Coping with Intractability

Branch-and-Bound
Branch:

Leaf nodes = possible solutions
Bound:

- Bactracking
- Pruning ('avskjæring')

Dynamic Programming

- Building up a solution from solutions from subproblems
- Principle: Every part of an optimal solution must be optimal.

Restricting

- Idea: Perhaps the hard instances don't arise in practice?
- Often restricted versions of intractable problems can be solved efficiently.

Some examples:

- Clique on graphs with edge degrees bounded by constant is in \mathcal{P} : const. $C \Rightarrow\binom{n}{C}=\mathcal{O}\left(n^{C}\right)$ is a polynomial!
- Perhaps the input graphs are
— planar
- sparse
- have limited degrees
-...
- Perhaps the input numbers are
— small
— limited
-...

Pseudo-polynomial algorithms

Def. 1 Let I be an instance of problem L, and let MAXINT(I) be (the value of) the largest integer in I. An algorithm which solves L in time which is polynomial in $|I|$ and MAXINT(I) is said to be a pseudo-polynomial algorithm for L.

Note: If MAXINT(I) is a constant or even a polynomial in $|\mathrm{I}|$ for all $\mathrm{I} \in L$, then a pseudo-polynomial algorithm for L is also a polynomial algorithm for L.

Example: 0-1 KNAPSACK

In 0-1 KNAPSACK we are given integers $w_{1}, w_{2}, \ldots, w_{n}$ and K, and we must decide whether there is a subset S of $\{1,2, \ldots, n\}$ such that $\sum_{j \in S} w_{j}=K$. In other words: Can we put a subset of the integers into our knapsack such that the knapsack sums up to exactly K, under the restriction that we include any w_{i} at most one time in the knapsack.

Note: This decision version of 0-1 KNAPSACK is essentially Subset Sum.

0-1 KNAPSACK can be solved by dynamic programming. Idea: Going through all the w_{i} one by one, maintain an (ordered) set M of all sums ($\leq K$) which can be computed by using some subset of the integers seen so far.

Algorithm DP

1. Let $M_{0}:=\{0\}$.
2. For $j=1,2, \ldots, n$ do:

Let $M_{j}:=M_{j-1}$.
For each element $u \in M_{j-1}$:
Add $v=w_{j}+u$ to M_{j} if $v \leq K$ and v is not already in M_{j}.
3.Answer 'Yes' if $K \in M_{n}$, 'No' otherwise.

Example: Consider the instance with w_{i} 's $11,18,24,42,15,7$ and $K=56$. We get the following M_{i}-sets:
$M_{0}:\{0\}$
$M_{1}:\{0,11\} \quad(0+11=11)$
$M_{2}:\{0,11,18,29\} \quad(0+18=18,11+18=29)$
$M_{3}:\{0,11,18,24,29,35,42,53\}$
$M_{4}:\{0,11,18,24,29,35,42,53\}$
$M_{5}:\{0,11,15,18,24,26,29,33$,
35, 39, 42, 44, 50, 53\}
$M_{6}:\{0,7,11,15,18,22,24,25,26,29,31,33$,
$35,36,39,40,42,44,46,49,50,51,53\}$

> Theorem 1 DP is a pseudo-polynomial algorithm. The running time of DP is $\mathcal{O}(n K \log K)$.

> Proof: $\operatorname{MAXINT}(\mathrm{I})=K \ldots$

Strong $\mathcal{N} \mathcal{P}$-completeness

Def. 2 A problem which has no pseudo-polynomial algorithm unless $\mathcal{P}=\mathcal{N} \mathcal{P}$ is said to be $\mathcal{N} \mathcal{P}$-complete in the strong sense or strongly $\mathcal{N} \mathcal{P}$-complete.

Theorem 2 TSP is strongly $\mathcal{N P}$-complete.
Proof: In the standard reduction HAM \propto TSP the only integers are 1,2 and n, so $\operatorname{MAXINT}(\mathrm{I})=n$. Hence a pseudo-polynomial algorithm for TSP would solve HAMILTONICITY in polynomial time (via the standard reduction).

