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     ---------- 

 

b) Show how to implement the algorithm using only one column (or row) plus a few 

additional variables. 

 

Answer:  

We want to calculte the values in the table is it as described above, we assume it has 

dimensions D[0:m,0:n]. We index it with D[i,j], and want the value of D[m,n].  

 

We calculate row by row from the top down, in our algorithm we now use an array 

DR[0:n] that we initialize with 0, 1, 2, ..., n. During execution this array will contain values 

from row i in  DR[0:j], and values from row i-1 in DR[j+1:n] 

We also need two new variables, "newDij" og "prevoius". The program will look like this: 

 
for j = 0 to n do { DR[j] = j }  // Initializing DR (row zero)  

previous = 0     // In general: the value of D[i-1, j-1]  

for i = 1 to m do {  

   DR[0] = i     // Initialization of column zero 

   for j = 1 to m do { 

      if P[i] == T[j] then newDij = previous  

      else newDij = min(DR[j], previous, DR[j-1])  

      previous = DR[j] 

      DR[i] = newDij  

   }  

} 

 

c) Solve the problem given in the last sentence of section 20.5 on page 645.  That is:  In the slides 

we originally wanted to find an algorithm for searching through a string T, and look for substrings  

S = T[p], T[p+1], … , T[q] of T similar to a given string P.  We can assume that we want to find the 

first substring of T whose edit distance to P is less than or equal to a given K (or report that no 

such substring occurs).  

 

Answer: 

The trick is to initialize row zero (along the direction of T) with only zeroes.  This has the effect 

that we allow a new substring S of T with small enough ED to P to start anywhere in T (but see 

below).  We look at the following example: 

 

 

 

 

 

 

 

T =  a b a e g b c d b a c d g a . . .  
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P =  a   b   c   d 

K = 1 

       a  b  a  e  g  b  c  d  b  a  c  d  g  a  .  .  . 

    ---------------------------------------------------- 

0 0  0  0  0  0  0  0  0  0  0  0  0  0  0  .  .  . 

            |             \  

a   1  0  1  0  1  1  1  1  1  1  0  1  1  1  0  .  .  . 

                     \            | 

b   2  1  0  1  1  2  1  2  2  1  1  1  2  2  1  .  .  . 

                        \           \ 

c   3  2  1  1  2  2  2  1  1  2  2  1  2  3  2  .  .  . 

                           \           \ 

d   4  3  2  2  2  3  3  2  1  2  3  2  1  2  3  .  .  . 

 

We can here observe that we get 1 (≤K) two times in the last row, and for these we can find the 

corresponding subsequence S of T by going backwards from each of the 1-values in the last row, 

as shown in the picture (and as we did for the simple edit distance case).  Thus we see that these 

are  S = gbcd  and  S = acd  respectively, and we can also see what the correct edit operation is 

(even if this requires a little thinking!).  

 

One might protest to the above argument for initializing the top row with only zeroes (which was: 

“we then allow a new substring of T to start anywhere in T”) by saying that we might then get 

false small values in the bottom row, as the top row along the found substring is only zeroes, 

instead of  0, 1, 2, …  as we usually have when computing the edit distance.  However, there can 

be no such influence as the backwards path we found from the lower row describes the influence 

we have used, and this path do not reach the top row until the start of S. 

 

When executing this algorithm it is natural to fill column after column (starting each time with a 

zero at the top), and when we get K or less in the last row entry and we only want the first 

occurrence in T, we can stop and find the corresponding substring S of T. 

 

We can obviously also do this with only one array of the same lengh as P plus a few variables, as 

in Exercise 1.3 above. If we then want all occurences of legal S-strings in T, we could then, during 

the search, simply remember at what indices in T we get edit distance ≤ K, and then afterwards 

go back to these places in T and find the corresponding substrings S. 

 

Example, time usage: How much time would this algorithm use to search through our entire 

genome (about 3*109 letters), for a string that is e.g. 100 = 102  letters long.  Then we would have 

to compute the recurrence formula 3*1011  times.  Assuming a machine (with caching etc.) using 

an average of 10 ns to fetch data from the store, we may assume 100 ns = 10-7 seconds for each 

computation of the recurrence formula.  Thus, a full search would take 3*1011   * 10-7 = 3*104 

seconds, which is about eight hours.  Thus, this is doable, but the biologists usually also need 

some extra “weight values” in the recurrence formula, and they usually want to search for longer 

strings than 100 letters (often more than 1000 letters).  Thus, doing it straight-forward as above 

usually takes too much time.  On can to same extent optimize the above algorithm, but for many 
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real cases one still has to introduce special tricks to speed up the process, which usually also has 

the bad effect that the search becomes approximate. 

