String Search

26th August 2020

Petter Kristiansen

Search Problems have become increasingly
Important

e Vast ammounts of information is available
* Google and similar search engines search for given strings (or sets of strings) on all
registered web-pages.

* The amount of stored digital information grows steadily (rapidly?)
3 zettabytes (10?1=1 000 000 000 000 000 000 000 = trilliard) in 2012
* 4.4 zettabytes in 2013
» 44 zettabytes in 2020 (estimated)
e 175 zettabytes in 2025 (estimated)

 Search for a given pattern in DNA strings (about 3 giga-letters (10°) in
human DNA).

e Searching for similar patterns is also relevant
* The genetic sequences in organisms are changing over time because of mutations.

* Searches for similar patterns are treated in Ch. 20.5. We will look at that in
connection with Dynamic Programming

Definitions

* An alphabet is a finite set of «<symbols» A={a,, a,, ..., a,}.

* AstringS=5[0:n-1]orS=<s,5;... 5,1 > of length nis a sequence of n symbols
from A.

String Search:

Given two strings T (= Text) and P (= Pattern), P is usually much shorter than T.
Decide whether P occurs as a (continuous) substring in T, and if so, find where it occurs.

Variants of String Search

* Naive algorithm, no preprocessing of T or P

* Preprocessing of P (the pattern) for each new P

e PreprocessthetextT

(Used when we search the same text a lot of times (with different patterns), done
to an extreme degree in search engines.)

The naive algorithm (Prefix based)

Searching forward

T[0:n-1]

P0:m-1]

The naive algorithm

T[0:n-1]

P0:m-1]

The naive algorithm

T[0:n-1]

P0:m-1]

The naive algorithm

n-m

T[0:n-1]

P0:m-1]

The naive algorithm

T[0:n-1]

P0:m-1]

function NaiveStringMatcher (P [0:m -1], T [0:n -1])
fors < 0Oton-mdo
if T[s:s+m-1]=P then // is window = P?
return(s)
endif
endfor
return(-1)

end NaiveStringMatcher

The naive algorithm

T[0:n-1]

P0:m-1]

function NaiveStringMatcher (P [0:m -1], T [0:n -1])
fors < 0Oton-mdo
if T[s:s+m-1]=P then // is window = P?
return(s)
endif
endfor
return(-1)

end NaiveStringMatcher

The Knuth-Morris-Pratt algorithm (Prefix based)

* There is room for improvement in the naive algorithm
* The naive algorithm moves the window (pattern) only one character at a time.
* But we can move it farther, based on what we know from earlier comparisons.

Search forward

v

o(10;0}1}70}0}2]00(0|1T]J]0]0]2]0]1]2

The Knuth-Morris-Pratt algorithm

* There is room for improvement in the naive algorithm
* The naive algorithm moves the window (pattern) only one character at a time.
* But we can move it farther, based on what we know from earlier comparisons.

Search forward

v

The Knuth-Morris-Pratt algorithm

The Knuth-Morris-Pratt algorithm

We move the pattern one step: Mismatch

The Knuth-Morris-Pratt algorithm

1101012010010

2 10| 1

We move the pattern two steps: Mismatch

The Knuth-Morris-Pratt algorithm

A

v

We move the pattern three steps: Now, there is at least a match in the part of T where
we had a match previously

We can skip a number of tests and move the pattern more than one step before we start comparing characters again.
(3 in the above situation.)

The key is that we know what the characters of T and P are up to the point where P and T got different.

(Tand P are equal up to this point.)

For each possible index jin P we assume that the first difference between P and T occurs at j, and from that compute
how far we can move P before the next string-comparison.

It may well be that we never get an overlap like the one above, and we can then move P all the way to the pointin T
where we found an inequality. This is the best case for the efficiency of the algorithm.

The Knuth-Morris-Pratt algorithm

0 1 i-d j

tr170)0|2)0(0}01T 0,020

We know that if we move P less than j - d; steps, there can be no (full) match.

