
Priority Queues

30th September 2020

Priority Queues

• Binary heaps
• Leftist heaps
• Binomial heaps
• Fibonacci heaps

Priority queues are important in, among other things, operating systems
(process control in multitasking systems), search algorithms (A, A*, D*, etc.),
and simulation.

Priority Queues
Priority queues are data structures that hold elements with some kind of
priority (key) in a queue-like structure, implementing the following operations:

• insert() – Inserting an element into the queue.
• deleteMin() – Removing the element with the highest priority.

And maybe also:

• buildHeap() – Build a queue from a set (>1) of elements.
• increaseKey()/DecreaseKey() – Change priority.
• delete() – Removing an element from the queue.
• merge() – Merge two queues.

Priority Queues
An unsorted linked list can be used. insert() inserts an element at the
head of the list (O(1)), and deleteMin() searches the list for the element
with the highest priority and removes it (O(n)).

A sorted list can also be used (reversed running times).

– Not very efficient implementations.

To make an efficient priority queue, it is enough to keeps the elements
“almost sorted”.

A binary heap is organized as a complete binary tree. (All levels are full, except
possibly the last.)

In a binary heap the element in the root must have a key less than or equal to
the key of its children, in addition each sub-tree must be a binary heap.

a b c d e f g h i j

0 1 2 3 4 5 6 7 8 9 10 11 12 13

1 2 3 4

1

2

3

4

ëi / 2û

a

b c

d e

h i j

f g

Binary heaps

2i 2i+1

13

21 16

24 31

65 26 32

19 68

1

2

3

4

insert(14)

13 21 16 24 31 19 68 65 26 32 14

0 1 2 3 4 5 6 7 8 9 10 11 12 13

1 2 3 4

14

Binary heaps

13

14 16

23 21

65 26 32

19 68

1

2

3

4

insert(14)

13 14 16 24 21 19 68 65 26 32 31

0 1 2 3 4 5 6 7 8 9 10 11 12 13

1 2 3 4

31

”percolateUp()”

Binary heaps

14 16

19 21

65 26 32

19 68

1

2

3

4

deleteMin()

14 16 19 21 19 68 65 26 32 31

0 1 2 3 4 5 6 7 8 9 10 11 12 13

1 2 3 4

31

Binary heaps

31

14 16

19 21

65 26 32

19 68

1

2

3

4

deleteMin()

31 14 16 19 21 19 68 65 26 32

0 1 2 3 4 5 6 7 8 9 10 11 12 13

1 2 3 4

Binary heaps

14

19 16

26 21

65 31 32

19 68

1

2

3

4

deleteMin()

14 19 16 19 21 26 68 65 31 32

0 1 2 3 4 5 6 7 8 9 10 11 12 13

1 2 3 4

”percolateDown()”

Binary heaps

worst case average

insert() O(log N) O(1)

deleteMin() O(log N) O(log N)

buildHeap() O(N)

(Insert elements into the array unsorted, and run percolateDown() on each
root in the resulting heap (the tree), bottom up)

(The sum of the heights of a binary tree with N nodes is O(N).)

merge() O(N)

(N = number of elements)

Binary heaps

To implement an efficient merge(), we move away from arrays, and
implement so-called leftist heaps as pure trees.

The idea is to make the heap (the tree) as skewed as possible, and do all the
work on a short (right) branch, leaving the long (left) branch untouched.

A leftist heap is still a binary tree with the heap structure (key in root is lower
than key in children), but with an extra skewness requirement.

For all nodes X in our tree, we define the null-path-length(X) as the distance
from X to a descendant with less than two children (i.e. 0 or 1).

The skewness requirement is that for every node the null path length of
its left child be at least as large as the null path length of the right child.

For the empty tree we define the null-path-length to be -1, as a special case.

