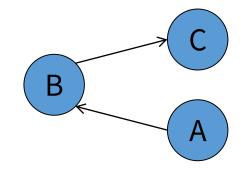


IN3210 – Network Security

Firewalls – Packet Filtering

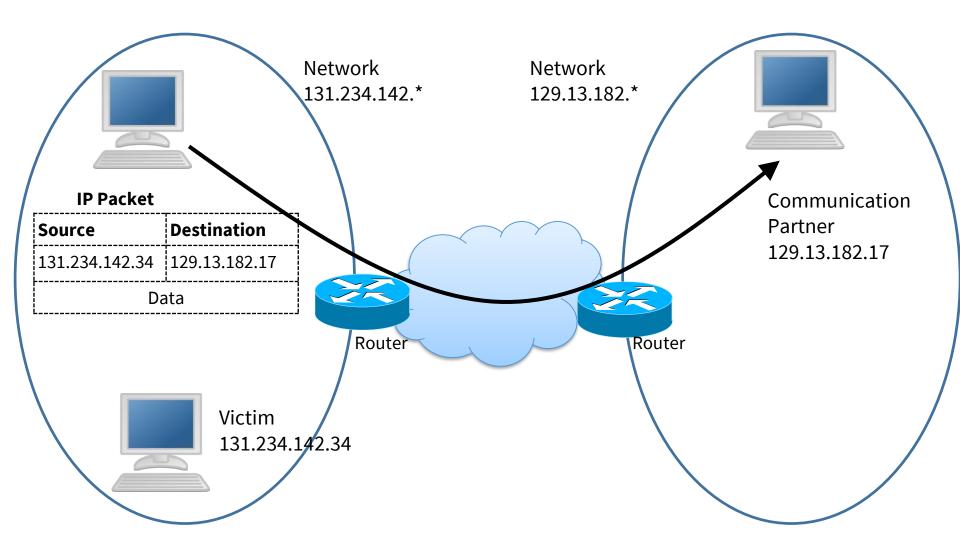
Recapitulation: IPv4


- Task of IP (Network layer in general):
 - Packet forwarding incl. routing
- Properties:
 - Connection-less
 - Adressing: source + destination IP address
 - No QoS
 - No acklowledgement
 - No protection of packet order
 - No protection from packet loss / duplication
- Every single IP packet is transported **independently** through the network

Security Properties of IP

- No mechanisms for:
 - Confidentiality
 - Integrity
 - Non-repudiation
 - Anonymity
- Authenticity?

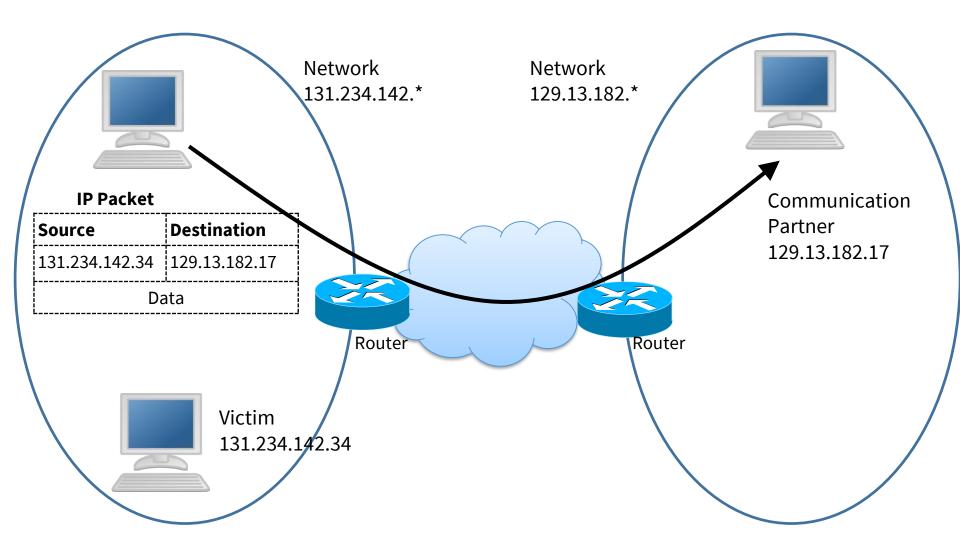
IP and Authenticity


- Problem: IP Address Spoofing
- Principle:
 - Attacker (A) sends packet to B using source IP address of C
- Variants:
 - Denial of Service on C
 - Tricking B (or C):
 - Response not required (e.g. DNS spoofing)
 - Response can be anticipated
 - Response can still be read by A

