
Introduction to ARMv8 Neon SIMD on the Tegra Xavier

Kristoffer Robin Stokke, PhD
Huddly

Goals of Lecture
• To give you something concrete to start on

• Intro to NEON SIMD using ARM intrinsics

• Learn to step through and inspect NEON code using gdb

• Learn to find the proper intrinsics for a task and successfully
apply them

• Non-mandatory assignment for Friday discussion!
31.01.2022 3

Finding Information on Intrinsics

• Accessing compiler documentation for gcc 7.5
– https://gcc.gnu.org/onlinedocs/

• Will find you
– ARM C Language Extensions

• Nice, human-readable NEON overview
– NEON+VFP Programming

31.01.2022 4

https://gcc.gnu.org/onlinedocs/
https://gcc.gnu.org/onlinedocs/gcc-7.5.0/gcc/ARM-C-Language-Extensions-_0028ACLE_0029.html
https://developer.arm.com/documentation/dui0204/j/neon-and-vfp-programming/

Developing and Learning Neon in a Nutshell

31.01.2022 5

TASK
For(i = 0; i < 7; i++)

Result[i] = a + i

Find relevant NEON instruction group

-Vector addition

Lookup instruction mnemonic

-VADD

Implement

Debug Find intrinsic

-vaddq_u8

Tegra Xavier CPU Cache Hierarchy

31.01.2022 6

Core Core
128kB $I
64 kB $D

128kB $I
64 kB $D

2 MB L2 Cache

4 MB L3 Cache

16 GB RAMFa
st

er
 th

is
w

ay

Registers: The Fastest Storage, but Size Limited

X0 X8 x16 x24

31 x 64-bit general purpose registers

V0 V8 V16 V24

32 x 128-bit vector registers = 512 B of storage

ARMv8

The Vector Register

31.01.2022 8

16 bytes / 128 bits

Lane 0
Lane 1

Lane 14
Lane 15

• uint8x16_t
• int8x16_t

16 lanes, 1B per lane8 lanes, 2B per lane

• uint16x8_t
• int16x8_t

4 lanes, 4B per lane

• uint32x4_t
• int32x4_t
• float32x4_t

2 lanes, 2B per lane

• uint64x2_t
• int64x2_t
• float64x2_t

The Vector Register

• It is possible to use half of the vector register

• The 64-bit vector still occupies a full 128-bit vector.
• Intrinsics exist to «convert» between them, e.g. vcombine

31.01.2022 9

• uint8x16_t -> uint8x8_t
• uint32x4_t -> uint32x2_t
• float32x4_t -> float32x2_t
• float64x2_t -> float64x1_t

8 bytes / 64 bits

16 bytes / 128 bits

The Vector Register

• Notice that the minimum supported floating point type
occupies 4 bytes / 32 bits.

• You must convert shorter (8, 16 bit) signed and unsigned
integer primitives to interact with floating point data types.

31.01.2022 10

Aggregate Vector Types

• Some NEON instructions can operate on more than one
vector register at a time.

• This is usually with the constraint that the list of supplied
vector registers are consecutive.

• {v0,v1,v2,v3} are physically consecutive.
{v0,v2,v1,v3} are not physically consecutive.

31.01.2022 11

Aggregate Vector Types

• The compiler fixes this for you as long as you use the
aggregate vector type.

• E.g. uint8x16x4_t

31.01.2022 12

uint8x16x4_t

v0
v1
v2
v3

Four consecutive
vector registers of
sixteen uint8

Aggregate Vector Types

• Aggregate vector types are accessed like a structure..
– and is kind of weird in that sense..

• Check out arm_neon.h if you want to see how these are
accessed.
– This can also be a nice file to search for intrinsics of interest

31.01.2022 13

Initialising Vectors

31.01.2022 14

31.01.2022 15

42

Set lane 10 to 42

uint8x16_t

vld1q_lane_u8(..)

10
Index

42
Init

Variable

Lane 10

Setting a Single Lane

Init example (init.c)

31.01.2022 16

4242 42 42

uint8x16_t

?

