
IN3200/IN4200 Summary

May 2022

Course content

Excerpts from the official course description:

In this course, you will learn about the basic concepts of parallel
programming and high performance computing, as well as the most
basic communication commands in MPI and OpenMP.

Students will gain the knowledge they need to effectively use
modern architecture to solve computationally high-tech scientific
issues.

Syllabus

Textbook “Introduction to High Performance Computing for
Scientists and Engineers” (see the semester webpage for the
required chapters & sections)
Lecture slides used to teach these book chapters

Chapter 1: Modern processors

A high-level overview of the architecture of modern
cache-based microprocessors
Introduction of important concepts
Discussion of inherent performance limitations

The “stored-program computer” concept

Instructions (produced by a compiler) and data are stored in
memory
Instructions are read and executed by a control unit
An arithmetic/logic unit “does the work”, which is coded in the
instructions
The speed of memory determines how fast instructions and
data can be fed to the control and arithmetic
units—limitation of performance
I/O facilities enable interaction with users

Performance metrics

The performance at which a CPU’s floating-point (FP) units
generate results for multiply and add operations is measured in
floating-point operations per second (Flops/sec).

Feeding the arithmetic units with operands is a complicated task.
The most important data paths from the programmer’s point of
view are those to and from the caches and main memory. The
bandwidth (performance) of those paths is quantified in
GBytes/sec.

Pipelining

Subdividing complex operations into simple components that can
be executed using different functional units, it is possible to
increase instruction throughput—the number of instructions
executed per clock cycle.

This is the most elementary example of instruction-level parallelism
(ILP).

Optimally pipelined execution may lead to a throughput of one
instruction per cycle per pipeline.

It is the job of the compiler to arrange instructions in such a
way as to make efficient use of all the different pipelines.

Superscalarity

Goal: To produce more than one “result” per cycle.

Multiple instructions are fetched and decoded concurrently
Address and other integer calculations are performed in
multiple integer (add, mult, shift, mask) units
Multiple floating-point pipelines run in parallel
Caches are fast enough to sustain more than one load or store
operation per cycle

Superscalarity is a special form of parallel execution, and a variant
of ILP.

Hardware out-of-order execution and compiler optimization
must work together to fully exploit superscalarity.

SIMD (single-instruction-multiple-data)

Modern cache-based processors have instruction set extensions
(mostly enabled by compiler) for both integer and floating-point
operations. They allow the concurrent execution of arithmetic
operations on “wide” registers, each holding multiple numerical
values.

Memory hierarchy

Data can be stored in a computer system in many different ways.

CPU has a set of registers, which can be accessed without delay.
(Each operand of an instruction must find its way from
memory to a register first.)

In addition, there are several levels of cache, holding copies of
recently used data items.

Main memory of a computer is much slower (than the caches).

Cache

Caches are low-capacity, high-speed memories that are commonly
integrated on the CPU die.

L1 (level 1) data cache
L1 instruction cache
L2 and L3 (data & instruction) unified caches

The purpose of cache—reducing the impact of main memory’s
small bandwidth and high latency.

Cache lines

The content of a cache is organized as cache lines. (A cache line
has space for multiple data items.)

All data transfers between caches and main memory happen on the
cache line level.

If a code has good spatial locality, that is, the probability of
successive accesses to neighboring items is high, the latency
problem can be significantly reduced.

Prefetch

Prefetching supplies the cache with data ahead of the actual
requirements from an application code.

Typically, a hardware pre-fetcher can detect regular access
patterns and try to read ahead the needed data.

To completely hide the cache miss latency, the memory subsystem
must be able to sustain a certain number of outstanding prefetch
operations.

Chapter 2: Basic optimization techniques for serial code

Most important content:

“Common sense” and simple optimization strategies for serial
code

Very simple code changes can sometimes lead to significant
performance boost.

The most important “common sense” principle: avoiding
performance pitfalls!

Some typical “common sense” optimizations

“Do less work”
Avoid expensive operations
Strength reduction
Shrinking the work set
Avoid branching

Chapter 3: Data access optimization

What is the maximumly achievable performance?
Balance analysis and “lightspeed” estimates

Data access optimization techniques

Importance of data access

Applications in science and engineering mostly consist of
loop-based code that moves large amounts of data in and out of
the CPU.

Accessing data in the memory hierarchy (from L1 cache to main
memory) is often the most prominent performance limiter.

