Dynamic
Programming

IN3130

INF3130: Dynamic Programming

* |n the textbook: Ch. 9, and Section 20.5

« The slides presented here have a different
Introduction to this topic than the textbook

— This Is done because the introduction in the textbook seems
rather confusing.

— NB: The formulation of the «principle of optimality» (def.
9.1.1) should In fact be the other way around!

 And the curriculum in this course Is the version used
In these slides, not the introduction In the textbook.

« These slides have a lot of text

— Meant to be a presentation that can be read afterwards
— This Is usually also the style in my slides

Dynamic programming

Dynamic programming was formalised by Richard
Bellmann (RAND Corporation) in the 1950°es.

— «programming» should here be understood as planning, or
making decisions. It has nothing to do with writing code.

— "Dynamic” should indicate that it is a stepwise process.

But was that the real
background for the
name??

Ex. 1: All pairs shortest
paths

Dynamic Programming

e Building up a solution from solutions from
subproblems

e Principle: Every part of an optimal solution
must be optimal.

Q=<
0!‘*

S
O

SV Vi

4
OISO
08 Qo
OSSO
6
8

d(i,}) <— min [((d(i,k) + d(k,})), d(i,))]

K

Ex. 2: 0-1 Knapsack

In 0-1 KNAPSACK we are given integers

wy, W, . . ., w,, and K, and we must decide
whether there is a subset Sof {1,2,....n}
such that >~ _,w; = K. In other words: Can
we put a subset of the integers into our
knapsack such that the knapsack sums up to
exactly &, under the restriction that we
include any w; at most one time in the
knapsack.

Note: This decision version of 0-1 KNAPSACK
is essentially SUBSET SUM.

0-1 KNAPSACK can be solved by dynamic
programming. Idea: Going through all the w;
one by one, maintain an (ordered) set M of all
sums (< K) which can be computed by using
some subset of the integers seen so far.

Algorithm DP A

l.Let A'I() = {ﬂ}.
2.For j=12...,n do:

Let AIJ = A‘fj_l .

For each element u c M, ;:

Add v=w;j+u to M; if v <K and
v is not already in M;.

3.Answer 'Yes’ if K& M,, 'No’
otherwise.

Example: Consider the instance with w;’s
11,18,24,42 15, 7Tand K = 56. We get the
following M;-sets:

A’I{) I {()}

M {011} (0+11=11)

M, {0,11,18,29} (0 + 18 = 18,11+ 18 = 29)
My - {0,11, 18, 24, 29, 35,42, 53}

M, : {0,11,18, 24,29, 35,42, 53}

M; . {0, 11, 15, 18, 24, 26, 29, 33,

35,39,42, 44,50, 53}

Mg - {0,7,11,15,18,22,24, 25, 26,29, 31, 33,

35, 36, 39, 40, 42, 44, 46, 49, 50, 51, 53}

Theorem 1 DP is a pseudo-polynomial
algorithm. The running time of DP is
OnKlog K).

Proof: MAXINT(I)= K ...

A simple example

We are given a matrix W with positive «weights» in each cell:

Problem: Find the «best» path (lowest sum of weights)

W:
from upper left to lower right corner.

C 19 | 14 NB: The shown red path Is radomly chosen, and is
% probably not the best path (has weight = 255)

EI We use a new matrix P to store intermediate resulis:
E!m P[i,j]] = The weight of the best path from the start (upper

21 |60 |2 787 left) to cell [i,j].

The «recurrence relation» will be:
P (initialization in black) P[i, j1 = min(P[i-1, j1, P[i, j-11) + WIi,j]
» We can initialialize by filling in the leftmost column and

-m topmost row, as shown to the left.
m » We can the fill in P according to the formula above

M1 124 | 81 | 143

Questions (exercises for next week):
~ 2 1~ Inwhich order should P be filled out?
- How can we find the shortest path itself?
- What is the complexity of this algorithm? ¥

Another problem (Ch. 9.4)

Find the «Longest Common Subsequence» of two
strings: P (pattern) and T (text)

1 2 3 4 9 !
e f h K p p g
\. /
\\ /
g e h P f p
1 2 3 4 5 o)

The Longest Common Subsequence is here
«e, h, p, p»

«Length of Longest Commom Subsequence» (LCS)
s 4.

