IN3200/IN4200: MPI programming by the example

of Jacobi computations

Parts of the content are from the textbook: Hager & Wellein, Introduction to High Performance
Computing for Scientists and Engineers

@ Demonstrate MPI programming through parallelizing Jacobi
computations
e 1D, 2D, 3D
e Domain decomposition
o Use of basic MPl commands

Let's start with 1D serial Jacobi computation

phi and phi_new: 1D arrays of length imax

/] ...

/* initialization (example) */

for (i=1; i<imax-1; i++) {
X = ixdx; // coordinate of the grid point
phil[i] = sin(M_PIx*x); // suppose we use the sin function

}
maxdelta = 1.0; eps = 1.0e-14;

while (maxdelta > eps) {
maxdelta = 0.;

for (i=1; i<imax-1; i++) {

phi_new[i] = (phi[i-1]+phi[i+1])*0.5;

maxdelta = max(maxdelta, abs(phi_new[i]-phi[i]));
}

/* pointer swapping */
temp_ptr = phi_new; phi_new = phi; phi = temp_ptr;
}

Domain decomposition as the foundation of parallelization

o Note: total number of grid points is imax, but the left and
right boundary points do not need computation

@ Divide the imax-2 interior points evenly among P processes

@ For programming convenience, each process gets in addition
two ghost points (also called halo points)

Decomposition and array allocation on each process

P: total number of processes
my_rank: unique rank of a process

my_start = my_rank*(imax-2)/P;
my_stop = (my_rank+1)*(imax-2)/P;
my_imax = my_stop-my_start+2; // including the two ghost points

my_phi_new = (double*)malloc(my_imax*sizeof (double));
my_phi = (double*)malloc (my_imax*sizeof (double));
The P processes are logically lined up from “left” to “right”.

The above code should work for any value of 1 < P <imax-2, and
the work division is as even as possible. (Can you verify?)

Initializing my_phi

Each process initializes its my_phi array:

for (i=1; i<my_imax-1; i++) {
x = (my_start+i)*dx; // coordinate of the grid point
my_phi[i] = sin(M_PI*x); // same formula as in the serial computation

}

Note: each process initializes for all its subdomain interior points

Computational work of each process per iteration

my_maxdelta = 0.;

for (i=1; i<my_imax-1; i++) {
my_phi_new[i] = (my_phil[i-1]+my_phi[i+1])*0.5;

my_maxdelta = max(my_maxdelta, abs(my_phi_new[i]-my_phil[i]));
}

The same as the serial computation, except that the computation is
now within the subdomain of each process

What else should each process do per iteration?

@ Before computation: Must get the ghost point values (by

communication)
o Receive one value from the left neighbor, into my_phi [0]

o Send my_phi[1] to the left neighbor
o Receive one value from the right neighbor, into

my_phi [my_imax-1]
e Send my_phi [my_imax-2] to the right neighbor

o After computation: Find out the global maximum among all
the subdomain values of my_maxdelta

Entire work per process

while (maxdelta > eps) {

if (my_rank>0)
MPI_Irecv(&my_phil[0],1,MPI_DOUBLE,myrank-1,0,MPI_COMM_WORLD,&req_left);

if (my_rank<P-1)
MPI_Irecv(&my_phi[my_imax-1],1,MPI_DOUBLE,myrank+1,0,MPI_COMM_WORLD

&req_right);

if (my_rank>0)
MPI_Send(&my_phi[1],1,MPI_DOUBLE,myrank-1,0,MPI_COMM_WORLD) ;

if (my_rank<P-1)
MPI_Send (&my_phi [my_imax-2] ,1,MPI_DOUBLE,myrank+1,0,MPI_COMM_WORLD) ;

if (my_rank>0)
MPI_Wait (&req_left,&status_left);

if (my_rank<P-1)
MPI_Wait (&req_right,&status_right);

my_maxdelta = 0.;
for (i=1; i<my_imax-1; i++) {

my_phi_new[i] = (my_phili-1]+my_phi[i+1])*0.5;

my_maxdelta = max(my_maxdelta, abs(my_phi_new[i]-my_phi[il));
}

MPI_Allreduce (&my_maxdelta,&maxdelta,1,MPI_DOUBLE,MPI_MAX,MPI_COMM_WORLD) ;

/* pointer swapping */
temp_ptr = my_phi_new; my_phi_new = my_phi; my_phi = temp_ptr;

Flow chart of parallel Jacobi computation

initialize grid @
and boundaries

—

communicate @
halo layers

—’7 I
sweep @

subdomains

I
I
\I
I
1
|
T

LTS
I
]
=

calculate @ MPI_Allreduce (MPI_IN_PLACE,
global max maxdelta, ...,
deviation MPI_MAX,...)

maxdelta
<e?