\propto| | | a | b | c |
| :---: | :---: | :---: | :---: | :---: |
| c | | | | |
| a | 2 | 1 | 2 | 1 |
| b | 1 | 2 | 1 | 2 |
| c | 2 | 1 | 2 | 1 |
| d | 1 | 2 | 1 | 2 |

$$
K=n(=4)
$$

Alternative approaches to algorithm design and analysis

- Problem: Exhaustive search gives typically $\mathcal{O}(n!) \approx \mathcal{O}\left(n^{n}\right)$-algorithms for $\mathcal{N} \mathcal{P}$-complete problems.
- So we need to get around the worst case / best solution paradigm:
- worst-case \rightarrow average-case analysis
- best solution \rightarrow approximation
- best solution \rightarrow randomized algorithms

Approximation

Def. 3 Let L be an optimization problem. We say that algorithm M is a polynomial-time ϵ-approximation algorithm for L if M runs in polynomial time and there is a constant $\epsilon \geq 0$ such that M is guaranteed to produce, for all instances of L, a solution whose cost is within an ϵ-neighborhood from the optimum.
Note 1: Formally this means that the relative error $\frac{\mid t_{M}(n)-\text { OPT } \mid}{\text { OPT }}$ must be less than or equal to the constant ϵ.

Note 2: We are still looking at the worst case, but we don't require the very best solution any more.

Example: TSP with triangle inequality has a polynomial-time approximation algorithm.

$$
c \leq a+b
$$

Algorithm TSP- \triangle :

Phase I: Find a minimum spanning tree.
Phase II: Use the tree to create a tour.

The cost of the produced solution can not be more than 2.OPT, otherweise the OPT tour (minus one edge) would be a more minimal spanning tree itself. Hence $\epsilon=1$.

Opt. tour

Theorem 3 TSP has no polynomial-time ϵ-approximation algorithm for any ϵ unless $\mathcal{P}=\mathcal{N} \mathcal{P}$.

Proof:
Idea: Given ϵ, make a reduction from HAMILTONICITY which has only one solution within the ϵ-neighborhood from OPT, namely the optimal solution itself.

	a	b	c	d
a	$2+\epsilon \mathrm{n}$	1	$2+\epsilon \mathrm{n}$	1
$\propto \mathrm{~b}$	1	$2+\epsilon \mathrm{n}$	1	$2+\epsilon \mathrm{n}$
c	$2+\epsilon \mathrm{n}$	1	$2+\epsilon \mathrm{n}$	1
d	1	$2+\epsilon \mathrm{n}$	1	$2+\epsilon \mathrm{n}$

$$
K=n(=4)
$$

The error resulting from picking a non-edge is: Approx.solutin - OPT =
$(n-1+2+\epsilon n)-n=(1+\epsilon) n>\epsilon n$
Hence a polynomial-time ϵ-approximation algorithm for TSP combined with the above reduction would solve HAMILTONICITY in polynomial time.

Example: Vertex Cover

- Heuristics are a common way of dealing with intractable (optimization) problems in practice.
- Heuristics differ from algorithms in that they have no performance guarantees, i.e. they don't always find the (best) solution.

A greedy heuristic for Vertex Cover-opt.:

Heuristic VC-H1:

Repeat until all edges are covered:

1. Cover highest-degree vertex v;
2.Remove v (with edges) from graph;

Theorem 4 The heuristic VC-H1 is not an є-approximation algorithm for VERTEX Cover-opt. for any fixed ϵ.

Proof:

Show a counterexample, i.e. cook up an instance where the heuristic performs badly.

Counterexample:

- A graph with nodes a_{1}, \ldots, a_{n} and b_{1}, \ldots, b_{n}.
- Node b_{i} is only connected to node a_{i}.
- A bunch of c-nodes connected to a-nodes in the following way:
- Node c_{1} is connected to a_{1} and a_{2}. Node c_{2} is connected to a_{3} and a_{4}, etc.
— Node $c_{n / 2+1}$ is connected to a_{1}, a_{2} and a_{3}.
Node $c_{n / 2+2}$ is connected to a_{4}, a_{5} and a_{6}, etc.
— Node c_{m-1} is connected to $a_{1}, a_{2}, \ldots a_{n-1}$.
- Node c_{m} is connected to all a-nodes.

- The optimal solution OPT requires n guards (on all a-nodes).
- VC-H1 first covers all the c-nodes (starting with c_{m}) before covering the a-nodes.
- The number of c-nodes are of order $n \log n$.
- Relative error for VC-H1 on this instance:

$$
\begin{aligned}
\frac{|\mathrm{VC}-\mathrm{H} 1|-|\mathrm{OPT}|}{|\mathrm{OPT}|} & =\frac{(n \log n+n)-n}{n} \\
& =\frac{n \log n}{n}=\log n \neq \epsilon
\end{aligned}
$$

- The relative error grows as a function of n.