UiO **Department of Informatics**

University of Oslo

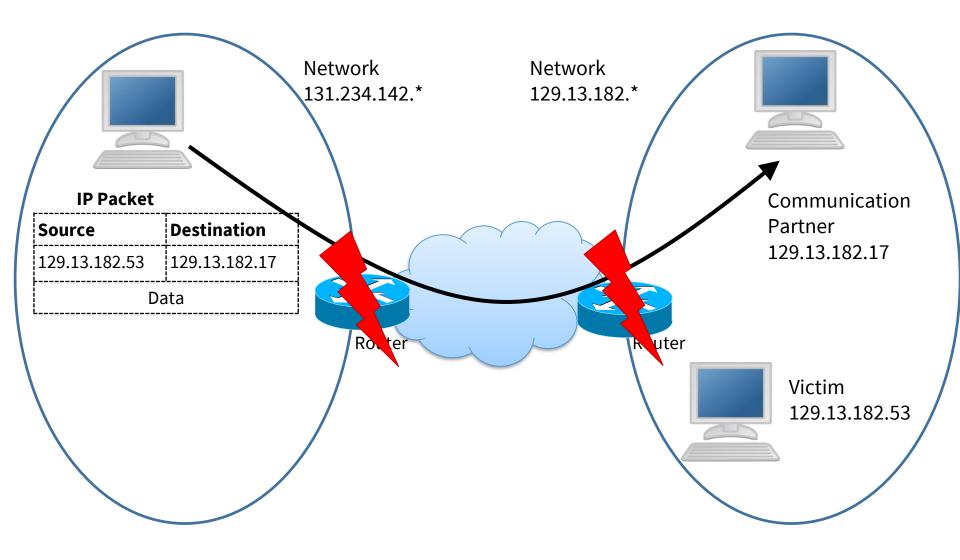
IP Spoofing – Diagram (simplified)


IP Spoofing

- "IP Authentication"
 - Law enforcement authorities use IP Address to identify source of criminal network actions
 - IP address is used for authentication, e.g. if you access a digital library with a university IP address
 - IP address is used for geolocation, e.g. hiding certain videos on YouTube
- How can the attack be fended ...
 - if attacker and victim are in the same network?
 - if attacker and victim are **not** in the same network?

UiO **Department of Informatics**

University of Oslo


IP Spoofing – Diagram (simplified)

UiO **Department of Informatics**

University of Oslo

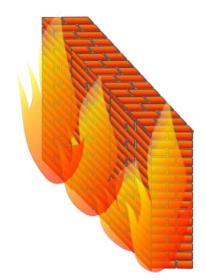
IP Spoofing – Diagram (simplified)

Recapitulation: ICMP

- ICMP: Internet Control Protocol
- Communication of status and error message, e.g.
 - "Fragmentation required"
 - "Destination host unreachable"
- Well-known example:
 - Ping command:
 - Creates ICMP "Echo Request"
 - Destination host responses with ICMP "Echo Reply"

ICMP: Security Issues (partly historical)

- Sending "Destination unreachable"
 → connection interrupted
- Sending "fragmentation required"
 → Increasing network load
- Sending "ping-of-death"
 - Sending large ICMP ping packet
 - Packet is fragmented during transport
 - Reassembling results in message with illegal message size (> 65.535 bytes)
 - → Crash of target system
- Sending "Redirect message"
 - \rightarrow Router forward packets to other location


Network Services

• Example: network services on a desktop computer (Windows)

Proto.	Local Address	Foreign Address	State
ТСР	0.0.0.0:80	0.0.0.0:0	LISTEN
ТСР	0.0.0.0:135	0.0.0.0:0	LISTEN
ТСР	0.0.0.0:445	0.0.0.0:0	LISTEN
ТСР	0.0.0.0:554	0.0.0.0:0	LISTEN
ТСР	0.0.0.0:623	0.0.0.0:0	LISTEN
ТСР	0.0.0.0:2869	0.0.0.0:0	LISTEN
ТСР	0.0.0.0:5357	0.0.0.0:0	LISTEN
ТСР	0.0.0.0:10243	0.0.0.0:0	LISTEN
ТСР	0.0.0.0:16992	0.0.0.0:0	LISTEN
ТСР	0.0.0.0:49152	0.0.0.0:0	LISTEN
ТСР	0.0.0.0:49153	0.0.0.0:0	LISTEN
ТСР	0.0.0.0:49154	0.0.0.0:0	LISTEN
ТСР	0.0.0.0:49155	0.0.0.0:0	LISTEN
ТСР	0.0.0.0:49157	0.0.0.0:0	LISTEN
ТСР	0.0.0.0:56238	0.0.0.0:0	LISTEN