Modern microprocessors have a very impressive theoretical peak
performance (in number of FP operations executable per second),
but the memory system is “too slow”.

Understanding the “limitation”

Bandwidth-based performance modeling—to get a rough idea
about the maximum performance for a code.

One can estimate the theoretically achievable performance of
loop-based code, if it is bound by bandwidth limitations.

The concept of “machine balance”

Machine balance, Bm, of a processor is the ratio between the
maximum memory bandwidth and the peak FP performance:

Bm =
memory bandwidth [GWords/sec]
peak FP performance [GFlops/sec]

=
bmax

Pmax

Access latency is assumed to be hidden completely (for example
thanks to prefetch).

“Word” = one DP value (8 bytes)

“Memory bandwidth” could also be substituted by the bandwidth to
caches or even network bandwidth.

The concept of “code balance”

To characterize a loop, we can calculate the code balance Bc:

Bc =
data traffic [Words]

floating-point operations [Flops]

That is, you should count the number of FP operations (easy), and
also count (or estimate) the amount of data transfered over the
performance-limiting data path (can be difficult).

Note: 1
Bc

is called computational intensity.

What is the expected maximum performance of a loop?

When you know the machine balance Bm of a CPU, and you want
to run a loop that has Bc as its code balance.

What will be the maximum achievable performance P (in
Flops/sec)?

P = min

(
Pmax,

bmax

Bc

)
Recall: Pmax denotes the maximum FP performance, bmax denotes
the maximum bandwidth of the performance-limiting data path.

How realistic is bmax?

In reality, even the simplest memory-intensive loops are not able to
achieve the theoretical hardware maximum memory bandwidth
bmax.

The well-known stream micro-benchmarks can be used to measure
the realistically achievable maximum memory bandwidth bS.

Then, the realistically achievable maximum FP performance is
estimated as

P = min

(
Pmax,

bS

Bc

)

Data access optimization techniques

Algorithm class O(N)/O(N): loop fusion
Algorithm class O(N2)/O(N2): loop unroll & jam, loop
blocking
Algorithm class O(N3)/O(N2): loop unroll & jam, loop
blocking

Chapter 4: Parallel computers

An introduction to the fundamental variants of parallel
computers

The shared-memory type
The distributed-memory type

A glimpse at basic design rules and performance characteristics
for communication networks

Shared-memory computers

A shared-memory parallel computer has a number of CPUs (cores)
that work on a shared physical address space.

Two varieties:

Uniform Memory Access (UMA) systems hae a “flat” memory
model: latency and bandwidth are the same for all processors
and all memory locations. (Typically, single multicore
processor chips are “UMA machines”.)
Cache-coherent Nonuniform Memory Access (ccNUMA)
systems have a physically distributed memory that is logically
shared. The aggregated memory appears as one single address
space. Memory access performance depends on the which
CPU (core) accesses which parts of memory (“local”
vs. ”remote” access).

Caches are not (completely) shared

A shared-memory system, no matter UMA or ccNUMA, has
multiple CPU cores.

Although there is a single address space (shared memory), there are
private caches, or partially shared caches, for the different CPU
cores.

Therefore, copies the same cache line may reside in several local
caches.

Cache coherence

Problematic situations when copies of the cache line reside in
several caches:

If the cache line in one of the caches is modified, the other
caches’ contents are outdated (thus invalid).
If different parts of the cache line are modified by different
processors in their local caches → no one has the correct
cache line anymore.

Cache coherence protocols (supported in hardware) guarantee
consistency between cached data and data in the shared memory at
all times.

ccNUMA

A locality domain (LD) is a set of processor cores together
with locally connected memory. This “local” memory can be
accessed by the set of processor cores in the most efficient
way, without resorting to a network of any kind.
Each LD is a UMA building block.
Multiple LDs are linked via a coherent interconnect, which can
mediate direct, cache-coherent memory accesses. (This
mechanism is transparent for the programmer.)
The whole ccNUMA system has a shared address space
(memory), runs a single OS instance.

Penalty for non-local transfers

The locality problem: Non-local memory transfers (between LDs)
are more costly than local transfers (within a LD).

The contention problem: If two processors from different LDs
access memory in the same LD, fighting for memory bandwidth.

Both problems can be “solved” (alleviated) by carefully observing
the data access patterns of an application and restricting data
access of each processor (mostly) to its own LD, through proper
programming.

Typical modern distributed-memory systems

A cluster of shared-memory “compute nodes”, interconnected via a
communication network.

