4 Ny
y o /) ‘ ' 1} y LR
3 y 4 2 e)
J P F
SRV ({ §) {
= J N ik E ‘
» ¥ s / 9 k 4
> /. - / 4 e / & i /' '

UiO ¢ Department of Informatics
University of Oslo

Introduction to ARMv8 Neon SIMD on the Tegra Xavier

Kristoffer Robin Stokke, PhD
Huddly

UiO ¢ Department of Informatics
University of Oslo

Goals of Lecture

« To give you something concrete to start on

* Intro to NEON SIMD using ARM intrinsics

« Learn to step through and inspect NEON code using gdb

« Learn to find the proper intrinsics for a task and successfully
apply them

* Non-mandatory assignment for Friday discussion!

31.01.2022

UiO ¢ Department of Informatics
University of Oslo

Finding Information on Intrinsics

» Accessing compiler documentation for gcc 7.5
— https://gcc.gnu.org/onlinedocs/

« Will find you
— ARM C Lanquage Extensions

ARM® NEON™ Intrinsics
Reference

Document number: IHI 0073A
Date of Issue: 09/05/2014
Abstract

This draft document is a reference for the Advanced SIMD Architecture Extension (NEON) Intrinsics for ARMv7

* Nice, human-readable NEON overview
— NEON+VFP Programming

31.01.2022

https://gcc.gnu.org/onlinedocs/
https://gcc.gnu.org/onlinedocs/gcc-7.5.0/gcc/ARM-C-Language-Extensions-_0028ACLE_0029.html
https://developer.arm.com/documentation/dui0204/j/neon-and-vfp-programming/

UiO ¢ Department of Informatics
University of Oslo

Developing and Learning Neon in a Nutshell

Find relevant NEON instruction group

B -

TASK -Vector addition

For(i=0;i<7;i++)
Resultli] =a +i N)))
Lookup instruction mnemonic

Implement

31.01.2022

UiO ¢ Department of Informatics

University of Oslo

Tegra Xavier CPU Cache Hierarchy

Faster this way

Core Core
128kB $I 128kB $I
64 kB $D 64 kB $D
_________ ‘ ;________________________ —_—— e . ——— —— o ———— —— o ——

2 MB Lg Cache

4 MB L3 Cache

16 GB RAM

UiO ¢ Department of Informatics
University of Oslo

Registers: The Fastest Storage, but Size Limited

31 x 64-bit general purpose registers

ARMv3

32 x 128-bit vector registers = 512 B of storage

VO V8 V16 V24

UiO ¢ Department of Informatics

University of Oslo
The Vector Register
) 16 bytes / 128 bits -
18 lanes, 2B per lane
* uintBa%d t
Lane 0 - Lane 14
Lane 1 * intm—t Lane 15

floatB2ax2 t

UiO ¢ Department of Informatics
University of Oslo

The Vector Register

* ltis possible to use half of the vector register

* ulnt8x16_t -> uint8x8_t
16 bytes / 128 bits uint32x4_t -> uint32x2_t

e float32x4 t -> float32x2_t
_ e float64x2_t -> float6dxl t

"8 bytes / 64 bits

v

<
<

* The 64-bit vector still occupies a full 128-bit vector.
* Intrinsics exist to «convert» between them, e.g. vcombine

31.01.2022

UiO ¢ Department of Informatics
University of Oslo

The Vector Register

* Notice that the minimum supported floating point type
occupies 4 bytes / 32 bits.

* You must convert shorter (8, 16 bit) signed and unsigned
integer primitives to interact with floating point data types.

31.01.2022

UiO ¢ Department of Informatics
University of Oslo

Aggregate Vector Types

« Some NEON instructions can operate on more than one
vector register at a time.

 This is usually with the constraint that the list of supplied
vector registers are consecutive.

e {vO,vl,v2,v3} are physically consecutive.
{vo,v2,v1,v3} are not physically consecutive.

31.01.2022 11

UiO ¢ Department of Informatics
University of Oslo

Aggregate Vector Types

« The compiler fixes this for you as long as you use the
aggregate vector type.

e E.g. uint8x16x4 t

_ val L PP

Four consecutive
; Vi RN

vector registers of
e o il IT T T T T T T T T TT1]
vol | | [0 0P P b]

uint8x16x4_t

31.01.2022

UiO ¢ Department of Informatics
University of Oslo

Aggregate Vector Types

« Aggregate vector types are accessed like a structure..
— and is kind of weird in that sense..