Firewalls: Introduction

- Original:
 - Protection for a building / building part from fire and smoke
- Network security:
 - No complete sealing
 - Controlling network traffic
- Firewall:
 - Located between two networks
 - Investigates all network traffic between networks
 - Checks conformance to "access control policy"
 - Forwarding allowed packets
 - Droping / Rejecting denied packets

Firewalls: Introduction

- Common usage: Separating local (Intranet) and Internet
- Required steps for buiding firewall:
 - Modelling security requirements
 - Knowledge on weaknesses and threats
 - Designing security strategy
- No or limited protection from:
 - New attack patterns
 - Insider attacks

Basic Security Policy Principles

"Default Permit"

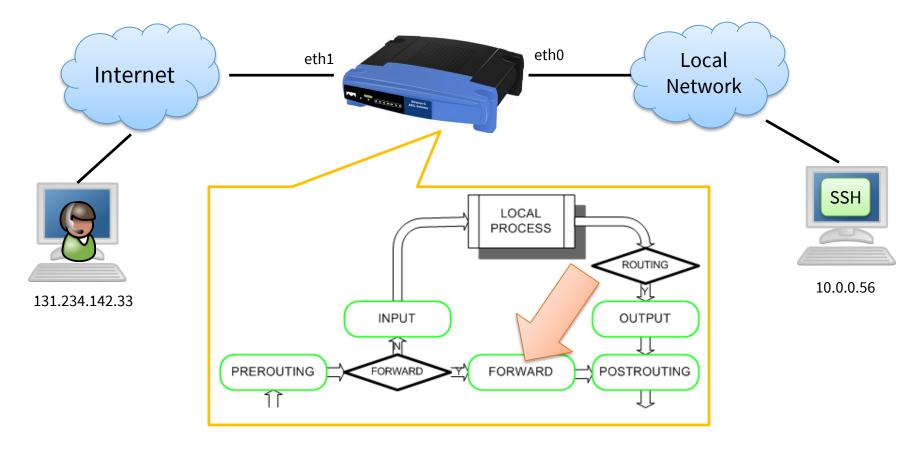
- Default policy rule allows all incoming and outgoing traffic
- Selectively block known attack communication patterns
- Flexible regarding new services
- No protection from new or disregarded attacks
- "Default Deny"
 - Default policy rule denies all traffic
 - Selectively allow required addresses/ports/applications
 - Provides better security
 - New service result in (expensive) policy changes

Firewall inside the ISO/OSI Layer Model

- Checking protocol headers of different layers:
 - Layer 3 + 4 (Packet Filter)
 - Layer 7 (Application Level Gateway)
- Checking protocol content (typically not called firewall anymore)
 - Anti Virus Scanner
 - Checking content with regard to company export policy

Packet Filter

- Remarks
 - Typically implemented inside routers (but not required) Network Packet Filters
 - Layer 2 information mostly not regarded (you can have though MAC Address Filtering when needed, mainly for end-points in an organization)
 - Does not inspect application layer protocol


Application Layer				_	Application Layer
Transport Layer	Pa		acket		Transport Layer
Network Layer	Fi		lter		Network Layer
Data Link Layer				Data Link Layer	
Physical Layer	Network 1		Network 2		Physical Layer

Packet Filter

- Possible Actions
 - Forwarding Packet
 - Dropping Packet
 - Rejecting Packet (and sending ICMP error message)
 - Logging (partly or completely) Packet
- Information used in packet filter rules
 - Source and Destination IP Address
 - Transport protocol
 - Source and Destination port (from transport layer)
 - Specific flags (e.g. ACK bit from TCP)
 - Network interface
 - Action

Example Scenario

• Router uses Linux Netfilter/IPtables

Security Requirements

- Requirements for the sample scenario:
 - Clients from the local network can use all services on the Internet
 - The administrator can access the local network from his home office (131.234.142.33)
 - The SSH service on a server inside the local network (10.0.0.56) can be accessed from the Internet
 - All other connections shall be blocked!