 

For more information, see e.g. https://en.wikipedia.org/wiki/Human_genome.  We will also later 

have a guest lecture by Torbjørn Rognes from the BioInformatics group about the algorithms 

they are using. 

Exercise 3 
a) Look into memoization – using a table as in standard dynamic programming, but with an 

algorithm following the recursive formula top-down. The trick is now that each recursive call first 

looks into the table, and checks if the answer to the current sub-problem is already calculated.  If 

it is, this value is used, otherwise  we have to do recursive calls to solve the necessary smaller 

problems. 

 

Write such an algorithm for finding the edit distance between two strings P and T. 

 

The array D[0:m,0:n] is just like in 20.19, initialize it the same way, initialize the rest of the array 

to -1 to indicate that no value is calculated for this sub-problem (0 is a possible calculated value).  

 
function EdDist(i,j): int {             // Called from outside with (m,n)  

   if D[i,j] >= 0 then return D[i,j] 

   else {  

      if P[i] == T[j] then D[i,j] = EdDist[i-1,j-1]  

      else D[i,j] = min(EdDist[i-1,j], EdDist[i-1,j-1], EdDist[i,j-1]) + 1 

      return D[i,j] 

   }  

} 

  

Note that the recursion always stops because of the initialization. 

Exercise 4 
The Fibonacci numbers F(n) are defined by the formulas  

     F(0)=0,   F(1)=1  and  F(n) = F(n-1) + F(n-2) for n > 1 

One can compute F(n) for a given n by building up the sequence of F(0), F(1), F(2), F(3), …, F(n) like 
this: 

0  1  1  2  3  5  8  13  21  34  55  89 … 

a) This computation can be seen as DP-computation where we have a one dimensional table 

holding all the values we have already computed, and use some of those to compute the next.  

Of which order is this computation when expressed in O-notation of the value n. 

Answer:  O(n) 

 

b) In what sense is it not reasonable to say that this is not a polynomial algorithm.  Compare with 
the speed of adding by hand two numbers n and m.  What if this computation used time e.g.  
O(m + n)? 

https://en.wikipedia.org/wiki/Human_genome


5 
 

COMMENT: This sort of “polynomial time algorithm” is often said to run in “quasi-polynomial 
time”. 

Answer:  
The point here is that the speed of an algorithm is usually expressed as a function of the length 
of the input, and in this case the length is the number of digits in n, which is about log10(n).  From 
this viewpoint the time used by the algorithm is time O(10L), where L is the length of the instance, 
and it is therefore exponential!  We should observe that the procedure to e.g. multiply two 
numbers p and q by hand has order O( log10(p) *log10(q) ), which really is polynomial in the 
number of digits in p and q.  One can try to imagine how hopeless things would be if this 
procedure took “quasi-polynomial” time, using time of order O(p+q).   
 
We generally say that an algorithm runs in “quasi-polynomial time” when it becomes polynomial-
time if we say that the length of the instance should be computed by letting each number in the 
instance contribute with their value (and not their number of digits).  This corresponds to 
representing  each number in the instance in “unary coding”, as defined in the answer to 
problem 1 in the exercises for the first week of this course.  A number of Dynamic Programming 
algorithms run in quasi-polynomial time, e.g. the one occurring in mandatory exercise 1.  
 

c) Assume we used the formula F(n)= F(n-1) + F(n-2) to write a simple recursive program for F(n), 
without trying to remember any previously computed values.  What would be the execution time 
for such a program? 

Answer: 
The recursive procedure could e.g. be: 
 
procedure fib( interger n ) { 
     if (n<0) { error … ;} else { 
     if (n=0) {return 0;} else { 
     if (n=1) {return 1;} else { 
                    return fib(n-1) + fib(n-2); 
    }}} 
} 
 
The calls of an execution of this program, would execute as slightly skew binary tree, e.g. like this:  
 
 
 
 
 
 
 
 
 
 
 
 
Even if this tree is somewhat skew, its number of nodes will be O(2n).  Thus, expressed in the 
length of n (its numbers of digits!) this algorithm will be doubly exponential!  This is because we 
do a number of computations again and again. 
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