* Check out arm_neon.h if you want to see how these are
accessed.
— This can also be a nice file to search for intrinsics of interest

31.01.2022

UiO ¢ Department of Informatics
University of Oslo

Initialising Vectors

31.01.2022

UiO ¢ Department of Informatics
University of Oslo

Setting a Single Lane

42
Init
Set lane 10 to 42 e ,nlﬁx
A 4
[vldlg lane u8(..) }—
. \ 4
u1nt8x16_t|||||||||||{4}||||
Lane 10

Init example (init.c)

31.01.2022

UiO ¢ Department of Informatics
University of Oslo

Initialising All Lanes of a Vector With a Constant

42
Init
Variable

[? J

|
T T A

| | | | | |42|42|42|42|42|42|42|42|42|42|42|

uint8x16 t

31.01.2022 16

UiO ¢ Department of Informatics
University of Oslo

Initialising All Lanes of a Vector from RAM

uint8 t ram_data[16] => |2 |2 |2 [a |4 |5 [o [7 [& [o [0 [n]12]s|u]s]

[vldlq u8(*ptr) 1

Y V V VvV VvV VvV VvV VY VvV VvV VvV VvV VvV VYV VvV VY
u1nt8x16t=>|42|21|2|3|4|5|6|7|3|9|1o|11|12|13|14|15|

Copy example (copy.c)

31.01.2022 17

UiO ¢ Department of Informatics
University of Oslo

Vector Management

Reverse operations exist, of course.

E.g. storing a lane to RAM instead of loading it from RAM.
vstlq lane u8(..) vldlq_lane u8(..)

E.g. storing a vector to RAM instead of loading it from RAM.
vstlq u8(..) vldlq u8(..)

It is also possible to store/load more than one vector to/from
RAM in a single instruction!

31.01.2022 18

UiO ¢ Department of Informatics
University of Oslo

Arithmetic

31.01.2022

UiO ¢ Department of Informatics
University of Oslo

Addition, Subtraction, Multiplication

uint8x16_t
...

N N N N D D N ey

uint8x16_t

A 4

vaddq_u8(..)
vsubqg u8(..)
vmulg u8(..)

.t rrr P e
uint8x16_t

31.01.2022

20

UiO ¢ Department of Informatics
University of Oslo

Addition, Subtraction, Multiplication

* |Input and output data types must be the same

 |nvalid
— vaddqg_u8(uint8x16_t, float32x4 t)

vaddqg u8(..)
vsubg u8(..)

* Perfectly OK vmulg_u8(..)

|

— vaddqg_u8(uint8x16_t, uint8x16 _t)

Add/sub/mult example (sub.c)

31.01.2022

21

UiO ¢ Department of Informatics
University of Oslo

Division
* There is nothing like vdivqg u8(..) (!)

e vrecpe can find the reciprocal of each lane in a vector
— Only supports floating point data types.

* rec(x) = % such that x * rec(x) =1

« Dividing by a number is the same as multiplying with the

reciprocal of that number.

31.01.2022

22

UiO ¢ Department of Informatics
University of Oslo

Other Approaches to Division

* |t can be wasteful to convert to and from float32.

« Other approaches are bitshifts

. a
—a>>nis equal to —
n+1

—a<<nisequaltotoax*x(n+1)

 This will effectively floor your result, but there are ways
around this.

31.01.2022

23

UiO ¢ Department of Informatics
University of Oslo

Other Approaches to Division

« Using the previous method one can multiply with a fraction
T%, where m is always a multiple of two

a*xn

« E.g. result = => (a xn) »n
« Use normal multiplier intrinsic, then bitshift the result

 Probably have to convert a to a datatype with more bits!

31.01.2022

24

UiO ¢ Department of Informatics
University of Oslo

Arithmetic — Finalising Notes

« Of course many more instructions than these very basic
ones..
— Accumulative, max/min, absolute value, square root.. and more.

« Be careful to avoid overflows and underflows when working
with any datatype

31.01.2022

25

UiO ¢ Department of Informatics
University of Oslo

Conversion

31.01.2022

26

UiO ¢ Department of Informatics
University of Oslo

Lookup Tables (LUT)

» This function is useful to rearrange vectors.