An idea for finding LCS

We will use an interger matrix L[O:m, O:n] as shown below, where we imagine that the
string P = P[1:m] is placed downwords along the left side of L, and T = T[1:n] Is

placed above D from left to right (at corresponding indices).
(NB: This isq slightly different use of indices than in Sectons 9.4 and 20.9).

Our plan Is then to systematically fill in this table so that

L[i,j] = LSC(P[1:], T[1:]])
We will do this from «smaller» to «larger» index pairs (i, j), by taking column after
column from left to right (but row after row from top to bottom would also work). The

value we are looking for, LSC(P, T), will then occur in L[m, n] when all entries are
filled.
T =

0 1 VR T I n

The matrix L:

=
&

Example: P = «gehpfp» and T = «efhkppg»

We Iinitialize the leftmost column and the topmost row as below

- Why is it correct with zeroes here?
- Note that these celles correspond to the empty prefix of P and/or the
empty prefix of T. T

We have filled Iin
a few more i
entries of L by
Intuition

We hope to get
4 here!

The geneTraI formula for filling L

We want to find: LJi,j]
and assume we have

already computed:

(Find: L[i.il)

Case 1: Case 2:
If Pi=Tjthen If Pi#T]jthen
L[i,j)] = L[i-1,j-1] +1 L[i,j)] = max(L[i,j-1]. L[i-1,]])

WHY? WHY? 7

Case 1:
If Pi=Tjthen
L[i,j] = L[i-1,j-1] +1

Case 2:
If Pi#Tjthen
L[i,j] = max(L[i,j-1], L[i-1,]])

D]

0]

P[] P[]

Using thTe formula for filling L

g

e L[1-1,]-1]
p " L[1,)-1]

P

f

P

K\,

Case 1: Case 2: | Hurrah!
If Pi=T)jthen If Pi#T)jthen

L[i,j] = L[i-1,}-1] +1

L[i,j] = max(L[i,J-1], L[i-1,]])

L[1-1,)

(Find:

We want to find: L[i,]]
and assume we have
already computed:

-[1,)])

Finding the
Longest Common Subsequence itself

tnfefelels]

Case 1
If Pi=T]jthen
L[i,j] = L[i-1,)-1] +1

Case 2
If Pi#T]jthen
L[i,j] = max(L[ij-1], L[i-1,])

P
1. To find the actual Longest Common 2. The red arrows indicate
Subsequence we highlight entries, the letters included in the
backwards from lower right, what Longest Common

«caused» each value (green numbers) Subsequence 10

We'll now look at the problem discussed
In Chapter 20.5:

«Approximate String Matching»:

Given: Along string T and a shorter string =X
Problem: Find strings «similar» to P in T

P:-uttxv
T: bsufttvrtoxiguttvxlibtskuttzxvklivhuuttxvnxutzixvw

Questions:
- What do we mean by a «similar string»?
- Can we quantify the degree of simularity?

We’'ll first look at how to define and find:

The Edit Distance between Pand T "

The «edit distance» between two strings

We observe that any string P can be converted to ancother string 7 by o
some sequence of the following opertions (usally by many different such
sequences):

Substitution: One symbol in P is changed to another symbol.
Addition: A new symbol is inserted somwhere in P.
Removing: One symbol is removed from P.

The «Edit Distance», ED(P,T), between two strings P and T is:
The smallest number of such operations needed to convert Pto T
(or T to P! Note that the definition is symmetric in P and T/)

Example.
logarithm = alogarithm - algarithm - algorithm (Steps: +a, -0, a->0)
P T

Thus ED("logarithm”, "algorithm”) = 3 (as there are no shorter ways!)

To find ED(P,T) we use a similar setup as for LCS

We use an interger matrix D[0:m, 0:n], where P = P[1:m] is placed
downwords along the left side of D, and T = T[1:n] is placed above D

OQur plan is again to systematically fill in this table, but so that
DIi, |]] = Edit Distance between the strings P[1:i] and T[1:]]

Like before we will do this e.g. by taking column after column from left to

right. The value we are looking for, ED(P, T), will then occur in D[m, n]

when all entries are filled In. .