Stateful / Stateless Firewall

- Stateless packet inspection:
 - Decision is solely based on current packet
- Stateful packet inspection (SPI):
 - Current state is stored (e.g. "TCP connection established")
 - Decision based on current packet and current state (Checks a table indicating the connections that have been established – faster)
 - More powerful than stateless inspection
 - However:
 - Storing states consumes resources
 - Denial-of-Service attacks possible
 - Image the amount of packet per seconds transmitted in a contemporary Gigabit network!

Filter Rules: iptables

Sample filter rules:
iptables -P FORWARD -j DROP
iptables -A FORWARD -m state --state NEW

i eth0 -j ACCEPT

iptables -A FORWARD -m state

-state ESTABLISHED, RELATED -j ACCEPT

iptables -A FORWARD -s 131.234.142.33 -j ACCEPT
iptables -A FORWARD -p tcp -d 10.0.056 --dport 22
j ACCEPT

Explanation of iptables rules

iptables -P FORWARD -j DROP

- Definition of Default policy for FORWARD chain
 - DROP
 - All packets are dropped (without informing the sender)
 - Alternatives:
 - REJECT
 - All packets are rejected and the sender is informed (ICMP "Port Unreachable")
 - ACCEPT
 - All packets are accepted (=forwarded)

Explanation of iptables rules

- iptables -A FORWARD -m state --state NEW
 - -i eth0 -j ACCEPT
- Loading extension for stateful inspection:
 - -m state
- Rule ...
 - --state NEW
- ... matches on packets that start a connection (e.g. TCP SYN)
 - --i eth0
- ... matches on packets coming from interface eth0 (assuming this is the LAN interface)
- Packets that match the condition are accepted
 - -j ACCEPT

Explanation of iptables rules

iptables -A FORWARD -m state --state ESTABLISHED,RELATED -j ACCEPT

- Loading extension for stateful inspection:
 - --m state
- Rule ...
 - ---state ESTABLISHED, RELATED
- ... matches on packets:
 - that are part of an established connection
 - that are related to a connection (e.g. ICMP messsages)
- Packets that match the condition are accepted

— —j ACCEPT

Explanation of iptables rules

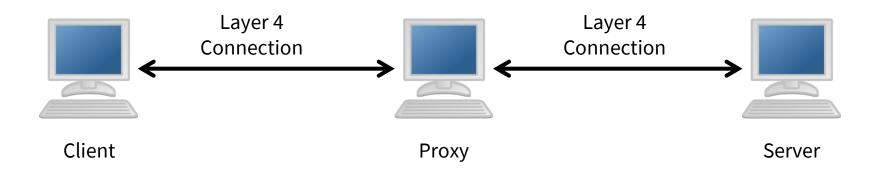
iptables -A FORWARD -s 131.234.142.33 -j ACCEPT iptables -A FORWARD -p tcp -d 10.0.0.56 --dport 22 j ACCEPT

- All packets from source IP Address 131.234.142.33 are accepted
- All packets using transport protocol and destination address 10.0.0.56 and destination port 22 are accepted

Filtering Multimedia Data

- (Example) problems with multimedia protocols :
 - T.120 (ITU conference protocol): Chat, white board, application sharing, data transfer:
 - Different service with different criticality
 - However: same TCP port
 - H.323, SIP (used for VoiP telefony, video conferencing):
 - Session initiation protocol defines ports for communication protocol
 → unknown to the packet filter
 - Skype:
 - Designed to circumvent firewalls

Packet Filter: Advantages


- Simple and transparent to the end systems (no changes to applications required)
- Cheap: uses standard technologies
- Simple protection of whole subnet using single router
- Efficient: part of the standard routing system

Packet Filter: Limitations

- Filter decision based on spoofable information (no integrity or authenticity guarantees)
- Coarse grained control: based on services or end-systems, not on users
- Stateless filters are not able to handle dynamic communication patterns (e.g. multimedia protocol, callbacks)
- Stateful filter:
 - lower performance
 - vulnerable to DoS attacks
 - filter has only limited view on the actual protocol state
- Expensive building and management of filter rules

Proxy Firewall

- Client communicates with the proxy as a delegate of the server
- Server communicates with the proxy as a delegate of the client

