String Search

26th August 2020
Petter Kristiansen

Search Problems have become increasingly important

- Vast ammounts of information is available
- Google and similar search engines search for given strings (or sets of strings) on all registered web-pages.
- The amount of stored digital information grows steadily (rapidly?)
- 3 zettabytes $\left(10^{21}=1000000000000000000000=\right.$ trilliard $)$ in 2012
- 4.4 zettabytes in 2013
- 44 zettabytes in 2020 (estimated)
- 175 zettabytes in 2025 (estimated)
- Search for a given pattern in DNA strings (about 3 giga-letters $\left(10^{9}\right)$ in human DNA).
- Searching for similar patterns is also relevant
- The genetic sequences in organisms are changing over time because of mutations.
- Searches for similar patterns are treated in Ch. 20.5. We will look at that in connection with Dynamic Programming

Definitions

- An alphabet is a finite set of «symbols» $A=\left\{a_{1}, a_{2}, \ldots, a_{k}\right\}$.
- A string $S=S[0: n-1]$ or $S=\left\langle s_{0} s_{1} \ldots s_{n-1}\right\rangle$ of length n is a sequence of n symbols from A.

String Search:

Given two strings T (= Text) and P (= Pattern), P is usually much shorter than T.
Decide whether P occurs as a (continuous) substring in T, and if so, find where it occurs.

$T[0: n-1]$
$($ Text $)$

Variants of String Search

- Naive algorithm, no preprocessing of T or P
- Assume that the length of T and P are n and m respectively
- The naive algorithm is already a polynomial-time algorithm, with worst case execution time $O\left(n^{*} m\right)$, which is also $O\left(n^{2}\right)$.
- Preprocessing of P (the pattern) for each new P
- Prefix-search: The Knuth-Morris-Pratt algorithm
- Suffix-search: The Boyer-Moore algorithm
- Hash-based: The Karp-Rabin algorithm
- Preprocess the text T
(Used when we search the same text a lot of times (with different patterns), done to an extreme degree in search engines.)
- Suffix trees: Data structure that relies on a structure called a Trie.

The naive algorithm (Prefix based)
"Window"

Searching forward

The naive algorithm

The Knuth-Morris-Pratt algorithm (Prefix based)

- There is room for improvement in the naive algorithm
- The naive algorithm moves the window (pattern) only one character at a time.
- But we can move it farther, based on what we know from earlier comparisons.

Search forward

0	0	1	0	0	1	0	0	2	0	0	0	1	0	0	2	0	1	2	\ldots

0	0	1	0	0	2	0	1

The Knuth-Morris-Pratt algorithm

- There is room for improvement in the naive algorithm
- The naive algorithm moves the window (pattern) only one character at a time.
- But we can move it farther, based on what we know from earlier comparisons.

Search forward

0	0	1	0	0	1	0	0	2	0	0	0	1	0	0	2	0	1	2	\ldots

0	0	1	0	0	2	0	1

The Knuth-Morris-Pratt algorithm

0	0	1	0	0	1	0	0	2	0	0	0	1	0	0	2	0	1	2	\ldots

0	0	1	0	0	2	0	1

The Knuth-Morris-Pratt algorithm

| 0 | 0 | 1 | 0 | 0 | 1 | 0 | 0 | 2 | 0 | 0 | 0 | 1 | 0 | 0 | 2 |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | 0

We move the pattern one step: Mismatch

The Knuth-Morris-Pratt algorithm

We move the pattern two steps: Mismatch

The Knuth-Morris-Pratt algorithm

0	0	1	0	0	1	0	0	2	0	0	0	1	0	0	2	0	1	2	\ldots

\longleftrightarrow| 0 | 0 | 1 | 0 | 0 | 2 | 0 | 1 |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- |

3
We move the pattern three steps: Now, there is at least a match in the part of T where we had a match previously

- We can skip a number of tests and move the pattern more than one step before we start comparing characters again. (3 in the above situation.)
- The key is that we know what the characters of T and P are up to the point where P and T got different.
(T and P are equal up to this point.)
- For each possible index j in P, we assume that the first difference between P and T occurs at j, and from that compute how far we can move P before the next string-comparison.
- It may well be that we never get an overlap like the one above, and we can then move P all the way to the point in T where we found an inequality. This is the best case for the efficiency of the algorithm.

The Knuth-Morris-Pratt algorithm

d_{j} is the longest suffix of $P[1: j-1]$ that is also prefix of $P[0: j-2]$

We know that if we move P less than $j-d_{j}$ steps, there can be no (full) match.
And we know that, after this move, $P\left[0: d_{j}-1\right]$ will match the corresponding part of T.
Thus we can start the comparison at d_{j} in P and compare $P\left[d_{j}: m-1\right]$ with the symbols from index i in T.