Leftist heaps

Leftist heaps

1 0

0 0

0

NOT LEFTIST

LEFTIST

1

1 0

0 1

0

1

0

Leftist heaps

10 8

21 14

23

17

26

12 7

18 24

33

37 18

merge() 3 6

Leftist heaps

10 8

21 14

23

17

26

12 7

18 24

33

37 18

merge() 3 6

Leftist heaps

10 8

21 14

23

17

26

12

7

18 24

33

37

18

merge() 3

6

10
8

21 14

23
17

26

3

12 7

18 24

33

37 18

6

Leftist heaps

10 8

21 14

23

17

26

12

7

18 24

33

37

18

merge() 3

6

10
8

21 14

23
17

26

3

12 7

18 24

33

37 18

6

Flip L/R if not leftist

Leftist heaps

10 8

21 14

23

17

26

12

7

18 24

33

37

18

merge() 3

6

10
8

21 14

23
17

26

3

12 7

18 24

33

37 18

6

Flip L/R if not leftist

Leftist heaps

10 8

21 14

23

17

26

12

7

18 24

33

37

18

merge() 3

6

10

8
21 14

23 17

26

3

12 7

18 24

33

37 18

6

Flip L/R if not leftist

Leftist heaps

10 8

21 14

23

17

26

12 7

18 24

33

37

18

merge() 3

6

8

17

26

3

12 7

18 24

33

37 18

6

10

21 14

23

Leftist heaps

5 3

7 6

10

5 3

7 6

10

deleteMin()

insert(3) merge()

11

merge()

1

Leftist heaps

worst case

merge() O(log N)

insert() O(log N)

deleteMin() O(log N)

buildHeap() O(N)

(N = number of elements)

In a leftist heap with N nodes, the right path is at most ëlog (N+1)û long.

Leftist heaps:
merge(), insert() and deleteMin() in O(log N) time w.c.

Binary heaps:
insert() in O(1) time on average.

Binomial heaps
merge(), insert() og deleteMin() in O(log N) time w.c.
insert() O(1) time on average

Binomial heaps are collections of trees (sometimes called a forest), each tree a
heap.

Binomial heaps

Binomial trees

B0

Binomial heaps

Binomial trees

B0
B1

Binomial heaps

Binomial trees

B0
B1

B2

Binomial heaps

Binomial trees

B0
B1

B2
B3

Binomial heaps

Binomial trees

B0
B1

B2
B3

B4

Binomial heaps

Binomial trees

B0
B1

B2
B3

B4

Bi = 2 x Bi-1, root of one tree
connected as a child of the
root of the other tree.

A tree of height k has:

2k nodes in total,

nodes on level d.÷
ø
öç

è
æ
d
k

Binomial heaps

Binomial heap

16

18

12

21 24

65

Binomial heaps

Maximum one tree of each size:

6 elements: 6 binary = 011 (0+2+4) B0 B1 B2X

Binomial heap

16

18

12

21 24

65

The length of the root list in a heap of N elements is O(log N).
(Doubly linked, circular list.)

Binomial heaps

Maximum one tree of each size:

6 elements: 6 binary = 011 (0+2+4) B0 B1 B2X

merge() 16

18

12

21 24

65

14

26

23

51 24

65

13

Binomial heaps

merge() 16

18

12

21 24

65

14

26

23

51 24

65

13

Binomial heaps

merge() 16

18

12

21 24

65

14

26

23

51 24

65

13

13

Binomial heaps

merge() 16

18

12

21 24

65

14

26

23

51 24

65

13

13

16

18

14

26

Binomial heaps

merge() 16

18

12

21 24

65

14

26

23

51 24

65

13

13

Binomial heaps

The trees (the root list) is kept sorted on height.

16

18

14

26

12

21 24

65

24

65

23

51

deleteMin() 13

16

18

14

26

12

21 24

65

23

51 24

65

Binomial heaps

deleteMin()

13

16

18

14

26

21 24

65

23

51 24

65

merge()

13

16

18

14

26

12

21 24

65

23

51 24

65

Binomial heaps

worst case average case

merge() O(log N) O(log N)

insert() O(log N) O(1)

deleteMin() O(log N) O(log N)

buildHeap() O(N) O(N)

(Run N insert() on an initially empty heap.)

(N = number of elements)

Binomial heaps

Implementation

13

16

18

14

26

12

21 24

65

23

51 24

65

Doubly linked, circular lists

Binomial heaps

Implementation

13

16

18

14

26

12

21 24

65

23

51 24

65

23

61 27

88

Doubly linked, circular lists

Binomial heaps

Implementation

13

16

18

14

26

12

21 24

65

23

51 24

65

23

61 27

88

Doubly linked, circular lists

Binomial heaps

Very elegant, and in theory efficient, way to implement heaps: Most operations
have O(1) amortized running time. (Fredman & Tarjan ’87)

insert(), decreaseKey() and merge() O(1) amortized time

deleteMin() O(log N) amortized time

Combines elements from leftist heaps and binomial heaps.

A bit complicated to implement, and certain hidden constants are a bit high.