exchange grids @

Serial 2D Jacobi computation

Now, phi and phi_new: 2D arrays of dimension jmaxx imax

/* initialization (example) */
for (j=1; j<jmax-1; j++) {
y = j*dy; // y coordinate
for (i=1; i<imax-1; i++) {
X = i*dx; // x coordinate
phi[jl[i] = sin(M_PI*y)*sin(M_PI*x);
}
}

maxdelta = 1.0; eps = 1.0e-14;

while (maxdelta > eps) {
maxdelta = 0.;

for (j=1; j<jmax-1; j++)
for (i=1; i<imax-1; i++) {
phi_new[j]l[i] = (phi[j-1][i]+phi[j][i-1]+phi[j][i+1]+phil[j+1][i])*0.25;
maxdelta = max(maxdelta, abs(phi_new[j][i]l-phi[jI[i]));
¥

/* pointer swapping */
temp_ptr = phi_new; phi_new = phi; phi = temp_ptr;
}

Parallelizing 2D Jacobi computation

2D domain decomposition

The P processes are organized as a 2D N x M process
topology (assume P = N x M)

The interior points are evenly divided among the processes

Instead of two ghost points per process (in 1D), we need now
a layer of ghost points around each 2D subdomain

Each process has up to 4 neighbors, the messages to be
sent/received will be arrays of values

Some “bookkeeping” is needed to find out which MPI
processes are neighbors in 2D!

Virtual topologies

@ MPI suits very well for implementing domain decomposition
(Section 9.2.5) on distributed-memory parallel computers.

@ However, setting up the “logical” process grid and keeping
track of which ranks have to exchange halo data is nontrivial.

@ MPI contains some functionality to support this recurring task
in the form of virtual topologies.

@ To provide a convenient process naming scheme, which fits the
required communication pattern.

Cartesian topologies

Example: a 2D global Cartesian mesh of size 3000 x 4000. Suppose
we want to use 3 x 4 = 12 MPI processes to divide the global
mesh, with each process holding a piece of 1000 x 1000 submesh.

[o (0,0) (1,0) 2,00 —L{o (3,0)]
\ \ \ \

[1 ©0.1) (1) 1) -d (3,1)]
| | | !

[z 0,2) (1,2) 2,2) — 1 (3,2)]

Figure 9.6: Two-dimen-
sional Cartesian topol-
ogy: 12 processes form
a 3 x4 grid, which 1s pe-
riodic in the second di-
mension but not in the
first. The mapping be-
tween MPI ranks and
Cartesian coordinates 1is
shown.

Cartesian topologies (2)

@ As shown in the preceding figure, each process can either be
identified by its rank or its Cartesian coordinates.

@ Each process has a number of neighbors, which depends on
the grid's dimensionality. (In our example, the number of
dimensions is two, which leads to at most four neighbors per
process.)

@ MPI can help with establishing the mapping between MPI
ranks and Cartesian coordinates in the process grid.

MPI _Cart_create

int MPI_Cart_create(MPI_Comm comm_old, int ndims, const int dims[],
const int periods[], int reorder, MPI_Comm * comm_cart)

@ A new, “Cartesian” communicator comm_cart is generated,
which can be used later to refer to the topology.

@ The periods array specifies which Cartesian directions are
periodic, and the reorder parameter allows, if true, for rank
reordering so that the rank of a process in communicators
comm_old and comm_cart may differ.

o Here, MPI merely keeps track of the topology information.

Functions of MPI _Cart coords & MPI Cart rank

int MPI_Cart_coords(MPI_Comm comm, int rank, int maxdims, int coords[])

int MPI_Cart_rank(MPI_Comm comm, const int coords[], int *rank)

@ These are two “service” functions responsible for the translation
between Cartesian process coordinates and an MPI rank.

e MPI_Cart_coords() calculates the Cartesian coordinates for a
given MPI rank.

@ The reverse mapping, i.e., from Cartesian coordinates to an
MPI rank, is performed by MPI _Cart_rank().

2D N x M domain decomposition

MPI_Comm comm_cart;
int dim[2], period[2], reorder, my_coord[2];

dim[0]=M; period[0]=0; // x direction
dim[1]=N; period[1]=0; // y direction
reorder=1;

MPI_Cart_create (MPI_COMM_WORLD, 2, dim, period, reorder, &comm_cart);
MPI_Comm_rank(comm_cart, &my_rank);
MPI_Cart_coords(comm_cart, my_rank, 2, my_coord)

my_xstart = my_coord[0]*(imax-2)/M;
my_xstop = (my_coord[0]+1)*(imax-2)/M;
my_imax = my_xstop-my_xstart+2;

my_ystart = my_coord[1]*(jmax-2)/N;
my_ystop = (my_coord[1]+1)*(jmax-2)/N;
my_jmax = my_ystop-my_ystart+2;

2D Jacobi: communication in x-direction

MPI_Irecv()/
MPI_Send() . MPI_Wait()

Figure 9.9: Halo communication for the Jacobi solver (illustrated in two dimensions here)
along one of the coordinate directions. Hatched cells are ghost layers, and cells labeled “R”
(**S”) belong to the intermediate receive (send) buffer. The latter is being reused for all other
directions. Note that halos are always provided for the grid that gets read (not written) in the
upcoming sweep. Fixed boundary cells are omitted for clarity.