Heuristic VC-H2:

Repeat until all edges are covered:
1.Pick an edge e;
2. Cover and remove both endpoints of e.

- Since at least one endpoint of every edge must be covered, $|\mathrm{VC}-\mathrm{H} 2| \leq 2 \cdot|\mathrm{OPT}|$.
- So VC-H2 is a polynomial-time ϵ-approximation algorithm for VC with $\epsilon=1$.
- Surpisingly, this "stupid-looking" algorithm is the best (worst case) approximation algorithm known for VERTEX COVER-opt.

Polynomial-time approximation schemes (PTAS)

solution within ϵ-neighborhood M Running time of M is $\mathcal{O}\left(P_{\epsilon}(|I|)\right)$ where $P_{\epsilon}(n)$ is a polynomial in n and also a function of ϵ.

Def. $4 M$ is a polynomial-time approximation scheme (PTAS) for optimization problem L if given an instance I of L and value $\epsilon>0$ as input

1. M produces a solution whose cost is within an ϵ-neigborhood from the optimum (OPT) and

2. M runs in time which is bounded by a polynomial (depending on ϵ) in $|I|$.

M is a fully polynomial-time approximation scheme (FPTAS) if it runs in time bounded by a polynomial in $|I|$ and $1 / \epsilon$.

Example: 0-1 KnAPSACK-optimization has a FPTAS.

Instance: $2 n+1$ integers: Weights w_{1}, \ldots, w_{n} and costs c_{1}, \ldots, c_{n} and maximum weight K.

Question: Maximize the total cost

subject to

$$
\sum_{j=1}^{n} c_{j} x_{j}
$$

$$
\sum_{j=1}^{n} w_{j} x_{j} \leq K \text { and } x_{j}=0,1
$$

Image: We want to maximize the total value of the items we put into our knapsack, but the knapsack cannot have total weight more than K and we are only allowed to bring one copy of each item.

Note: Without loss of generality, we shall assume that all individual weights w_{j} are $\leq K$.

0-1 KnAPSACK-opt. can be solved in pseudo-polynomial time by dynamic programming. Idea: Going through all the items one by one, maintain an (ordered) set M of pairs (S, C) where S is a subset of the items (represented by their indexes) seen so far, such that S is the "lightest" subset having total cost equal C.

Algorithm DP-OPT

1. Let $M_{0}:=\{(\emptyset, 0)\}$.
2. For $j=1,2, \ldots, n$ do steps (a)-(c):
(a) Let $M_{j}:=M_{j-1}$.
(b) For each elem. (S, C) of M_{j-1} :

If $\sum_{i \in s} w_{i}+w_{j} \leq K$, then add $\left(S \cup\{j\}, C+c_{j}\right)$ to M_{j}.
(c) Examine M_{j} for pairs of elements (S, C) and (S^{\prime}, C)
with the same 2nd component.
For each such pair, delete
(S^{\prime}, C) if $\sum_{i \in s^{\prime}} w_{i} \geq \sum_{i \in S} w_{i}$ and delete (S, C) otherwise.
3.The optimal solution is S where (S, C) is the element of M_{n} having the larges second component.

- The running time of DP-OPT is
$\mathcal{O}\left(n^{2} C_{m} \log \left(n C_{m} W_{m}\right)\right)$ where C_{m} and W_{m} are the largest cost and weight, respectively.

Example: Consider the following instance of 0-1 Knapsack-opt.

j	1	2	3	4
w_{j}	1	1	3	2
c_{j}	6	11	17	3

Running the DP-OPT algorithm results in the following sets:
$M_{0}=\{(\emptyset, 0)\}$
$M_{1}=\{(\emptyset, 0),(\{1\}, 6)\}$
$M_{2}=\{(\emptyset, 0),(\{1\}, 6),(\{2\}, 11),(\{1,2\}, 17)\}$
$M_{3}=\{(\emptyset, 0),(\{1\}, 6),(\{2\}, 11),(\{1,2\}, 17)$,
$(\{1,3\}, 23),(\{2,3\}, 29),(\{1,2,3\}, 34)\}$
$M_{4}=\{(\emptyset, 0),(\{4\}, 3),(\{1\}, 6),(\{1,4\}, 9)$,
$(\{2\}, 11),(\{2,4\}, 14),(\{1,2\}, 17),(\{1,2,4\}, 20)$,
$(\{1,3\}, 23),(\{2,3\}, 29),(\{1,2,3\}, 34)\}$
Hence the optimal subset is $\{1,2,3\}$ with $\sum_{j \in S} c_{j}=34$.

