
1 of 22

Coping with Intractability

Branch-and-Bound
Branch:

b

c d

e f

a

2k

k

Leaf nodes = possible solutions

Bound:

• Bactracking

• Pruning (’avskjæring’)

2 of 22

Dynamic Programming
• Building up a solution from solutions from

subproblems

• Principle: Every part of an optimal solution
must be optimal.

v ts

sv vt

3 of 22

Restricting
• Idea: Perhaps the hard instances don’t

arise in practice?

• Often restricted versions of intractable
problems can be solved efficiently.

Some examples:
• CLIQUE on graphs with edge degrees

bounded by constant is in P :
const. C ⇒

(
n
C

)
= O

(
nC

)
is a polynomial!

• Perhaps the input graphs are

— planar

— sparse

— have limited degrees

— . . .

• Perhaps the input numbers are

— small

— limited

— . . .

4 of 22

Pseudo-polynomial algorithms
Def. 1 Let I be an instance of problem L, and
let MAXINT(I) be (the value of) the largest
integer in I. An algorithm which solves L in
time which is polynomial in |I| and
MAXINT(I) is said to be a pseudo-polynomial
algorithm for L.

Note: If MAXINT(I) is a constant or even a
polynomial in |I| for all I ∈ L, then a
pseudo-polynomial algorithm for L is also a
polynomial algorithm for L.

5 of 22

Example: 0-1 KNAPSACK

In 0-1 KNAPSACK we are given integers
w1, w2, . . . , wn and K, and we must decide
whether there is a subset S of {1, 2, . . . , n}
such that

∑

j∈S wj = K. In other words: Can
we put a subset of the integers into our
knapsack such that the knapsack sums up to
exactly K, under the restriction that we
include any wi at most one time in the
knapsack.

Note: This decision version of 0-1 KNAPSACK

is essentially SUBSET SUM.

0-1 KNAPSACK can be solved by dynamic
programming. Idea: Going through all the wi

one by one, maintain an (ordered) set M of all
sums (≤ K) which can be computed by using
some subset of the integers seen so far.

6 of 22

Algorithm DP
1.Let M0 := {0}.
2.For j = 1, 2, . . . , n do:

Let Mj := Mj−1.

For each element u ∈ Mj−1:

Add v = wj + u to Mj if v ≤ K and

v is not already in Mj.

3.Answer ’Yes’ if K ∈ Mn, ’No’

otherwise.

Example: Consider the instance with wi’s
11, 18, 24, 42, 15, 7 and K = 56. We get the
following Mi-sets:

M0 : {0}
M1 : {0, 11} (0 + 11 = 11)
M2 : {0, 11, 18, 29} (0 + 18 = 18, 11 + 18 = 29)
M3 : {0, 11, 18, 24, 29, 35, 42, 53}
M4 : {0, 11, 18, 24, 29, 35, 42, 53}
M5 : {0, 11, 15, 18, 24, 26, 29, 33,
35, 39, 42, 44, 50, 53}
M6 : {0, 7, 11, 15, 18, 22, 24, 25, 26, 29, 31, 33,
35, 36, 39, 40, 42, 44, 46, 49, 50, 51, 53}

Theorem 1 DP is a pseudo-polynomial
algorithm. The running time of DP is
O (nK log K).

Proof: MAXINT(I)= K . . .

7 of 22

Strong NP-completeness
Def. 2 A problem which has no
pseudo-polynomial algorithm unless P = NP
is said to be NP-complete in the strong sense
or strongly NP-complete.

Theorem 2 TSP is strongly NP-complete.

Proof: In the standard reduction HAM ∝TSP
the only integers are 1, 2 and n, so
MAXINT(I)= n. Hence a pseudo-polynomial
algorithm for TSP would solve
HAMILTONICITY in polynomial time (via
the standard reduction).

a

b c

d
∝

a b c d

a 2 1 2 1

b 1 2 1 2

c 2 1 2 1

d 1 2 1 2

K = n(= 4)

8 of 22

Alternative approaches to
algorithm design and analysis
• Problem: Exhaustive search gives typically
O (n!) ≈O (nn)-algorithms for
NP-complete problems.

• So we need to get around the worst case /
best solution paradigm:

— worst-case → average-case analysis

— best solution → approximation

— best solution → randomized algorithms

9 of 22

Approximation

)(
OPT

ǫ·OPT ǫ·OPT

Def. 3 Let L be an optimization problem. We
say that algorithm M is a polynomial-time
ǫ-approximation algorithm for L if M runs
in polynomial time and there is a constant
ǫ ≥ 0 such that M is guaranteed to produce,
for all instances of L, a solution whose cost is
within an ǫ-neighborhood from the optimum.

Note 1: Formally this means that the relative

error |tM(n)−OPT|
OPT must be less than or equal to

the constant ǫ.

Note 2: We are still looking at the worst case,
but we don’t require the very best solution
any more.

Example: TSP with triangle inequality has a
polynomial-time approximation algorithm.

bc

a

c ≤ a + b

10 of 22

Algorithm TSP-△:
Phase I: Find a minimum spanning tree.