42
Init

Variable

Initialising All Lanes of a Vector With a Constant

42 42 42 42 42 42 42 42 42 42 42 42

31.01.2022 17

uint8x16_t =>

Initialising All Lanes of a Vector from RAM

1042 21 2 3 4 5 6 7 8 9 11 12 13 14 15

1042 21 2 3 4 5 6 7 8 9 11 12 13 14 15

vld1q_u8(*ptr)

uint8_t ram_data[16] =>

Copy example (copy.c)

Vector Management

• Reverse operations exist, of course.

• E.g. storing a lane to RAM instead of loading it from RAM.

• E.g. storing a vector to RAM instead of loading it from RAM.

• It is also possible to store/load more than one vector to/from
RAM in a single instruction!

31.01.2022 18

vst1q_lane_u8(..)

vst1q_u8(..)

vld1q_lane_u8(..)

vld1q_u8(..)

Arithmetic

31.01.2022 19

31.01.2022 20

uint8x16_t

vaddq_u8(..)
vsubq_u8(..)
vmulq_u8(..)

uint8x16_t

uint8x16_t

Addition, Subtraction, Multiplication

OP OP OP

31.01.2022 21

vaddq_u8(..)
vsubq_u8(..)
vmulq_u8(..)

Addition, Subtraction, Multiplication

• Input and output data types must be the same

• Invalid
– vaddq_u8(uint8x16_t, float32x4_t)

• Perfectly OK
– vaddq_u8(uint8x16_t, uint8x16_t)

Add/sub/mult example (sub.c)

Division
• There is nothing like vdivq_u8(..) (!)

• vrecpe can find the reciprocal of each lane in a vector
– Only supports floating point data types.

• rec(x) = !
"

such that 𝑥 ∗ 𝑟𝑒𝑐 𝑥 = 1

• Dividing by a number is the same as multiplying with the
reciprocal of that number.

31.01.2022 22

Other Approaches to Division

• It can be wasteful to convert to and from float32.

• Other approaches are bitshifts
– a >> n is equal to !

"#$
– a << n is equal to to 𝑎 ∗ (𝑛 + 1)

• This will effectively floor your result, but there are ways
around this.

31.01.2022 23

Other Approaches to Division

• Using the previous method one can multiply with a fraction
#
$

, where m is always a multiple of two

• E.g. 𝑟𝑒𝑠𝑢𝑙𝑡 = % ∗ #
$

=> 𝑎 ∗ 𝑛 ≫ 𝑛

• Use normal multiplier intrinsic, then bitshift the result

• Probably have to convert a to a datatype with more bits!

31.01.2022 24

Arithmetic – Finalising Notes

• Of course many more instructions than these very basic
ones..
– Accumulative, max/min, absolute value, square root.. and more.

• Be careful to avoid overflows and underflows when working
with any datatype

31.01.2022 25

Conversion

31.01.2022 26

Lookup Tables (LUT)

31.01.2022 27

3
Index «vector»

2
3
5
7

LUT
(four-element)

• This function is useful to rearrange vectors.

• Some “index” points into a LUT offset that contains precomputed values

5
Output «vector»

• Output stored in a vector

Position 0

Converting From uint8 to uint16

31.01.2022 28

• This function is extremely useful to rearrange vectors.

4
5

LUT
uint8x8_t

8
7
4
3
2

1

4

5

8

7

0

0

0

0

Output Vector
uint8x8_t

uint16 = 7

uint16 = 8

uint16 = 5

uint16 = 4

Imagine a vector of
pixel data with
uint8_t values.

Index Vector
uint8x8_t

0

1

2

3

255

255

255

255

The index vector
selects elements
from the LUT..