2D Jacobi: communication in x-direction (2)

@ Need two send-buffers (downward & upward), both of length
my_jmax-2
o Need to pack outgoing messages before send
@ Need also two receive-buffers, of length my_jmax-2
o Need to unpack incoming messages after completed receive

void copySendBufO (double #**array, double *sbufO, int my_imax, int my_jmax)
{
for (int j=1; j<my_jmax-1; j++)
sbuf0[j-1] = array[j][1];
}

void copyRecvBufO (double **array, double *rbufO, int my_imax, int my_jmax)
{
for (int j=1; j<my_jmax-1; j++)
array[j][0] = rbufO[j-1];

2D Jacobi: communication in y-direction

@ No need for send-buffers and receive-buffers

@ The data points that constitute an outgoing y-direction
message already reside contiguously in memory

@ Similarly, an incoming y-direction message can be stored
directly to the target data array

MPI_Cart_ shift

A regular task with domain decomposition is to find out, for each
process, their neighbors (more specifcially, the neighbors’ MPI
ranks) along a certain Cartesian dimension.

int MPI_Cart_shift(MPI_Comm comm, int direction, int disp, int *rank_source,
int *rank_dest)

A ra\ N\

\mm%{\um%{\@m
} [‘ (01)H ‘ (1 1)H ‘ (21)E Figure 9.7: Example for the result of

| MPI_Cart_shift() on a part of

| the Cartesian topology from Figure 9.6.

0,2 ‘ 1,2 ‘ 22 Executed by rank 4 with direction=0

[‘ () () ()h and disp=——1, the function returns
N4 \ / \ / rank_source=7 and rank_dest=1.

Implementing x-direction communication

MPI_Cart_shift(comm_cart, 0, -1, &rankl, &rankO);

if (rank1!=MPI_PROC_NULL)
MPI_Irecv(rbufl,my_jmax-2,MPI_DOUBLE,rankl,0,comm_cart,&req_x1);

if (rankO!==MPI_PROC_NULL)
MPI_Irecv(rbufO,my_jmax-2,MPI_DOUBLE,rank0,0,comm_cart,&req_x0);

if (rankO!=MPI_PROC_NULL) {
copySendBuf0(phi,sbuf0,my_imax,my_jmax) ;
MPI_Send(sbufO,my_jmax-2,MPI_DOUBLE,rank0,0,comm_cart) ;

}

if (rank1!=MPI_PROC_NULL) {
copySendBuf1(phi,sbufl,my_imax,my_jmax) ;
MPI_Send(sbufl,my_jmax-2,MPI_DOUBLE,rankl,0,comm_cart);

}

if (rank1!=MPI_PROC_NULL) {
MPI_Wait (&req_x1,&status_x1);
copyRecvBuf1l(phi,rbufl,my_imax,my_jmax) ;
}
if (rank0!=MPI_PROC_NULL) {
MPI_Wait (&req_x0,&status_x0) ;
copyRecvBuf0(phi,rbuf0,my_imax,my_jmax) ;
}

Implementing y-direction communication

MPI_Cart_shift(comm_cart, 1, -1, &rankl, &rankO);

if (rank1!=MPI_PROC_NULL)
MPI_Irecv(&(phi[my_jmax-1][1]),my_imax-2,MPI_DOUBLE,
rankl,0,comm_cart,&req_y1);

if (rankO!==MPI_PROC_NULL)
MPI_Irecv(&(phi[0][1]),my_imax-2,MPI_DOUBLE,
rank0,0,comm_cart,&req_y0) ;

if (rankO!=MPI_PROC_NULL)
MPI_Send(&(phi[1][1]),my_imax-2,MPI_DOUBLE,rank0,0,comm_cart) ;

if (rank1!=MPI_PROC_NULL)
MPI_Send (& (phi [my_jmax-2] [1]) ,my_imax-2,MPI_DOUBLE,rank1,0,comm_cart);

if (rank1!=MPI_PROC_NULL)
MPI_Wait (&req_y1,&status_y1);

if (rankO!=MPI_PROC_NULL)
MPI_Wait (&req_yO0,&status_y0) ;

How to parallelize 3D Jacobi?

Need to construct 3D Cartesian topology
3D decomposition of all the interior points
Each process has up to 6 neighbors

The entire ghost layer consists of up to 6 sides

Communication in z-direction is the simplest, no need to
pack/unpack messages
e actually communicates a little bit more than strictly necessary

For x and y-directions, need to pack outgoing messages before
send, and unpack incoming messages after completed receive