Idea behind the Knuth-Morris-Pratt algorithm

- We will produce a table Next [0: $m-1$] that shows how far we can move P when we get a (first) mismatch at index j in $P, j=0,1,2, \ldots, m-1$
- But the array Next will not give this number directly. Instead, Next [j] will contain the new (and smaller value) that j should have when we resume the search after a mismatch at j in P (see below)
- That is: Next [j] = $j-$ <number of steps that P should be moved>,
- or: Next [j] is the value that is named d_{j} on the previous slide
- After P is moved, we know that the first d_{j} symbols of P are equal to the corresponding symbols in T (that's how we chose d_{j}).
- So, the search can continue from index i in T and $\operatorname{Next}[j$] in P.
- The array Next[] can be computed from P alone!

The Knuth-Morris-Pratt algorithm

function KMPStringMatcher ($P[0: m-1], T[0: n-1])$
$i \leftarrow 0 \quad / /$ indeks i T
$j \leftarrow 0 / /$ indeks $i P$
CreateNext(P [0:m -1], Next [$n-1]$)
while $i<n$ do
if $P[j]=T[i]$ then
if $j=m-1$ then // check full match
return $(i-m+1)$
endif
$i \leftarrow i+1$
$j \leftarrow j+1$
else
$j \leftarrow \operatorname{Next}[j]$
if $j=0$ then
if $T[i] \neq P[0]$ then

$$
i \leftarrow i+1
$$

endif
endif
endif
endwhile
return(-1)
end KMPStringMatcher

Calculating the array Next[] from P

function CreateNext ($P[0: m-1]$, Next $[0: m-1])$
end CreateNext

- This can be written straight-ahead with simple searches, and will then use time $O\left(m^{2}\right)$.
- A more clever approach finds the array Next in time $O(m)$.
- We will look at the procedure in an exercise next week.

The Knuth-Morris-Pratt algorithm, example

0	0	1	0	0	1	0	0	2	0	0	0	1	0	0	2	0	1	2	\ldots

0	0	1	0	0	2	0	1

The array Next for the string P above:

$$
\begin{array}{cllllllll}
j= & 0 & 1 & 2 & 3 & 4 & 5 & 6 & 7 \\
\operatorname{Next}[j]= & 0 & 0 & 1 & 1 & 1 & 2 & 0 & 1
\end{array}
$$

The Knuth-Morris-Pratt algorithm, example

0	0	1	0	0	1	0	0	2	0	0	0	1	0	0	2	0	1	2	\ldots

0	0	1	0	0	2	0	1			

The array Next for the string P above:

$$
\begin{array}{cllllllll}
j= & 0 & 1 & 2 & 3 & 4 & 5 & 6 & 7 \\
\operatorname{Next}[j]= & 0 & 0 & 1 & 1 & 1 & 2 & 0 & 1
\end{array}
$$

The Knuth-Morris-Pratt algorithm, example

0	0	1	0	0	1	0	0	2	0	0	0	1	0	0	2	0	1	2	\ldots

The array Next for the string P above:

$$
\begin{array}{cllllllll}
j= & 0 & 1 & 2 & 3 & 4 & 5 & 6 & 7 \\
\operatorname{Next}[j]= & 0 & 0 & 1 & 1 & 1 & 2 & 0 & 1
\end{array}
$$

The Knuth-Morris-Pratt algorithm, example

0	0	1	0	0	1	0	0	2	0	0	0	1	0	0	2	0	1	2	\ldots

The array Next for the string P above:

$$
\begin{array}{cllllllll}
j= & 0 & 1 & 2 & 3 & 4 & 5 & 6 & 7 \\
\operatorname{Next}[j]= & 0 & 0 & 1 & 1 & 1 & 2 & 0 & 1
\end{array}
$$

The Knuth-Morris-Pratt algorithm, example

0	0	1	0	0	1	0	0	2	0	0	0	1	0	0	2	0	1	2	\ldots

The array Next for the string P above:

$$
\begin{array}{cllllllll}
j= & 0 & 1 & 2 & 3 & 4 & 5 & 6 & 7 \\
\operatorname{Next}[j]= & 0 & 0 & 1 & 1 & 1 & 2 & 0 & 1
\end{array}
$$

The Boyer-Moore algorithm (Suffix based)

- The naive algorithm, and Knuth-Morris-Pratt is prefix-based (from left to right through P)
- The Boyer-Moore algorithm (and variants of it) is suffix-based (from right to left in P)
- Horspool proposed a simplification of Boyer-Moore, and we will look at the resulting algorithm here.