Each node comprises at least one network interface that mediates
the connection to the communication network.

A serial process runs on each CPU (core). Between the nodes,
processes can communicate by means of the network.

The layout and speed of the network has a considerable impact on
application performance.

Basic performance characteristics of networks

Point-to-point communication (from one compute element to
another)
Bisection bandwith (a measure of the “whole” network)

Simple performance of point-to-point communication

Time spent on transferring a message of size N [bytes] from a
“sender” process to a “receiver” process:

T = Tℓ +
N

B

This is a simplified model:

Tℓ: latency
B : maximum network point-to-point bandwith [bytes/sec]

Tℓ and B are considered as constants, but in reality they can both
depend on N, as well as on the locations of the two processes.

Bisection bandwidth

How to quantify the “total” communication capacity of a network?

Bisection bandwidth of a network, Bb, is the sum of the
bandwidths of the minimal number of connections cut when
splitting the system into two equal-sized parts.

Chapter 5: Basics of parallelization

High-performance computing = efficient serial computing +
effective parallel processing → needs parallel programming

But before actually engaging in parallel programming, it is vital to
know some fundamental things in parallelization:

The most common strategies for parallelization
Simple theoretical insights into the factors that can hamper
parallel performance

Why parallelize?

We want to solve the problems faster, but the speed of a
single CPU core has “saturated”.
We want to solve larger problems, but the main memory
available on a single system is not large enough.

So, we need to identify parallelism in a given computational
problem, so that parallel programming can produce a parallel
implementation that can efficiently use many processor cores, on a
shared-memory or distributed-memory system.

Data parallelism (the dominant parallelization concept, with
many variants)
Functional parallelism

Once the parallelism is identified, a parallel algorithm can be
devised accordingly.

Parallel scalability

The ideal goal: If a problem takes time T to be solved by one
worker, we expect the solution time by using N identical workers to
be T/N—a perfect speedup of N.

However, perfect speedup is often not achievable in reality, why?

Factors that limit parallel execution

Reasons for non-perfect speedup:

Not all workers might execute their tasks equally fast, because
the problem was not (or could not be) partitioned into equal
pieces—load imbalance;
There might be shared resources which can only used by one
worker at a time—serialization;
New tasks may arise due to parallelization, such as
communication between workers—overhead.

Scalability metrics

How well can a computational problem be parallelized?

Scalability metrics help to answer the following questions:

How much faster can a given problem be solved with N
workers instead of one?
How much more work can be done with N workers instead of
one?
What impact do the communication requirements have on
performance and scalability?
What fraction of the resources is actually used productively?

Strong scaling

Single-worker (serial) normalized runtime for a fixed-size problem:

T s
f = s + p

where s is the serial, non-parallelizable fraction, p is the perfectly
parallelizable fraction.

Solving the same problem using N workers will require a runtime of

T p
f = s +

p

N

This is called strong scaling, because the total amount of work
stays constant no matter how many workers are used.

Here, the goal of parallelization is minimization of time-to-solution
for a given problem.

Weak scaling

For weak scaling, the goal is to solve an increasingly larger
problem with more workers N.

More specifically, the total amount of work is scaled with some
power of N

s + pNα

which means that single-worker runtime for the variable-sized
problem would have been T s

v = s + pNα.

Using N workers, the parallel runtime is

T p
v = s + pNα−1

Here, we have also assumed that s doesn’t grow with N.

The most typical choice is α = 1, then T s
v = s + pN and

T p
v = s + p.

Simple scalability laws

How to calculate speedup?

application speedup =
serial runtime

parallel runtime

“Amdahl’s Law” (see Chapter 5) gives the upper limit of speedup in
the context of strong scaling (fixed problem size).

Parallel efficiency is defined as

ε =
speedup

N

This will be a value between 0 and 100%.

Chapters 6,7,8: OpenMP programming

The applicable hardware context: shared memory

All processors can directly access all data in a shared memory,
no need for explicit communication between the processors
OpenMP: A parallel programming standard for shared-memory
parallel computers

A set of compiler directives (with additional clauses)
A small number of library functions
A few environment variables

Threads in OpenMP

The central execution entities in an OpenMP program are
threads—lightweight processes.
The OpenMP threads share a common address space and can
mutually access data.
Spawning a thread is much less costly than forking a new
process, because threads share everything except the
instruction pointer, stack pointer and register state.