Index lane 0 selects
lane 0 from LUT

Writes «4» to
output vector
lane 0

Index lane 1 selects
element 255 of LUT,
but it is out of bounds

Out of bounds
indexes are set
to 0

..and the selected
elements are stored in
the output vector.Out of bounds index behaviours:

vtbl
Any element out of range for LUT returns 0
vtbx
Any element out of range for LUT leaves the
destination unchanged

Position 7

Index lane 2 selects
element 1 of LUT

Writes «5» to
output lane 2

Index lane 3 selects
element 255 of LUT,
but it is out of bounds

Out of bounds
indexes are set
to 0

The LUT can be quite large.

• The LUT can be one, two or four vectors using the
aggregate vector type

• uint8x16_t
• uint8x16x2_t
• uint8x16x4_t

31.01.2022 29

8 indexes

16 indexes

32 indexes

31.01.2022 30

Conversion example (cnv_u8_u16.c)

Ending Notes on Conversions

• Separate instructions exist to convert between
unsigned/signed integer and floating point formats.

31.01.2022 31

a b
c d

a c
b d a cb d

0 12 3

a c b d

stride

stride

2x2 matrix, stride = 2

LUT
(matrix)

Index
Vector

Destination
Vector

a b
c d

a c
b d

stride

2x2 matrix with ZIP function

c = zip(a, b)

a

b c d

a b

a c b dc

Intrinsics, Inline Assembly or Assembly?

31.01.2022 34

Assembly

!"#$"
!%&'
!()*+%),-*.+)#/#)#'#0"1
-*.+)#/#)#'#0"12
3%--!456,37837837,
+$,)&
!#0-

Inline
Assembly

40"56$9,3#:"*&;

<<,=*,1".>>,*0,3#:"*&

//%1'//?
@3%-- A3B!1C8,A3B!1C8,A3B!1CD
2,2,A3#:"*&B,@ED,?3#:"*&F,2,F

Intrinsics

40"56$9,3#:"*&;

<<,=*,1".>>,*0,3#:"*&

G#:"*&,H,3%--E/156?3#:"*&8,3#:"*&F

Goes in .s fileGoes inside C functionsGoes inside C functions

Level of Difficulty

• Do you want to see some inline assembly just because?

• :D

31.01.2022 35

Non-Mandatory Assignment

• Simple executable with some simple NEON snippets
– Init vector to constant
– Copy memory
– Add, subtract, multiply
– Convert between uint8 and uint16
– Transpose 2x2 matrix

• We will go through how this works on friday.

31.01.2022 36

• The tasks are hopefully relatively small, but some may take
more effort (part 5 & maybe part 4)

• The purpose is just to get you started with NEON.

• It is more important that you have a look at things, step
through the code with GDB, and look at the list of intrinsics
etc than getting it right.

• Maybe you can team up and collaborate on your progress?

31.01.2022 37

Part 1 – Initialisation (init.c)

• Vector initialisation calls a lane insertion 16 times just to
initialise the same value to all lanes of a vector

• Find and use a single intrinsic to initialise all lanes of a
vector.

31.01.2022 38

Part 2 – Memory Copy (copy.c)

• Use the aggregate vector type uint8x16x4_t to copy
memory,instead of four individual calls to load a single
uint8x16_t

31.01.2022 39

Part 3 – Subtraction (sub.c)

• I have deliberately broken the subtraction example.

• Step through the code with GDB, inspect the vector
registers, and see if you can find the root cause!

• Can you propose any alternative that will help solve the
problem for the add, sub and mult examples?

31.01.2022 40

Part 4 – Conversion (cnv_u16_u8.c)

• (Harder assignment)

• We have provided sample code to convert from uint8 to
uint16 using LUT table indexing

• Attempt the reverse – go from a vector of eight uint16 to
eight uint8 using LUT table indexing

31.01.2022 41

Part 5 – Matrix Transpose (transpose.c)

• Transpose the 2x2 matrix of uint32_t with the zip intrinsic.

31.01.2022 42

Good Luck!

qYou’ll be fine.

q I’ll be happy if you have a go at the assignment but don’t
spend too much time on it. If you’re stuck and really want to
finish, please come to me and I will try to help you.

q I’ll try to hang out with you on slack or something (?) if you
want to discuss something or otherwise J