B	M	m	a	t	c	h	e	r	_	s	h	i	f	t	_	c	h	a	r	a	c	t	e	r	_	e	x	\ldots

c	h	a	r	a	c	t	e	r

The Boyer-Moore algorithm (Horspool)

Comparing from the
end of P

B	M	m	a	t	c	h	e	r	\ldots	s	h	i	f	t	\ldots	c	h	a	r	a	c	t	e	r		e	x	\ldots

\mathbf{c}	h	a	\mathbf{r}	a	\mathbf{c}	t	e	r

The Boyer-Moore algorithm (Horspool)

B	M	m	a	t	c	h	e	r	\ldots	s	h	i	f	t	_	c	h	a	r	a	c	t	e	r	_	e	x	\ldots

The Boyer-Moore algorithm (Horspool)

B	M	m	a	t	c	h	e	r	-	s	h	i	f	t	\ldots	c	h	a	r	a	c	t	e	r			e	x

The Boyer-Moore algorithm (Horspool)

The Boyer-Moore algorithm (Horspool)

Worst case execution time $O(m n)$, same as for the naive algorithm!
However: Sub-linear $(\leq n)$, as the average execution time is $O\left(n\left(\log _{|A|} m\right) / m\right)$.

```
function HorspoolStringMatcher (P [0:m -1], T [0:n -1])
    i\leftarrow0
    CreateShift(P [0:m-1], Shift [0:|A| - 1])
    while }i<n-m\mathrm{ do
        j\leftarrowm-1
        while j\geq0 and T[i+j] = P [j] do
        j\leftarrowj-1
            endwhile
            if j=0 then
            return(i)
        endif
    i\leftarrowi+ Shift[ T[i+m-1] ]
    endwhile
    return(-1)
end HorspoolStringMatcher
```


Calculating the array Shift[] from P

function CreateShift (P [0:m-1], Shift [0:|A|-1])
end CreateShift

- We must preprocess P to find the array Shift.
- The size of Shift[] is the number of symbols in the alphabet.
- We search from the end of P (minus the last symbol), and calculate the distance from the end for every first occurence of a symbol.
- For the symbols not occuring in P, we know:

$$
\begin{equation*}
\text { Shift }[t]=<\text { the length of } P> \tag{m}
\end{equation*}
$$

This will give a "full shift".

The Karp-Rabin algorithm (hash based)

- We assume that the alphabet for our strings is $A=\{0,1,2, \ldots, k-1\}$.
- Each symbol in A can be seen as a digit in a number system with base k
- Thus each string in A^{*} can be seen as number in this system (and we assume that the most significant digit comes first, as usual)

```
Example:
    k=10, and A = {0,1, 2, .., 9} we get the traditional decimal number system
    The string "6832355" can then be seen as the number 6 832355.
```

- Given a string P [0:m-1]. We can then calculate the corresponding number P^{\prime} using $m-1$ multiplications and $m-1$ additions (Horners rule, computed from the innermost right expression and outwards):

$$
P^{\prime}=P[m-1]+k(P[m-2]+\ldots+k(P[1]+k(P[0]) \ldots))
$$

```
Example (written as it computed from left to right):
    1234 = (((1*10) + 2)*10 + 3)*10 + 4
```


The Karp-Rabin algorithm

- Given a string T [0: $n-1$], and an integer s (start-index), and a pattern of length m. We then refer to the substring T [$s: s+m-1$] as T_{s}, and its value is referred to as T_{s},
- The algorithm:
- We first compute the value P^{\prime} for the pattern P.
- Based on Horners rule, we compute $T^{\prime}{ }_{0}, T^{\prime}{ }_{1}, T^{\prime}{ }_{2}, \ldots$, and successively compare these numbers to P^{\prime}.
- This is very much like the naive algorithm.
- However: Given T_{s-1}^{\prime} and k^{m-1}, we can compute $T^{\prime}{ }_{s}$ in constant time:

The Karp-Rabin algorithm

This constant time computation can be done as follows (where T_{s-1}^{\prime} is defined as on the previous slide, and k^{m-1} is pre-computed):

$$
T_{s}^{\prime}=k^{*}\left(T_{s-1}^{\prime}-k^{m-1} * T[s]\right)+T[s+m] \quad s=1, \ldots, n-m
$$

Example:

```
k=10,A={0,1,2,\ldots,9} (the usual decimal number system) and m=7.
T's-1 = 7937245
T's}=937245
\mp@subsup{T}{}{\prime}}\mp@subsup{}{s}{\prime}=10*(7937245-(1000000*7))+8=937245
```