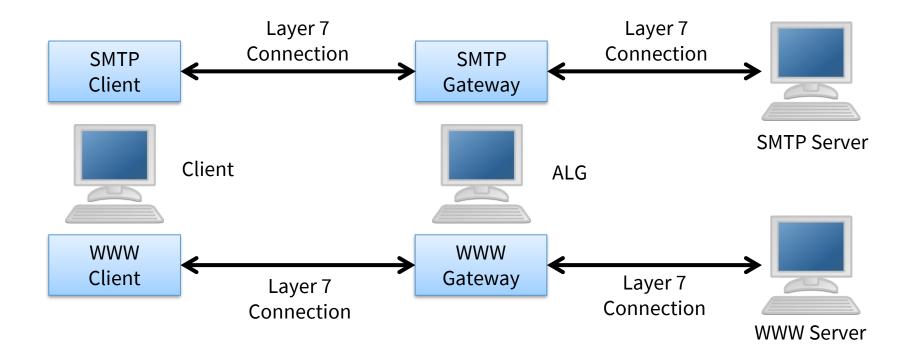
- Proxy is Server to the client and client to the server
- Alternative term: circuit-level gateway

Properties of Proxy Firewall

- Can authenticate user (not only end system)
- Checks authorization
- Creates proxy connection to server
- Performs further operation based on authentication (e.g. logging)

Properties of Proxy Firewall

- Advantages
 - No changes to application protocol
 - Better control compared to packet filter (including authentication)


Disadvantages

- No analysis of application protocol
 - Services are either allowed or denied
 - No application data dependent policies possible
- Typically modification of client software required

Application Level Gateway (ALG)

- Operates on application level
- Comparable to proxy (but on layer 7)
- Supports and analyses application protocols
- Application specific filtering possible, e.g.
 - Detecting malicious HTTP header
 - Analyses active content on Web pages
- ALG handles only supported applications
 - Individual proxies for each application
 - Combination with packet filter recommended

Application Level Gateway

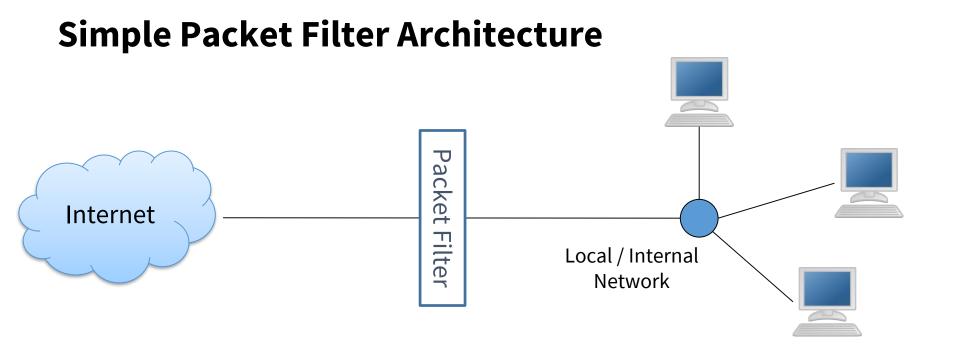
Application Level Gateway: Security

- Security Issues:
 - Application layer protocols:
 - are more complex
 - more vulnerable to attacks
 - Application Level Gateway:
 - has to implement large portions of the application protocol
 - significantly more complex than layer 4 proxy firewall
 - Is typically implemented on standard platform (e.g. Linux system)
- Required security means:
 - Reduce services on ALG to minimum
 - Keep OS and gateway up-to-date

Application Level Gateway: Advantages

- User level authentication
 → Fine grained access control
 → User specific accounting
- Detecting attack patterns on application level
 → Intrusion Detection
- Service level filtering and controlling