And we know that, after this move, P [0: d;-1] will match the corresponding part of T.

Thus we can start the comparison at d; in P and compare P [d;: m-1] with the symbols from index iin T.

|[dea behind the Knuth-Morris-Pratt algorithm

* We will produce a table Next [0: m-1] that shows how far we can move P when we
get a (first) mismatch atindexjinP,. j=0,1,2, ..., m-1

e But the array Next will not give this number directly. Instead, Next [j] will contain
the new (and smaller value) that j should have when we resume the search after a
mismatch atjin P (see below)

e That is:
° Or:

* After P is moved, we know that the first d; symbols of P are equal to the
corresponding symbols in T (that’s how we chose d;).

* So, the search can continue from indexiin Tand Next [] in P.

* The array Next[] can be computed from P alone!

The Knuth-Morris-Pratt algorithm

function KMPStringMatcher (P [0:m -1], T [0:n -1])
i< 0 //indeksiT
jé 0 //indeksiP
CreateNext(P [0:m -1], Next [n -1])
while i< ndo
if P[j]=T[i]then

if j=m -1 then // check full match
return(i—-m +1)
endif
< i+l
j<i+l
else
j€& Next[j]
if j =0 then
if T[i]#P[0] then
< i+l
endif
endif
endif
endwhile
return(-1)

end KMPStringMatcher

Calculating the array Next[] from P

. 'CI')P(ﬂszc)an be written straight-ahead with simple searches, and will then use time
m?).

* A more clever approach finds the array Next in time O(m).

* We will look at the procedure in an exercise next week.

The Knuth-Morris-Pratt algorithm, example

The Knuth-Morris-Pratt algorithm, example

The Knuth-Morris-Pratt algorithm, example

The Knuth-Morris-Pratt algorithm, example

The Knuth-Morris-Pratt algorithm, example

The Boyer-Moore algorithm (Suffix based)

* The naive algorithm, and Knuth-Morris-Pratt is prefix-based (from left
to right through P)

* The Boyer-Moore algorithm (and variants of it) is suffix-based (from
right to left in P)

* Horspool proposed a simplification of Boyer-Moore, and we will look
at the resulting algorithm here.

The Boyer-Moore algorithm (Horspool)

Comparing from the
end of P

M{m|a|t]|c]|h s|lh|i|f]|t clhla|r|alc]|t

hla|r|la|c]|t

The Boyer-Moore algorithm (Horspool)

The Boyer-Moore algorithm (Horspool)

The Boyer-Moore algorithm (Horspool)

The Boyer-Moore algorithm (Horspool)

function HorspoolStringMatcher (P [0:m -1], T [0:n -1])
i< 0
CreateShift(P [0:m -1], Shift [0:|A] - 1])
whilei<n—-mdo
j&<Em=-1
whilej>0and T[i+j]=P[j] do
j<i-1
endwhile
if j = 0 then
return(/)
endif
i &< i+Shift[T[i+m-1]]
endwhile
return(-1)

end HorspoolStringMatcher

Calculating the array Shift[] from P

We must preprocess P to find the array Shift.

The size of Shift[] is the number of symbols in the alphabet.

We search from the end of P (minus the last symbol), and calculate the distance from the end for
every first occurence of a symbol.

For the symbols not occuring in P, we know:

This will give a “full shift”.

The Karp-Rabin algorithm (hash based)

We assume that the alphabet for our stringsis A={0, 1, 2, ..., k-1}.
Each symbol in A can be seen as a digit in a number system with base k

Thus each string in A* can be seen as number in this system (and we assume that
the most significant digit comes first, as usual)

Example:
k=10,and A={0,1, 2, ..., 9} we get the traditional decimal number system
The string "6832355” can then be seen as the number 6 832 355.

* Given a string P [0: m -1]. We can then calculate the corresponding number P’
using m - 1 multiplications and m - 1 additions (Horners rule, computed from the
innermost right expression and outwards):

P =P[m-1]1+k(P[m-2]+..+k(P[1]+k (P[0])...))