The FTPAS for 0-1 KnapsACK-optimization combines the DP-OPT algorithm with rounding-off of input values:

j	1	2	3	4	5	6	7
w_{j}	4	1	2	3	2	1	2
c_{j}	299	73	159	221	137	89	157

The optimal solution $S=\{1,2,3,6,7\}$ gives $\sum_{j \in S} c_{j}=777$.

j	1	2	3	4	5	6	7
w_{j}	4	1	2	3	2	1	2
\bar{c}_{j}	290	70	150	220	130	80	150

The best solution, given the trunctation of the last digit in all costs, is $S^{\prime}=\{1,3,4,6\}$ with $\sum_{j \in S^{\prime}} c_{j}=740$.

Algorithm APPROX-DP-OPT

- Given an instance I of 0-1 KNAPSACK-opt and a number t, truncate (round off downward) t digits of each cost c_{j} in I.
- Run the DP-OPT algorithm on this truncated instance.
- Give the answer as an approximation of the optimal solution for I.

Idea:

- Truncating t digits of all costs, reduces the number of possible "cost sums" by a factor exponential in t. This implies that the running time drops exponentially.
- Truncating error relative to reduction in instance size is "exponentially small":
$C_{m}=53501 \underbrace{87959}$
half of length
but only 10^{-5} of
precision

Theorem 5 APPROX-DP-OPT is a FPTAS for 0-1 Knapsack-opt.

Proof: Let S and S^{\prime} be the optimal solution of the original and the truncated instance of 0-1 KnAPSACK-opt., respectively. Let c_{j} and \bar{c}_{j} be the original and truncated version of the cost associated with element j. Let t be the number of truncated digits. Then

$$
\begin{aligned}
& \sum_{j \in S} c_{j} \stackrel{(1)}{\geq} \sum_{j \in S^{\prime}} c_{j} \stackrel{(2)}{\geq} \sum_{j \in S^{\prime}} \bar{c}_{j} \stackrel{(3)}{\geq} \sum_{j \in S} \bar{c}_{j} \\
& \stackrel{(4)}{\geq} \sum_{j \in S}\left(c_{j}-10^{t}\right) \stackrel{(5)}{\geq} \sum_{j \in S} c_{j}-n \cdot 10^{t}
\end{aligned}
$$

1. because S is a optimal solution
2. because we round off downward ($\bar{c}_{j} \leq c_{j}$ for all j)
3. because S^{\prime} is a optimal solution for the truncated instance
4. because we truncate t digits
5. because S has at most n elements

This means that the have an upper bound on the error:

$$
\sum_{j \in S} c_{j}-\sum_{j \in S^{\prime}} c_{j} \leq n \cdot 10^{t}
$$

- Running time of DP-OPT is
$\mathcal{O}\left(n^{2} C_{m} \log \left(n C_{m} W_{m}\right)\right)$ where C_{m} and W_{m} are the largest cost and weight, respectively.
- Running time of APPROX-DP-OPT is $\mathcal{O}\left(n^{2} C_{m} \log \left(n C_{m} W_{m}\right) 10^{-t}\right)$ because by truncating t digits we have reduced the number of possible "cost sums" by a factor 10^{t}.
- Relative error ϵ is

$$
\frac{\sum_{j \in S} c_{j}-\sum_{j \in S^{\prime}} c_{j}}{\sum_{j \in S} c_{j}} \stackrel{(1)}{\leq} \frac{n \cdot 10^{t}}{c_{m}} \triangleq \epsilon
$$

1. because our assumption that each individual weight w_{j} is $\leq K$ ensures that $\sum_{j \in S} c_{j} \geq C_{m}$ (the item with $\operatorname{cost} C_{m}$ always fits into an empty knapsack).

- Given any $\epsilon>0$, by truncating $t=\left\lfloor\log _{10} \frac{\epsilon \cdot C_{m}}{n}\right\rfloor$ digits APPROX-DP-OPT is an ϵ-approximation algorihtm for 0-1 KNAPSACK-opt with running time $\mathcal{O}\left(\frac{n^{3} \log \left(n C_{m} W_{m}\right)}{\epsilon}\right)$.