0 1 j -1 J n

The matrix D: 1

| -1

m 13

Example: P = «anne» and T = «aney

- We Iinitialize the leftmost column and the topmost row as below
- Why is this correct?
- Note that these celles correspond to the empty prefix of P and/or the

empty prefix of T. T .
d n e

D 0 1 2 3]
0

a 1

n 2

p
n 3
e 4

Case 1:

If Pi=Tjthen
DI[1,]] = D[I-1, J-1]

P[]

P[]

D]

T0]
Equal

16

&

Case 2:
If Pi#T)then

D[1,)] =

min(D[I-1,)-1], D[1,)-1], D[I-1,)]) + 1

P[]

P[]

D]

0]

Different

18

The general recurrence relation becomes,

To fill in this matrix D we In fact used the relation indicated below (from
Ch 20.5)

rD[i—l,j—l] hvis Pli]=T]/]
D[i,j]1=min{ Dfi -1,y -1]+1, Df—-1,4]+1, D[s,j—-1]+1 } ellers
) substitusjon T tilegg i 7 o sletting i T ’
sletting | P

D[0,0] =0, D[i0]=D[0,i]=i.

The equalities at the last line can be used to initialize the matrix (shown
In red).

The matrix D:

19

Example: P = «anne»@and T = «aney»

- Using the rules
- The answer ED(P, T) will appear in D[4, 3] (lower right)

7
d n e
The matrix D 0 1 5 3 —
0
a 1
n 2
P
n 3
e 4

20

A program for computing the edit distance

function EditDistance (P [1:m], T [1:n])
fori—0tomdo D[/, 0]« | endfor Il Initialize row zero
forj—1tondo D[0, /] —] endfor Il Initialize column zero

fori— 1tomdo
forj— 1tondo
IfP[i]=T][,]then
Dlijle<D[i-1,j-1]

else
DiI,J] —min(Dl-1,7-1+1,Dli-1,71+1,D[1,5-1] +1)
endif
endfor Note that, after the initialization, we look at the pairs (i, j)
endfor in the following order (line after line):
return(D[m,n]) (1,1 (1,2) ... (1,n)
end EditDistance (2,1(2,2) ... (2,n)

(m,1) ... (m,n)
This 1s OK as this order ensures that the smaller

Instances are solved before they are needed to solve a
larger instance. Thatis:

D[-1, J-1], D[I-1,]] and D[, J-1] 1
are always computed before DJI, |]

Our old example: ED(«anne», «aney)

The value used in each entry Is given
by an arrow into that entry.

T d n e
The matrix D
P: 0
a 1
n 2
N 3
e 4

22

Finding the edit steps:

Follow the «path» used from the final entry
backwards to [0,0]. The meaning of each
step is given to the right, assuming that P

Is transformed to T.

T a e
D 0 1 3 4
0
a 1
n 2
P n 3
~

The result can be visualized as follows:

anmne
a. n e

w, Diagonally, and P[i] = T[j]:
- No edit was needed.
Occurred e.g.for D[3, 2].

w, Diagonally, and P[i] # T[j]:
- Substitution Occured

e.g. for D[3, 3] (not used in
the current final edit path)

¢ Upwards (and thus
Pl # T[]):
- A letter Is deleted from P
Occur e.g.for D[22, 1]

<« [owards the left (and thus
Pli] # T[]):
A letter is added to P
Occur e._g. for D[1, 3] (not
used in the current final
edit path)
23

Until now we have computed the edit distance
between two strings P and T

But what about searching for substrings U of a long string T
so that ED(P.U) is small, e.g, smaller than a given value?

< T >
This problem will | |
. a n e
be an exercise | |
/ .
next week! K-1 k k+1 k+2 k+3 k+4 g

24

Relevance for research in genetics

Then T may be the full xgenome» of one organism, and P a
part of the genome of another.

Question: Does a sequence similar to P occur in T7

A chimpanzee gene (probably much longer):

uttxv

The human genome (around 3 x 10° |etters):
bsuttvrtofiguttvxlibskuttzxvklhuuttxvnxutzixvw

 Does the chimpanzee gene occur here, may be with a little
change?

« Hopefully, Torbjgrn Rognes from Bioinformatics will tell us
more about such problems in a guest lecture (one hour)
later this semester. 23

About Dynamic Programming in general

* Dynamic programming is typically used to solve optimazation problems.