Phase II: Use the tree to create a tour.

2

1 1

2 2
2

s

The cost of the produced solution can not be
more than 2·OPT, otherweise the OPT tour
(minus one edge) would be a more minimal
spanning tree itself. Hence ǫ = 1.

Opt. tour

11 of 22

Theorem 3 TSP has no polynomial-time
ǫ-approximation algorithm for any ǫ unless
P=NP.

Proof:
Idea: Given ǫ, make a reduction from
HAMILTONICITY which has only one solution
within the ǫ-neighborhood from OPT, namely
the optimal solution itself.

a

b c

d
∝

a b c d

a 2+ǫ n 1 2+ǫ n 1

b 1 2+ǫ n 1 2+ǫ n

c 2+ǫ n 1 2+ǫ n 1

d 1 2+ǫ n 1 2+ǫ n

K = n(= 4)

The error resulting from picking a non-edge
is: Approx.solutin - OPT =
(n − 1 + 2 + ǫn) − n = (1 + ǫ)n > ǫn

Hence a polynomial-time ǫ-approximation
algorithm for TSP combined with the above
reduction would solve HAMILTONICITY in
polynomial time.

12 of 22

Example: VERTEX COVER

• Heuristics are a common way of dealing with
intractable (optimization) problems in
practice.

• Heuristics differ from algorithms in that they
have no performance guarantees, i.e. they
don’t always find the (best) solution.

A greedy heuristic for VERTEX COVER-opt.:

Heuristic VC-H1:
Repeat until all edges are covered:

1.Cover highest-degree vertex v;
2.Remove v (with edges) from

graph;

Theorem 4 The heuristic VC-H1 is not an
ǫ-approximation algorithm for VERTEX

COVER-opt. for any fixed ǫ.

13 of 22

Proof:

Show a counterexample, i.e. cook up
an instance where the heuristic per-
forms badly.

Counterexample:

• A graph with nodes a1, . . . , an and b1, . . . , bn.

• Node bi is only connected to node ai.

• A bunch of c-nodes connected to a-nodes in
the following way:

— Node c1 is connected to a1 and a2. Node c2 is
connected to a3 and a4, etc.

— Node cn/2+1 is connected to a1, a2 and a3.
Node cn/2+2 is connected to a4, a5 and a6, etc.

— . . .
— Node cm−1 is connected to a1, a2, . . . an−1.
— Node cm is connected to all a-nodes.

...

b2

a1

b1 b6b5b4b3

a6a5a4a3a2

c2 c3 c4 c5 cmc1

14 of 22

• The optimal solution OPT requires
n guards (on all a-nodes).

• VC-H1 first covers all the c-nodes (starting
with cm) before covering the a-nodes.

• The number of c-nodes are of order n log n.

• Relative error for VC-H1 on this instance:

|VC-H1| − |OPT|

|OPT|
=

(n log n + n) − n

n

=
n log n

n
= log n 6= ǫ

• The relative error grows as a function of n.

Heuristic VC-H2:
Repeat until all edges are covered:

1.Pick an edge e;
2.Cover and remove

both endpoints of e.

• Since at least one endpoint of every edge
must be covered, |VC-H2| ≤ 2 · |OPT|.

• So VC-H2 is a polynomial-time
ǫ-approximation algorithm for VC with ǫ = 1.

• Surpisingly, this “stupid-looking” algorithm is
the best (worst case) approximation
algorithm known for VERTEX COVER-opt.

15 of 22

Polynomial-time approximation
schemes (PTAS)

I

ǫ
Algorithm

M from OPT

solution within
ǫ-neighborhood

Running time of M is O (Pǫ(|I|))
where Pǫ(n) is a polynomial in n and
also a function of ǫ.

Def. 4 M is a polynomial-time
approximation scheme (PTAS) for
optimization problem L if given an instance I
of L and value ǫ > 0 as input

1. M produces a solution whose cost is within
an ǫ-neigborhood from the optimum (OPT)
and

2. M runs in time which is bounded by a
polynomial (depending on ǫ) in |I|.

M is a fully polynomial-time approximation
scheme (FPTAS) if it runs in time bounded by
a polynomial in |I| and 1/ǫ.

Example: 0-1 KNAPSACK-optimization has a
FPTAS.

16 of 22

0-1 KNAPSACK-optimization

Instance: 2n + 1 integers: Weights w1, . . . , wn

and costs c1, . . . , cn and maximum weight K.

Question: Maximize the total cost
n∑

j=1

cjxj

subject to
n∑

j=1

wjxj ≤ K and xj = 0, 1

Image: We want to maximize the total value
of the items we put into our knapsack, but the
knapsack cannot have total weight more than
K and we are only allowed to bring one copy
of each item.

Note: Without loss of generality, we shall
assume that all individual weights wj are ≤ K.

0-1 KNAPSACK-opt. can be solved in
pseudo-polynomial time by dynamic
programming. Idea: Going through all the
items one by one, maintain an (ordered) set
M of pairs (S, C) where S is a subset of the
items (represented by their indexes) seen so
far, such that S is the “lightest” subset having
total cost equal C.