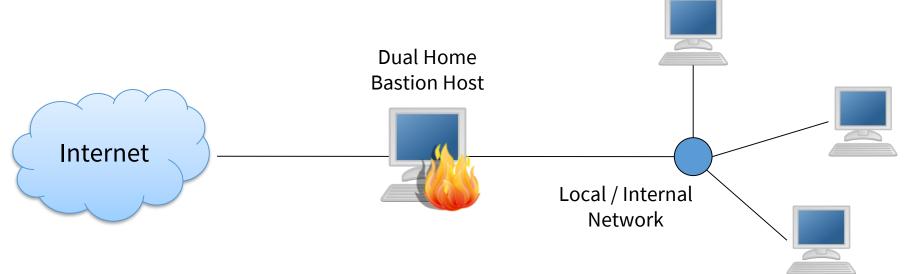
Application Level Gateway: Limitations

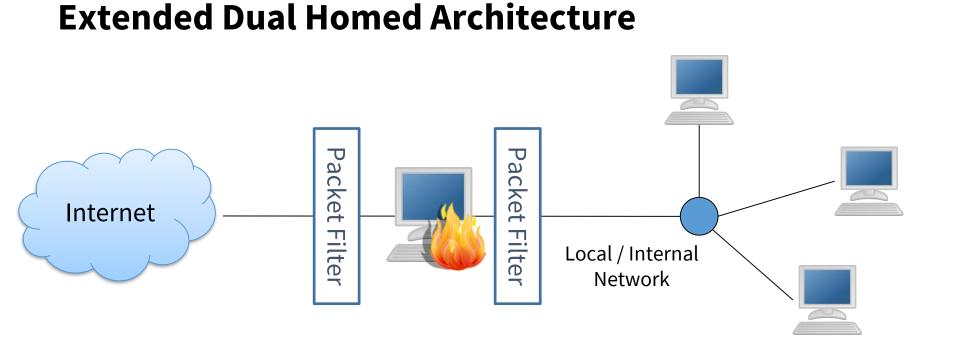

- High resource requirements
 → Potential for Denial-of-Service
- Hiding / obfuscating malicious content still possible (e.g. compression, encryption)
- Only available for limited applications
- Separating "critical" and "non-critical" application parts still hard to realize

Configuration of Network Perimeter Security

- Traditionally configured with terminal/cli access (advanced)
- Home routers and host firewalls provide simplified GUI
- Vendor Firewalls come with GUI that allows flexible configuration
- When integrating multiple technologies where firewalls need to be configured in real-time the use of APIs is important
 - APIs that connect multiple technologies (interfaces between different technologies) allow for rapid configuration of firewalls.
 - Needs expertise in software development and security enginnering

UiO **Department of Informatics**

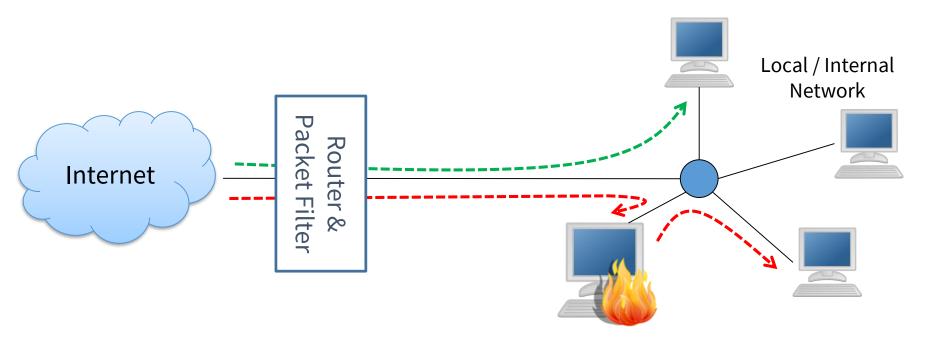

University of Oslo


• Realisation:

- PC with 2 network interfaces
- Integrated into router
- Filtering of "illegal" packets

Simple Dual Homed Architecture

- Bastion Host, here: Proxy Firewall or ALG
- Realisation
 - PC with 2 network interfaces
- Problems:
 - Single point of failure
 - Processing bottlenet \rightarrow performance problems

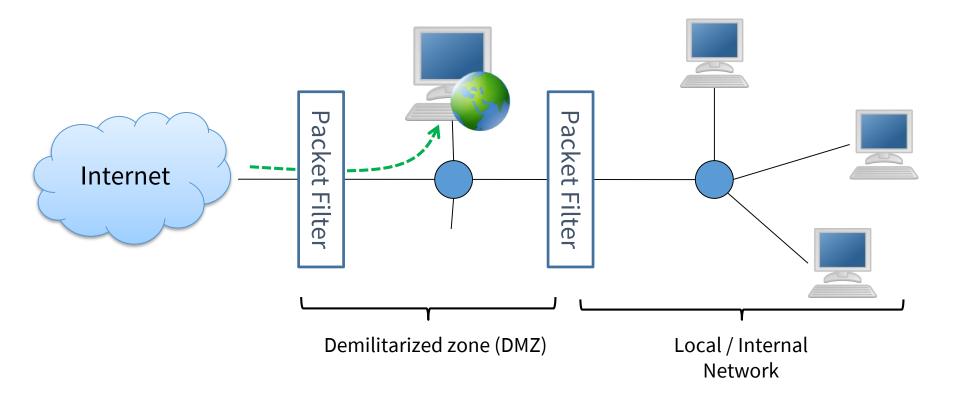


- Additional packet filters for protecting the Bastion Host and the internal network
- Same problems as before