* The instances of the problem must be handeled from smaller to larger
ones, and the smallest (or simplest) instances can usually easily be
solved directly (and be used for initialization of a program)

» For each problem instance | there is a set of instances |, |, ... |, all
smaller than |, so that we can find an (optimal) solution to | if we know
the (optimal) solution of all the problems |,,1,, ..., 1,

The values of the

yellow area are all 0 1 SN b
computed when 0 0 | 1 j-11]
the gray value is 1

to be computed.
Usually only a few

Is used for i -1
computing each
new entry

26

When should we use dynamic programming?

Dynamic programming is useful if the total number of smaller
Instances needed to solve an instance | is ,so small that

— The answer to all of them can be stored in a suitable table
— They can be computed within reasonable time

The main trick is to store the solutions in the table for later use. The
real gain comes when each «smaller» table entry is used a number of
times for later computations.

27

Another (slightly abstract) example

As indicated on the previous slide, Dynamic Programming is more useful if the
solution to a certain instance is used in the solution of many (larger) instances

(assumeing that the size of an instanstance C(i, j) 1S] —1)

In the problem C below, an instance is given by some data (e.g two strings)

and by two intergers / and . Assume the corresponding instances are written
C(1, /). Thus the solutions to the instances can be stored in a two-dimentional
table with dimensions /and j. (The size of an instanstance C(i, |) is here | —1).

Below, the children of a node N indicate the instances that we need the
solution of, to compute the solution to instance N. We would therefore get this
tree If we use recursion without remembering computed values at all.

Note that the solution to many instances, e.g. C(3.3), Is used multiple times.

Thus, DP can be a preferable R alternative herel

ca.)(ca3)

ca,n) iC(z,z)l 28

C(22)) |CB.4)) |C23)] |[CAA)

c63) [ca) [cep)(ced)

C(2,3)

A rather formal basis for Dynamic Programming
You don’t need to learn this formalism and terminology

Assume we have a problem P with mstances 7, 7,, I,
Dynamic programming might be useful for solving P, if:

Each instance has a «size», where the «simplest» instances have small sizes,
usually O or 1. (In our last example we can choose m+n as the size)

1he (optimal) solution to instance / 1s written s(Z)

For each 7 there 1s a set of instances {J,, ..., J, } called the base of I, written
B)=4{J, J, ..., J,.} (Where k may vary with /), and every J, is smaller than /.

We have a process/function C'ombine that takes as input an instance 7, and the
solutions s(J,) to all J. in B(1), so that

s(l) — Combine(1, s(J,), s(J5), ..., s(J))
This is called the «recurrence relation» of the problem.

For an instance /, we can set up a sequence of instances <7, 7., ., I, > with

‘n
growing sizes, and where L 1s the problem we want to solve, and so that for all

m

p < m, all instances in B(L)) occur in the sequence before L,

The solutions of the mstances L, L,, ..., L, can be stored 1 a table of
reasonable size compared to the size of the instance 1.

Two variants of dynamic programming:

Bottom up (traditional) and top down (memoization)

1. Traditional Dynamic Programming (bottom up)

e DPistraditionally performed bottom-up. All relevant smaller instances are
solved first (independantly of whether they will be used later!), and their
solutions are stored in the table.

e This usually leads to very simple and often rapid programs.

2. «Top-Down» Dynamic Programming

A drawback with traditional dynamic programming is that one usually solves

a number of smaller instances that turn out not to be needeed for the actual
(larger) instance that we are really interested in.

e We

can instead start at the (large) instance we want to solve, and do the

computation recursively top-down. Also here we put computed solutions

int
e Fac
tab

ne table as soon as they are computed.

N time we need to find the answer to an instance we first check in the
e whether it is already solved, and if so we only use the stored

solution. Otherwise we do recursive calls, and store the solution

e The table entries then need a special marker «not computed», which also
should be the initial value of the entries.

30

«Top-Down» dynamic programming: "Memoization”

1. Start at the instance you want to solve, and ask recursively for
the solution to the instances needed. The recursion will follow the

red arrows In the figure below
2. As soon as you have an answer, fill it into the table, and take it
from there when the answer to the same instance is later needed.