If wanted, each thread can have a few “private variables” (by
means of the local stack pointer).

OpenMP’s parallel execution model

Data scoping

Any variables that existed before a parallel region still exist inside
the parallel region, and are by default shared between all threads.

Often it will be necessary for the threads to have some private
variables.

Each thread can either declare new local variables inside the
parallel region, these variables are private “by birth”;
Or, each thread can “privatize” some of the shared variables
that already existed before a parallel region (using the
private clause)
Each “privatized” variable has one (uninitialized) instance per
thread;
The private variables’ scope is until the end of the parallel
region.

OpenMP performance pitfalls

OpenMP is prone to the “standard problems” of parallel
programming: serial fraction (Amdahl’s law) and load
imbalance.
Communication (in terms of data transfer) on shared memory
is usually much less costly than on distributed memory, but
ccNUMA can potentially cause performance problem
(discussed in Chapter 8).
There are specific performance problems inherent with
shared-memory programming (see details in Chapter 7).

Penalty for non-local transfers (see Chapter 8)

The locality problem: Non-local memory transfers (between LDs)
are more costly than local transfers (within a LD).

The contention problem: If two processors from different LDs
access memory in the same LD, fighting for memory bandwidth.

Both problems can be “solved” (alleviated) by carefully observing
the data access patterns of an application and restricting data
access of each processor (mostly) to its own LD, through proper
programming.

Data initialization is key.

Chapters 9,10,11: MPI programming

Explicit “message passing” is required on distributed-memory
systems
The same program runs on all processes (Single Program
Multiple Data, or SPMD)—no difference from OpenMP
programming in this regard
The work of each process is implementation in a sequential
language (such as C)

Data exchange (sending and receiving messages) is done via
calls to an appropriate library

All variables in a process are local to this process (nothing is
shared)

An abstract “picture” of parallel execution

#in
lude <stdio.h>

#in
lude <mpi.h>

int main (int nargs,
har** args)

{

int size, my_rank;

MPI_Init (&nargs, &args);

MPI_Comm_size (MPI_COMM_WORLD, &size);

MPI_Comm_rank (MPI_COMM_WORLD, &my_rank);

printf("Hello world, I've rank %d out of %d pro
s.\n",

my_rank,size);

MPI_Finalize ();

return 0;

}

#in
lude <stdio.h>

#in
lude <mpi.h>

int main (int nargs,
har** args)

{

int size, my_rank;

MPI_Init (&nargs, &args);

MPI_Comm_size (MPI_COMM_WORLD, &size);

MPI_Comm_rank (MPI_COMM_WORLD, &my_rank);

printf("Hello world, I've rank %d out of %d pro
s.\n",

my_rank,size);

MPI_Finalize ();

return 0;

}

#in
lude <stdio.h>

#in
lude <mpi.h>

int main (int nargs,
har** args)

{

int size, my_rank;

MPI_Init (&nargs, &args);

MPI_Comm_size (MPI_COMM_WORLD, &size);

MPI_Comm_rank (MPI_COMM_WORLD, &my_rank);

printf("Hello world, I've rank %d out of %d pro
s.\n",

my_rank,size);

MPI_Finalize ();

return 0;

}

Process 0 Process 1 Process P-1· · ·

One scenario for deadlock

Deadlocks may occur if the possible synchronousness of
MPI_Send is not taken into account.

int rank, size, left, right,in_buf[N], out_buf[N];
MPI_Status;

//

MPI_Comm_size (MPI_COMM_WORLD, &size);
MPI_Comm_rank (MPI_COMM_WORLD, &rank);

right = rank==size-1 ? 0 : rank+1;
left = rank==0 ? size-1 : rank-1;

MPI_Send(out_buf,N,MPI_INT,right,0,MPI_COMM_WORLD);
MPI_Recv(in_buf,N,MPI_INT,left,0,MPI_COMM_WORLD,&status);

Note: Deadlock may arise in other scenarios!

How costly is a point-to-point message?

We already learned in Chapter 4, but repeated in Chapter 9:

T = Tℓ +
M

B

M: size of the message [bytes]
Tℓ: latency
B : maximum network point-to-point bandwith [bytes/sec]

Some technical topics (see Chapters 10 & 11)

Danger of implicit serialization
Domain decomposition in the context of MPI programming
Mapping of MPI processes to physical processors
Message aggregation
Asynchronous communication
Hybrid MPI+OpenMP programming