The Karp-Rabin algorithm

- We can compute T_{s}^{\prime} in constant time when we know T_{s-1}^{\prime} and k^{m-1}.
- We can therefore compute
- P^{\prime} and
- $T^{\prime}{ }_{s}, s=0,1, \ldots, n-m \quad(n-m+1$ numbers)
in time $O(n)$.
- We can threfore "theoretically" implement the search algorithm in time $O(n)$.
- However, the numbers $T^{\prime}{ }_{s}$ and P^{\prime} will be so large that storing and comparing them will take too long time (in fact $O\left(m^{s}\right)$ time - back to the naive algorithm again).
- The Karp-Rabin trick is to instead use modular arithmetic:
- We do all computations modulo a value q.
- The value q should be chosen as a prime, so that $k q$ just fits in a register (of e.g. 64 bits).
- A prime number is chosen as this will distribute the values well.

The Karp-Rabin algorithm

- We compute $T^{\prime}(q)_{s}$ and $P^{\prime}(q)$, where

$$
\begin{aligned}
& T^{\prime}(q){ }_{s}=T_{s}^{\prime} \bmod q, \\
& P^{\prime}(q)=P^{\prime} \bmod q,(\text { only once })
\end{aligned}
$$

$x \bmod y$ is the remainder when deviding x with y, this is always in the interval $\{0,1, \ldots, y-1\}$.
and compare.

- We can get $T^{\prime}(q)_{s}=P^{\prime}(q)$ even if $T_{s}^{\prime} \neq P^{\prime}$. This is called a spurious match.
- So, if we have $T^{\prime}(q)=P^{\prime}(q)$, we have to fully check whether $T_{s}=P$.
- With large enough q, the probability for getting spurious matches is low (see next slides)
function KarpRabinStringMatcher $(P[0: m-1], T[0: n-1], k, q)$

```
\(c \leftarrow k^{m-1} \bmod q\)
\(P^{\prime}(q) \leftarrow 0\)
\(T^{\prime}(q)_{s} \leftarrow 0\)
for \(i \leftarrow 1\) to \(m\) do
    \(P^{\prime}(q) \leftarrow\left(k^{*} P^{\prime}(q)+P[i]\right) \bmod q\)
    \(T^{\prime}(q)_{0} \leftarrow\left(\mathrm{k} * T^{\prime}(q)_{0}+T[i]\right) \bmod q\)
endfor
for \(s \leftarrow 0\) to \(n-m\) do
    if \(s>0\) then
        \(T^{\prime}(q)_{s} \leftarrow\left(\mathrm{k}^{*}\left(T^{\prime}(q)_{s-1}-T[s] * c\right)+T[s+m]\right) \bmod q\)
    endif
    if \(T^{\prime}(q)_{s}=P^{\prime}(q)\) then
        if \(T_{s}=P\) then
                        return(s)
            endif
        endif
    endfor
    return(-1)
    end KarpRabinStringMatcher
```


The Karp-Rabin algorithm , time considerations

- The worst case running time occurs when the pattern P is found at the end of the string T.
- If we assume that the strings are distributed uniformally, the probability that $T^{\prime}(q)_{s}$ is equal to $P^{\prime}(q)$ (which is in the interval $\{0,1, \ldots, q-1\}$) is $1 / q$
- Thus $T^{\prime}(q)$, for $s=0,1, \ldots, n-m-1$ will for each s lead to a spurious match with probability $1 / q$.
- With the real match at the end of T, we will on average get $(n-m) / q$ spurious matches during the search
- Each of these will lead to m symbol comparisons. In addition, we have to check whether $T^{\prime}(a)_{n-m}$ equals P when we finally find the correct match at the end.
- Thus the number of comparisons of single symbols and computations of new values $T^{\prime}(q){ }_{s}$ will be:

$$
\left(\frac{n-m}{q}+1\right) m+(n-m+1)
$$

- We can choose values so that $q \gg m$. Thus the runing time will be $O(n)$.

Multiple searches in a fixed string T (structure)

- It is then usually smart to preprocess T, so that later searches in T for different patterns P will be fast.
- Search engines (like Google or Bing) do this in a very clever way, so that searches in huge number of webpages can be done extremely fast.
- We often refer to this as indexing the text (or data set), and this can be done in a number of ways. We will look at the following technique:
- Suffix trees, which relies on "Tries" trees.
- So we first look at Tries.
- T may also gradually change over time. We then have to update the index for each such change.
- The index of a search engine is updated when the crawler finds a new web page.

Tries (word play on Tree / Retrieval)

Compressed trie

Suffix trees (compressed)

Suffix tree for T = babbage

- Looking for P in this trie will decide whether P occurs as a substring of T, all substrings have a path strting in the root.