T a n €

0 1 2 3 Y .
Benefit:

You only have to
compute the needed

table entries (those
colored to the left)

But:

Managing the
recursive calls take
some extra time, so
It does not always
eXxecute fastest. 3+

A type of problems typically solved by DP

Both the «optimal matrix multiplication» and «optimal search tree»
problem is of this type with only small madification!

Assume we have a sequence of elements that should be turned into
an optimal binary tree according to some criterium.

Assume the sequence occur in an array E[1:n], and are <e,, e, ...,

e, >
We assume:
1. What is an optimal subtree containing the interval of elements <e,, ...
e;>, written EJI, j], depends only on the values of g;, ..., €; themselves

(and maybe of some «static» global information or table)

2. The optimal subtree of E[i, j] will have one of the elements in E[i, j] as
root, say ek, and have the optimal subtrees of the intervals EJ[i, k-1] and
E[k+1,]] as subtrees

3. The «quality» of an optimal subtree for E[l, J] 1s written Q(1,).

4. There is also a formula Q’(i,k,j) that computes the quality of the tree
formed by using the element ek as root. This should only depend on
Q(i,k-1], Q(k+1, j) and the value of e,.

9. That the quality of an empty tree and a tree with one element can be
computed. This will make up the initialization of the malgorithm below. 32

Typical DP problem 2

\We can then use DP to compute Q(1,n) (and the optimal tree for E[1,

n]) by computing the Q(i, j) for the smallest intervals first, by the
following recurrence formula:

Q(i, j) = max over k =i, i+1, ..., j of Q(i, k, j)

A A A A A A Result:

Pl
S _—

Try each of these as root for this interval (try all k).

Find the best Kk (that is, largest Q'(i,k,})), and choose thls as
root. You will all the time know the answer for the shorter
Intervals ([i, k-1] and [k+1, j]) during this computation. 3

Ch. 9.2. Optimal Matrix Multiplication Order

Given the sequence M, M,, ..., M__ of matrices. We want to compute the
product: My-M,-...- M

n-1.
Note that, for this multiplication to be meaningful, the length of the rows in M,

must be equal to the length of the columns M, fori=0, 1, ..., n-2

Matrix multiplication is associative: (A-B)-C = A-(B - C)
But it is not symmetric, since A - B generally is different from B - A

Thus, one can do the multiplications in different orders. E.g., with four matrices it
can be done in the following five ways (where only those corresponding to binary
trees are allowed):

(M, - (M, - (M, - M,)))
(M, - (M, - M,) - Mj))
(Mg - M) - (M, - M;))
(Mg - (M - My)) - M)
(((Mo] M1)) MQ) ' Mg)

The cost (the number of simple (scalar) multiplications) for these will usually
vary a lot between the differnt alternatives. We want to find the one with as
few scalar multiplications as nossible

34

Optimal matrix multiplication order, 2

Given two matrices A and B with dimentions:
Alisa p x g matrix,
Bisa g x r matrix.

The costof computing A-B is p-q - r,andtheresultisa p x r matrix

Example showing that the muitiplication order has significans:
Compute A - B - C, where

Aisa 10 x 100 matrix, Bis a 100 x 5 matrix, and Cis a 5 x 50 matrix.

Computing D = (A - B) costs 5,000 and gives a 10 x 5 matrix.
Computing D - C costs 2,500.

Total costfor (A-B)-C Isthus 7,500.

Computing E = (B - C) costs 25,000 and gives a 100 x 50 matrix.
Computing A - E costs 50,000.

Total costfor A - (B - C) is thus 75,000.

We would indeed prefer to do it the first way!

Optimal matrix multiplication order, 3

Given a sequence of matrices M,, M,, ..., M__,. We want to find the
cheapest way to do this multiplication (that is, an «optimal
paranthesizationy»).

From the outermost level, the first step in a parenthesizaton is a partition
Into two parts: My - M, -...-M)- M, _,- M -M_

K+ 1 k+2 " 1)

If we know the best parenthesizaton of the two parts, we can sum their cost
and add the par-cost for the last multiplication, and thereby get the smallest

cost, given that we have to use this outermost partititon.

