Modeling I

Class diagrams

Ketil Stølen

Partly based on slides prepared by Prof. Øystein Haugen, HiØ & SINTEF

Overview of lecture

- Modeling
 - What is it?
 - Why do we do it?
 - Modeling and Programming sides of the same coin?
- > UML Class modelling
- Tooling
 - Papyrus

What's a Model?

Exercise: Explain *class* in the setting of the previous slide

- In which corner does <u>class</u> belong?
- What would you put in the two other corners?

Exercise: Explain threat in the setting of the previous slide

- In which corner does <u>threat</u> belong?
- What would you put in the two other corners?

Artefacts in Informatics

Abstraction

Models Frameworks Patterns Algorithms

Languages

Programming GPL DSL Formal Visual

Tools

Editors Compilers Verifiers Simulators Apps

Exercise: How do the other languages you have been thought fit in the previous picture?

Modeling a system

- A system is a part of the world
 - which we choose to regard as a whole, separated from the rest of the world during some period of consideration, a whole which we choose to consider as containing a collection of components, each characterized by a selected set of associated data items and patterns, and by actions which may involve itself and other components
- Mental systems
 - Systems existing in the human mind, physically materialized as states of the cells of our brains
- Mental and manifest models
 - when a limited set of properties is selected from a system
- These definitions are from K. Nygaard and his DELTA team (in 1977)

What language(s) to use?

- Must have good mechanisms for abstraction
- Must have adequate tooling
- Must scale to "real systems"

Why make a language?

UML Class modelling

- Concepts
- Identity
- Generation
- Meta
- Aggregate

Concepts

Class Object

Type Instance

Pattern Entity

Method Method call

Function Function call

Datatype Variable

Prototype

Clone

A small story about Courses

- The Software Engineering Course is a special Course
- Courses contain Lectures
- The lectures may generate questions

A small Story with Boxes and Arrows

A small Story with UML class diagram

Exercise:

- Can Software Engineering course (SWEcourse) be held without lectures?
- Can there be lectures without questions asked?
- Can the very same lecture be given in two different courses?
- Can the very same question be posed to several lectures?
- If a course is cancelled, will all remaining lectures also be cancelled? (or "terminated")

Identity

Identity modifiers: Languages:

Generalization
Subclass
Derived Classes
Extension

UML
C++
Java

Interface UML, Java

Parameters FORTRAN, Pascal, Algol, ...

Overloading C++, Java

Redefined operations UML

Virtual procedures Simula, Smalltalk

Virtual functions C++
Overriding methods Java

Pointers to functions C, C++

Subclassing or Inheritance

Generation

Aggregation

Concept aggregate relation

Meta

Exercise: Explain the previous slide wrt the language English

- What is the meta-model?
- What is the modeling-language?
- What is a model?
- What is program execution?
- What is the data structure?

The 4-level meta hierarchy

Lev	UML model	Language	Programming	Language
M3	MOF metamodel	MOF	Grammar of BNF	BNF?
M2	UML metamodel	MOF	Grammar of Java	BNF
M1	UML user model	UML	Java user program	Java
M0	Execution of user model		Execution of java program	

A piece of the UML Metamodel

Class Diagram Summary

Class

Class Name

Class Name

attribute:Type = initialValue

operation(arg list):return type

Generalization

Exercise: Represent the drawing below in UML

Modeling tool used for the UML part of this course

You may use the tool of your preference

Some alternatives:

- https://www.eclipse.org/papyrus/ (powerful but involves a lot to install and use)
- https://www.draw.io app (light weight)

