∑

= {0, 1} ; Σ = {A, . . . , Z}

Coding: binary ↔ ASCII

Def. 2
∑∗ = all finite strings over

∑

∑∗ = {ǫ, 0, 1, 00, 01, · · · } — in lexicographic
order

Def. 3 A formal language L over
∑

is a subset
of

∑∗

L is the set of all “YES-instances”.

problems
Set of all L

11 of 14

Algorithm

397 + 46 =
397
 46 443

input output443

11

computation rules

Turing machine – intuitive description

(input/output)
tape

"processor" or
finite state control

computation
steps of

, bq
1

, R)
"loaded
program"
or rules

... b b b0 1 0

s

2q
1q

...

...

b

read/write head

states

δ
δ

...

2
, b , R)

(s,o) =(
,1)=(q(q

1

12 of 14

We say that Turing machine M decides
language L if (and only if) M computes the
function

f : Σ∗ → {Y, N} and for each x ∈ L : f(x) = Y

for each x /∈ L : f(x) = N

Language L is (Turing) decidable if (and only
if) there is a Turing machine which decides it.

We say that Turing machine M accepts
language L if M halts if and only if its input is
an string in L.

Language L is (Turing) acceptable if (and
only if) there is a Turing machine which
accepts it.

13 of 14

Example
A Turing machine M which decides
L = {010}.

... b b0 1 0 ...b

eq
3q 2q

1q

s

h

M = (Σ, Γ, Q, δ) Σ = {0, 1}
Γ = {0, 1, b, Y, N} Q = {s, h, q1, q2, q3, qe}

δ :

0 1 b

s (q1, b, R) (qe, b, R) (h, N,−)

q1 (qe, b, R) (q2, b, R) (h, N,−)

q2 (q3, b, R) (qe, b, R) (h, N,−)

q3 (qe, b, R) (qe, b, R) (h, Y,−)

qe (qe, b, R) (qe, b, R) (h, N,−)

(’−’ means “don’t move the read/write head”)

14 of 14

Church’s thesis

’Turing machine’ ∼= ’algorithm’
Turing machines can compute every function
that can be computed by some algorithm or
program or computer.

’Expressive power’ of PL’s
Turing complete programming languages.

’Universality’ of computer models
Neural networks are Turing complete
(McCulloch-Pitts neuron).

Uncomputability
If a Turing machine cannot compute f , no
computer can!