Best suited when there are few deleteMin() compared to the other operations.
The data structure was developed for a shortest path algorithm (with many
decreaseKey() operations), also used in spanning tree algorithms.

Fibonacci heaps

We include a smart decreaseKey() method from leftist heaps.

2

11

12 17

18

4

5

8 6

11

9

1018

31

21

15

Fibonacci heaps

We include a smart decreaseKey() method from leftist heaps.

2

11

12 17

18

4

5

8 6

11

0

1018

31

21

15

Fibonacci heaps

We include a smart decreaseKey() method from leftist heaps.

2

11

12 17

18

4

5

8 6

11

0

1018

31

21

15

Leftist

Ikke leftist

Fibonacci heaps

We include a smart decreaseKey() method from leftist heaps.

2

11

12 17

18

4

5

8 6

11

0

1018

31

21

15

Leftist

Ikke leftist

Fibonacci heaps

We include a smart decreaseKey() method from leftist heaps.

2

4

12 17

18

11

5

8 6

11

0

1018

31

21

15

Leftist

Leftist

Fibonacci heaps

We include a smart decreaseKey() method from leftist heaps.

2

4

12 17

18

11

5

8 6

11

0

10

18

31

21

15

Fibonacci heaps

We include a smart decreaseKey() method from leftist heaps.

The method must be modified a bit, as we wish to use trees that are binomial
trees, or partial binomial trees.

- Nodes are marked the first time child is removed.
- The second time a node gets a child removed, it is cut off, and becomes the
root of a separate tree

38

26

35

24

46

7

23 17

30

18

39 21

52

41

min

Fibonacci heaps

We include a smart decreaseKey() method from leftist heaps.

The method must be modified a bit, as we wish to use trees that are binomial
trees, or partial binomial trees.

- Nodes are marked the first time child is removed.
- The second time a node gets a child removed, it is cut off, and becomes the
root of a separate tree

38

26

35

24

5

7

23 17

30

18

39 21

52

41

min

Fibonacci heaps

We include a smart decreaseKey() method from leftist heaps.

The method must be modified a bit, as we wish to use trees that are binomial
trees, or partial binomial trees.

- Nodes are marked the first time child is removed.
- The second time a node gets a child removed, it is cut off, and becomes the
root of a separate tree

38

26

35

24

57

23 17

30

18

39 21

52

41

min

Fibonacci heaps

We include a smart decreaseKey() method from leftist heaps.

The method must be modified a bit, as we wish to use trees that are binomial
trees, or partial binomial trees.

- Nodes are marked the first time child is removed.
- The second time a node gets a child removed, it is cut off, and becomes the
root of a separate tree

38

13

35

24

57

23 17

30

18

39 21

52

41

Fibonacci heaps

min

We include a smart decreaseKey() method from leftist heaps.

The method must be modified a bit, as we wish to use trees that are binomial
trees, or partial binomial trees.

- Nodes are marked the first time child is removed.
- The second time a node gets a child removed, it is cut off, and becomes the
root of a separate tree

38 13

3524

57

23 17

30

18

39 21

52

41

Fibonacci heaps

min

We include a smart decreaseKey() method from leftist heaps.

The method must be modified a bit, as we wish to use trees that are binomial
trees, or partial binomial trees.

- Nodes are marked the first time child is removed.
- The second time a node gets a child removed, it is cut off, and becomes the
root of a separate tree

38 13

35

2457

23 17

30

18

39 21

52

41

Fibonacci heaps

min

We use lazy merging / lazy binomial queue.

18 7

8

5

8 6

11

8

9

4

9 6

32

Fibonacci heaps

We use lazy merging / lazy binomial queue.

18 7

8

5

8 6

11

8

9

4

9 6

32

18 7

8

5

8 6

11

8

9

4

9 6

32

Fibonacci heaps

The problem with our decreaseKey()-method and lazy merging is that we
have to clean up afterwards. This is done in by the deleteMin()-method which
becomes expensive (O(log N) amortized time):

All trees are examined, we start with the smallest, and merge two and two, so
that we get at most one tree of each size.

Each root has a number of children – this is used as the size of the tree. (Recall
how we construct binomial trees, and that they may be partial as a result of
decreaseKey()’s)

The trees are put in lists, one per size, and we begin merging, starting with the
smallest.

Fibonacci heaps

Amortized time

insert() O(1)

decreaseKey() O(1)

merge() O(1)

deleteMin() O(log N)

buildHeap() O(N)

(Run N insert() on an initially empty heap.)

(N = number of elements)

Fibonacci heaps