UiO Department of Informatics

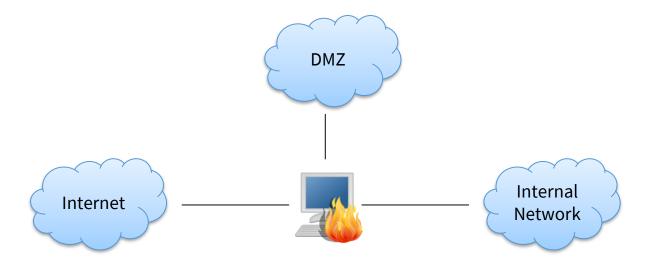
University of Oslo

Screened Host Architecture

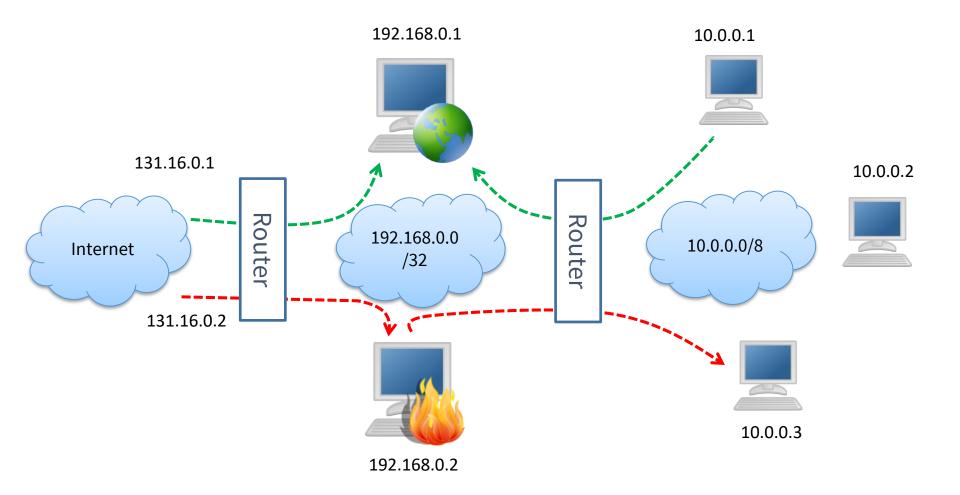


- Bastion Host located inside the internal network
- Critical data is forward by the router to the Bastion Host
- Uncritical data is forward directly to the target host

UiO Department of Informatics


University of Oslo

Screened Subnet Architecture



Screened Subnet Architecture

- Demilitarized Zone between internal and external network
- Bastion Host inside the DMZ
- 2 Packet Filter between the 3 network
- Public accessible servers (e.g. WWW) inside the DMZ
- Filtering functionality can be implemented on single device

DMZ: Example IP Configuration

Screened Subnet Architecture: Advantages

- Higher Security for internal network compared to screened host architecture
- High flexibility for service without ALG filtering (same as screened host architecture)
- Hiding internal network structure
- Clear seperation of internal external services
- Recommended by the German Federal Information Security Agency BSI

Firewall – Summary

- Firewall increases security of computer networks:
 - Centralizing security mechanisms / security policies
 - Fine grained control mechanisms of different layers
- Firewalls are no "magic bullet"
- Limitations / Restrictions:
 - Configuration requires expert knowledge
 - New / modified service require configuration changes
 - Application data can only partly be controlled

Firewall – Summary

- Limitations / Restrictions (continued):
 - No protection inside the individual network segments
 - No protection from "leaking network link", e.g. laptop with 3G card
 - No control over data inside VPN tunnels (e.g. IPSec)
 - Security and configuration issues with multimedia protocols
- Summary:
 - Firewalls are essential in all networks (enterprise and home)
 - DMZ paradigm state-of-the-art, but insufficient for dynamic, mobile or open systems (now and in the future)
 - Additional security service required inside applications
 / on end systems