17 of 22

Algorithm DP-OPT
1.Let M0 := {(∅, 0)}.
2.For j = 1, 2, . . . , n do steps (a)-(c):

(a) Let Mj := Mj−1.

(b) For each elem.(S, C) of Mj−1:

If
∑

i∈s wi + wj ≤ K, then add

(S ∪ {j}, C + cj) to Mj.

(c) Examine Mj for pairs of

elements (S, C) and (S′, C)
with the same 2nd component.

For each such pair, delete

(S′, C) if
∑

i∈s′ wi ≥
∑

i∈S wi

and delete (S, C) otherwise.

3.The optimal solution is S where (S, C)
is the element of Mn having the larges

second component.

• The running time of DP-OPT is
O

(
n2Cm log(nCmWm)

)
where Cm and Wm

are the largest cost and weight,
respectively.

18 of 22

Example: Consider the following instance of
0-1 KNAPSACK-opt.

j 1 2 3 4

wj 1 1 3 2

cj 6 11 17 3

K = 5

Running the DP-OPT algorithm results in the
following sets:

M0 =
{
(∅, 0)

}

M1 =
{
(∅, 0), ({1}, 6)

}

M2 =
{
(∅, 0), ({1}, 6), ({2}, 11), ({1, 2}, 17)

}

M3 =
{
(∅, 0), ({1}, 6), ({2}, 11), ({1, 2}, 17),

({1, 3}, 23), ({2, 3}, 29), ({1, 2, 3}, 34)
}

M4 =
{
(∅, 0), ({4}, 3), ({1}, 6), ({1, 4}, 9),

({2}, 11), ({2, 4}, 14), ({1, 2}, 17), ({1, 2, 4}, 20),
({1, 3}, 23), ({2, 3}, 29), ({1, 2, 3}, 34)

}

Hence the optimal subset is {1, 2, 3} with
∑

j∈S cj = 34.

19 of 22

The FTPAS for 0-1 KNAPSACK-optimization
combines the DP-OPT algorithm with
rounding-off of input values:

j 1 2 3 4 5 6 7

wj 4 1 2 3 2 1 2

cj 299 73 159 221 137 89 157

K = 10

The optimal solution S = {1, 2, 3, 6, 7} gives
∑

j∈S cj = 777.

j 1 2 3 4 5 6 7

wj 4 1 2 3 2 1 2

cj 290 70 150 220 130 80 150

K = 10

The best solution, given the trunctation of the
last digit in all costs, is S′ = {1, 3, 4, 6} with
∑

j∈S′ cj = 740.

20 of 22

Algorithm APPROX-DP-OPT

• Given an instance I of 0-1 KNAPSACK-opt
and a number t, truncate (round off
downward) t digits of each cost cj in I.

• Run the DP-OPT algorithm on this
truncated instance.

• Give the answer as an approximation of
the optimal solution for I.

Idea:

• Truncating t digits of all costs, reduces the
number of possible “cost sums” by a factor
exponential in t. This implies that the
running time drops exponentially.

• Truncating error relative to reduction in
instance size is “exponentially small”:

Cm = 53501 87959︸ ︷︷ ︸

half of length
but only 10−5 of
precision

21 of 22

Theorem 5 APPROX-DP-OPT is a FPTAS for
0-1 KNAPSACK-opt.

Proof: Let S and S′ be the optimal solution of
the original and the truncated instance of 0-1
KNAPSACK-opt., respectively. Let cj and cj be
the original and truncated version of the cost
associated with element j. Let t be the
number of truncated digits. Then

∑

j∈S

cj

(1)

≥
∑

j∈S′

cj

(2)

≥
∑

j∈S′

cj

(3)

≥
∑

j∈S

cj

(4)

≥
∑

j∈S

(cj − 10t)
(5)

≥
∑

j∈S

cj − n · 10t

1. because S is a optimal solution

2. because we round off downward (cj ≤ cj

for all j)

3. because S′ is a optimal solution for the
truncated instance

4. because we truncate t digits

5. because S has at most n elements

This means that the have an upper bound on
the error:

∑

j∈S

cj −
∑

j∈S′

cj ≤ n · 10t

22 of 22

• Running time of DP-OPT is
O

(
n2Cm log(nCmWm)

)
where Cm and Wm

are the largest cost and weight,
respectively.

• Running time of APPROX-DP-OPT is
O

(
n2Cm log(nCmWm)10−t

)
because by

truncating t digits we have reduced the
number of possible “cost sums” by a factor
10t.

• Relative error ǫ is
∑

j∈S cj −
∑

j∈S′ cj
∑

j∈S cj

(1)

≤
n · 10t

cm
, ǫ

1. because our assumption that each
individual weight wj is ≤ K ensures that
∑

j∈S cj ≥ Cm (the item with cost Cm

always fits into an empty knapsack).

• Given any ǫ > 0, by truncating
t = ⌊log10

ǫ·cm

n ⌋ digits APPROX-DP-OPT is an
ǫ-approximation algorihtm for 0-1
KNAPSACK-opt with running time

O
(

n3 log(nCmWm)
ǫ

)

.

