
SIFT
in CUDA
In the Horizon 2020 projects POPART and LADIO
project page: http://www.popartproject.eu http://ladioproject.eu
PopSift repository: https://github.com/alicevision/popsift

http://www.popartproject.eu
http://ladioproject.eu/
https://github.com/poparteu/popsift

S - Scale
I - Invariant
F - Feature
T - Transform

2

Matching SIFT features
▹Given a feature in I1, how to find the best match in I2?

1. Define distance function that compares two descriptors
2. Test all the features in I2, find the one with min distance

Object Recognition

Object Categorization

Location recognition

Image retrieval

…
> 5000
images

change in viewing angle

Matches

22 correct matches

3D reconstruction#

Camera tracking10

SIFT matching illustration

11

https://www.youtube.com/watch?v=RU6jN-U0TwM

Overview of steps

Load, convert
and upscale

Gaussian blur

Downscale

12

Overview of steps
Extremum localization13

Difference of Gaussian

Extremum refinement

Overview of steps

Gradiants

Dominant orientation computation

36 bins:
10 rotational
degrees each

Gradiant orientation

Histogram smoothing
and estimation of
peak’s rotation

Primary and
secondary maxima

Keypoint
(may be float)

14

Overview of steps
Feature extraction

16 regions around a
keypoint (for each
orientation)

8-bin orientation
histogram in each
region

128-float
feature descriptor

15

CUDA tuning

Load, convert
and upscale

Gaussian blur

Downscale

Streams for parallel kernels

Pinned memory for DMA transfer

CUDA texture engine
● uchar-float conversion
● bilinear interpolation
● scale-independent addressing
● automatic padding

CUDA “constant” for Gaussian filter parameters,
edge threshold, contrast threshold ...

Reduce multiplications by using filter symmetry

16

Released under MPLv2

Feature vector output is compatible with
VLFeat (drop-in replacement)

Arbitrary input scaling to trade speed for
accuracy

Single-stream real-time extraction for
1920x1080 with upscaling on the GTX 980 Ti

Output value scaling by powers of 2

Very similar in terms of extracted and
matched features to VLFeat (and better than
OpenCV)

Create pyramid
Input image: struct ImageBase in
https://github.com/alicevision/popsift/blob/develop/src/popsift/s_imag
e.h line 110

Pyramid construction in Pyramid::build_pyramid
https://github.com/alicevision/popsift/blob/develop/src/popsift/s_pyra
mid_build.cu line 460
case conf.getGaussMode() == Config::VLFeat_Relative
line 517

for the first image in the first octave, this call
Pyramid::horiz_from_input_image
which is in line 97

#

https://github.com/alicevision/popsift/blob/develop/src/popsift/s_image.h
https://github.com/alicevision/popsift/blob/develop/src/popsift/s_pyramid_build.cu

Create pyramid
calls Pyramid::horiz_from_input_image
starts the kernel

gauss::normalizedSource::horiz
with blocks of 128 threads in one dimensions, grid configuration determines
that we use one for every pixel in the image!
https://github.com/alicevision/popsift/blob/develop/src/popsift/s_pyra
mid_build_ra.cu in line 18

for the all other images, Pyramid::build_pyramid calls
Pyramid::horiz_from_prev_level
which is in line 250

#

https://github.com/alicevision/popsift/blob/develop/src/popsift/s_pyramid_build_ra.cu

Create pyramid
calls Pyramid::horiz_from_prev_level
starts the kernel

gauss::absoluteSourceInterpolated::horiz
with blocks of 128 threads in one dimensions, grid configuration determines
that we use one for every pixel in the image!
https://github.com/alicevision/popsift/blob/develop/src/popsift/s_pyra
mid_build_ai.cu in line 18

#

https://github.com/alicevision/popsift/blob/develop/src/popsift/s_pyramid_build_ai.cu

CUDA tuning

Difference of Gaussian
Keypoint identification

Straight-forward

20

Extremum refinement

Bitfield operations to avoid branching

Keep iterative sub-pixelic refinement to identify
3D extremum position

Surface and 2DLayeredArray to move between
levels

Closed form solution for 3x3 linear system

CUDA __ballot, __shfl and atomicAdd
mechanisms for list append operation

Support VLFeat, OpenCV and PopSift semantics
for extremum acceptance

Find extrema
https://github.com/alicevision/popsift/blob/develop/src/popsift/s_extre
ma.cu

find_extrema_in_dog: line 512
find_extrema_in_dog_sub: line 302
is_extremum: line 58

#

https://github.com/alicevision/popsift/blob/develop/src/popsift/s_extrema.cu

CUDA tuning

Gradiants

Dominant orientation computation

36 bins:
10 rotational
degrees each

Gradiant orientation

Histogram smoothing
and estimation of
peak’s rotation

Primary and
secondary maxima

Keypoint

Gradiants not pre-computed due to
keypoint sparsity

CUDA __shared__ memory for histogram

Support VLFeat, OpenCV and PopSift
histogram smoothing methods

Warp shuffle operations to implement no-
overhead parallel bitonic sort, finding all
accepted orientations in parallel

optional CUDA Dynamic Parallelism
for cards with Compute Capability >= 3.5

22

Find orientation
https://github.com/alicevision/popsift/blob/develop/src/popsift/s_orien
tation.cu

Pyramid::orientation: line 248
ori_par: line 61

#

https://github.com/alicevision/popsift/blob/develop/src/popsift/s_orientation.cu

CUDA tuning
Feature extraction

16 regions around a
keypoint (for each
orientation)

8-bin orientation
histogram in each
region

128-float
feature descriptor

No gradient pre-computation due to feature
sparsity

Assign thread block to each group of 8
values in the feature vector

Support rootSift and L2 normalization

Scale by powers of 2 before exporting

24

Obviously, speed depends on the scene

Correlated with number of extrema

(ms) (ms)
Upscaling: yes no
765 x 512 12.5 5.9
850 x 680 16.9 5.9
1000 x 700 18.0 7.7
1920 x 1080 24.8 9.4

Compute descriptors
https://github.com/alicevision/popsift/blob/develop/src/popsift/s_desc
_igrid.cu

ext_desc_igrid: line 61

#

https://github.com/alicevision/popsift/blob/develop/src/popsift/s_desc_igrid.cu

Evaluation26

Ground truth
homography

Evaluation27

Evaluation28

Evaluation29