« Some “index” points into a LUT offset that contains precomputed values

* Output stored in a vector

A 4

N WO

3 5

Index «vector» LUT Output «vector»
(four-element)

31.01.2022

UiO ¢ Department of Informatics

Universitv of Oslo
The index vector ro Imagine a vector ofw _and the selected
nixel data with

selects elements : ‘= are stored in
from the LV 5t of bounds index behaviours: \/ector.

vtbl
Any element out of rangader LUT returns O

vitbx
Any element out of range for LUT leaves the

destination unchanged

v < N o oo —F
0 S 4 — 4

Index lane 3 selects P Out of bounds
element 255 of LUT, indexes are set
Index Vg butitis outof bounds HUT | t00 tput Vector

uint8x8T - A8Xx8 =T int8x8 t

UiO ¢ Department of Informatics
University of Oslo

The LUT can be quite large.

 The LUT can be one, two or four vectors using the
aggregate vector type

e Uint8x16_t 8 indexes
e Uuint8x16x2_t 16 indexes

e Uint8x16x4 t 32 indexes

31.01.2022 29

UiO ¢ Department of Informatics
University of Oslo

Conversion example (cnv_u8 u16.c)

31.01.2022

30

UiO ¢ Department of Informatics
University of Oslo

Ending Notes on Conversions

« Separate instructions exist to convert between
unsigned/signed integer and floating point formats.

31.01.2022

31

UiO ¢ Department of Informatics
University of Oslo

2x2 matrix, stride = 2

Destination
b C Vector

C b LUT
(matrix)
stride
Index
Vector

UiO ¢ Department of Informatics
University of Oslo

2x2 matrix with ZIP function

C b

stride

c = zip(a, b)

UiO ¢ Department of Informatics
University of Oslo

Intrinsics, Inline Assembly or Assembly?

. Inline
[Intrinsics } Assembly { Assembly }
text
int32x8 vector; int32x8 vector; .arm
.global double_elements
/I Do stuff on vector /I Do stuff on vector double_elements:
vadd.i32 v0,v0,v0
Vector = vaddq_s32(vector, vector) _asm__(bx Ir
‘vadd [v].s4, [v].s4, [v].s4” .end
: . [vector] “q” (vector) :)
Goes inside C functions Goes inside C functions Goes in .s file

Level of Difficulty

31.01.2022

UiO ¢ Department of Informatics
University of Oslo

« Do you want to see some inline assembly just because?

e :D

31.01.2022

35

UiO ¢ Department of Informatics
University of Oslo

Non-Mandatory Assignment

« Simple executable with some simple NEON snippets
— Init vector to constant
— Copy memory
— Add, subtract, multiply
— Convert between uint8 and uint16
— Transpose 2x2 matrix

« We will go through how this works on friday.

31.01.2022

36

UiO ¢ Department of Informatics
University of Oslo

« The tasks are hopefully relatively small, but some may take
more effort (part 5 & maybe part 4)

« The purpose is just to get you started with NEON.

* |t is more important that you have a look at things, step
through the code with GDB, and look at the list of intrinsics
etc than getting it right.

« Maybe you can team up and collaborate on your progress?

31.01.2022

UiO ¢ Department of Informatics
University of Oslo

Part 1 — Initialisation (init.c)

* Vector initialisation calls a lane insertion 16 times just to
initialise the same value to all lanes of a vector

* Find and use a single intrinsic to initialise all lanes of a
vector.

31.01.2022

38

UiO ¢ Department of Informatics
University of Oslo

Part 2 — Memory Copy (copy.c)
* Use the aggregate vector type uint8x16x4_t to copy

memory,instead of four individual calls to load a single
uint8x16 t

31.01.2022

39

UiO ¢ Department of Informatics
University of Oslo

Part 3 — Subtraction (sub.c)

| have deliberately broken the subtraction example.

« Step through the code with GDB, inspect the vector
registers, and see if you can find the root cause!

« Can you propose any alternative that will help solve the
problem for the add, sub and mult examples?

31.01.2022

UiO ¢ Department of Informatics
University of Oslo

Part 4 — Conversion (cnv_u16_u8.c)

* (Harder assignment)

« We have provided sample code to convert from uint8 to
uint16 using LUT table indexing

« Attempt the reverse — go from a vector of eight uint16 to
eight uint8 using LUT table indexing

31.01.2022

UiO ¢ Department of Informatics
University of Oslo

Part 5 — Matrix Transpose (transpose.c)

* Transpose the 2x2 matrix of uint32_t with the zip intrinsic.

31.01.2022

42

UiO ¢ Department of Informatics
University of Oslo

Good Luck!

dYou'll be fine.

APl be happy if you have a go at the assignment but don't
spend too much time on it. If you're stuck and really want to
finish, please come to me and | will try to help you.

APl try to hang out with you on slack or something (?) if you
want to discuss something or otherwise ©