Example (written as it computed from left to right):
1234 = (((1*10) + 2)*10+ 3)*10 + 4

The Karp-Rabin algorithm

* Given a string T [0: n -1], and an integer s (start-index), and a pattern of length m. We
then refer to the substrlng T[s:s+m-1]as T, andits value is referred to as T,

* The algorithm:

* This is very much like the naive algorithm.

* However: Given T', ; and k™~1, we can compute T . in constant time:

0 1 2 ... §-1 S s+m-1 n-1

T[0:n -1]

The Karp-Rabin algorithm

This constant time computation can be done as follows (where T’ ; is defined as on the
previous slide, and k™~ 1 is pre-computed):

T's=k *(T's 4 -kM= 1 *T[s]) + T [s+m] s=1,.,n—m

The Karp-Rabin algorithm

* We can compute T', in constant time when we know 7', ; and k™1,

e We can therefore compute
* P"and
* T,s=0,1,..,n—=m (n—m+1numbers)

in time O(n).

* We can threfore “theoretically” implement the search algorithm in time O(n).

* However, the numbers T'.and P" will be so large that storing and comparing them will take
too long time (in fact O(m) time — back to the naive algorithm again).

* The Karp-Rabin trick is to instead use modular arithmetic:
* We do all computations modulo a value g.

* The value g should be chosen as a prime, so that kg just fits in a register (of e.g. 64 bits).

A prime number is chosen as this will distribute the values well.

The Karp-Rabin algorithm

* We compute 79, and P'@, where
7@ =T .modg,
P9 = P" mod g, (only once)
and compare.

* We can get T'@_= P"@ evenif T'.# P". This is called a spurious match.
* So, if we have T'@_= P"@) we have to fully check whether T, = P.

* With large enough g, the probability for getting spurious matches is low
(see next slides)

function KarpRabinStringMatcher (P [0:m -1], T [0:n -1], k, q)
cé& k™ 1Imodg
P@ &0
T'a. &0

fori<1tomdo
Pla) & (k*P@+P[i])modg
T@,& (k*T@y+T[i]) modgq
endfor

fors < 0ton-mdo
if s >0 then
T@ & (k* (T, -T[s]*c)+T[s+m])modg

endif
if 7@, = P’a) then
if T,=P then
return(s)
endif
endif
endfor
return(-1)

end KarpRabinStringMatcher

The Karp-Rabin algorithm , time considerations

* The worst case running time occurs when the pattern P is found at the end of the
string T.

* If we assume that the strings are distributed uniformally, the probability that 79, is
equal to P'@ (which is in the interval {0, 1, ..., g-1}) is 1/qg

* Thus T'@_ fors=0,1, ..., n-m-1 will for each s lead to a spurious match with
probability 1/q.

* With the real match at the end of T, we will on average get (n - m) / g spurious
matches during the search

* Each of these will lead to m symbol comparisons. In addition, we have to check
whetherT@ equals P when we finally find the correct match at the end.

Thus the number of comparisons of single symbols and computations of new values
7@ will be:
n—m

q

+1jm+(n—m+1)

* We can choose values so that g >> m. Thus the runing time will be O(n).

Multiple searches in a fixed string T (structure)

* |tisthen usually smart to preprocess T, so that later searches in T for different
patterns P will be fast.

 We often refer to this as indexing the text (or data set), and this can be done in a
number of ways. We will look at the following technique:

T may also gradually change over time. We then have to update the index for each
such change.

Tries (word play on Tree / Retrieval)

Compressed trie

Suffix trees (compressed)

Suffix tree for
T = babbage

* Looking for P in this trie will decide whether P occurs as a substring of T, all
substrings have a path strting in the root.

1Z]

64 —— :
i = | . ' ' | 100
Horspool
English |16 —— . . : - :
8 - FLEXIBLE PATTERN MATCHING
gk IN STRINGS
e e L8 Practialon-fne serch akgorithms o s and bokogl sequences
! % - T

Gonzalo Navarro Mathieu Rafinot