Thus, to find the best outermost parenthesizaton of M,, M,, ..., M, 4, we
can simply look at all the n-71 possible outermost partitions (k =0, 1, n-2),

and choose the best. But we will then need the cost of the optimal
parenthesizaton of a lot of instances of smaller sizes.

And we shall say that the size of the instance M, M., ..., M;1s - 1.

We therefore generally have to look at the best parenthesizaton of all
intervals M, M.+, ..., M;, in the order of growing sizes.

We will refer to the lowest possible cost for the multiplication
M -M,, -..- M as m,;

Optimal matrix multiplication order, 4

Let d,, d,, ..., d, be the dimensions of the matrices M,, M.,M,__,,
so that matrix M; has dimension d. x d_,,

As on the previous slide:
Let m;; be the cost of an optimal parenthesizaton of M;, M., ,, ..., M..

Thus the value we are interested inis m, ,,_,

The recurrence relation for m, will be:

m, . =min{m' +my,,, ;+dd,d;, J| when O0<i<j<n-1

i i<k<]
m,; =0 when O<i<n-1

Here, importantly, the values m,, that we
need for computing m; ;are all for smaller

Instances. With usual indexing this means
we shall fill the green area from the diagonal

towards the upper right corner, as shown by
the red arrow. In the next slide this green
triangle is turned 45 degrees against the 37

clock.

The table: Optimal matrix multiplication order

d|30|35[15| 5 [10|20 |25 Example:
my 4 = min(d,d,d, + m(1,1) + m(2,4),
The values m; ;: d,dyds + m(1,2) + m(3,4),

d.d,d, + m(1,3) + m(4,4))

0 _Sizeisd
& =min(33 - 15-20 + 0 + 2,500,

1 Firstindex:/ 35-5-20+ 2625+ 1,000,
35-10-20+ 4,375+ Q)
min(13000, 71295, 11375)

=7125

Second Index: j g4

Sizeis 1

<« |Sizeis 0

Definition: Size of the instance covering the a8
Interval from pos. ito pos. jis j-i/

Program: Optimal matrix multiplication order

function OptimalParenth(d[0 :n—1])
fori— 0ton-1do
mli, i] < O
fordiag« 1ton—-1do
fori—0Oton-1-diag do
| — 1+ diag
mli, j] < « // Relative to the scalar values that can occur
fork—itoj—1do
q—m[,kK]+m[k+1,j]+d[i] -dk+1]-d[j+ 1]
If g <mll, j] then
mfi,)] <9
Cll.)] — Kk
endif
return m[0, n — 1]
end OptimalParenth

39

Ch. 9.3. Optimal search trees

To get a managable problem that still catches the essence of the general
problem, we shall assume that all g-es are zero (that is, we never search for

values not in the tree)

A key to a solution is that a subtree in a search tree will always represent an

Interval of the values in the tree in sorted order (and that such an interval
can be seen as an optimal seach instance in itself)

Thus, we can use the same type of table as in the matrix multiplication
case, where the value of the optimal tree over the values from intex / to
Index j Is stored in A[/, j], and the size of such an instance is/ -/

Then, for finding the optimal tree for an interval with values K, ..., K/ we can
simply try with each of the values K, ..., K; as root, and use the best
subtrees in each of these cases (Whose optimal values are already found).

To compute the cost of the subtrees is slightly more complicated than in the
matrix case, but is no problem.

. . The optimal values and
Try with k=1, 1+1, ..., J /'::’;®\\ form for these subtrees
/\ /> are already computed.
// \. / \ / when we here try with
/ N\ / \. different values K, at
/ Koo K \\ // Kyags - K; \\ the root 40

Dynamic programming In general:
We fill in differnt types of tables «bottom up»
(smallet instances first)

Dynamic programming
Filling In the tables

It is always safe to solve all the smaller instances before any larger
ones, using the defined size of the instances.

However, if we know what smaller instances are needed to solve a
larger instance, we can deviate from the above. The important thing
Is that the smaller instances needed to solve a certain instance J is
computed before we solve J.

Thus, if we know the «dependency graph» of the problem (which
must be cycle-free, see examples below), the important thing is to
look at the instances in an order that conforms with this dependency.

This freedom is often utilized to get a simple computation.

Thanks

