1) Calculate the semantics of Ex1, Ex2, Ex3

Let

$$
\begin{array}{lll}
\mathrm{t} 1=<!\mathrm{a}, ? \mathrm{a},!\mathrm{b}, ? \mathrm{~b},!\mathrm{c}, ? \mathrm{c}> & \mathrm{t} 3=<!\mathrm{a}, ? \mathrm{a},!\mathrm{c}, ? \mathrm{c}> & \mathrm{t} 4=<!\mathrm{a}, ? \mathrm{a},!\mathrm{b}, ? \mathrm{~b},!\mathrm{d}, ? \mathrm{~d},!\mathrm{c}, ? \mathrm{c}> \\
\mathrm{t} 2=<!\mathrm{a},!\mathrm{b}, ? \mathrm{a}, ? \mathrm{~b},!\mathrm{c}, ? \mathrm{c}> & & \mathrm{t} 5=<!\mathrm{a},!\mathrm{b}, ? \mathrm{a}, ? \mathrm{~b},!\mathrm{d}, ? \mathrm{~d}, \mathrm{c}, ? \mathrm{c}> \\
& & \mathrm{t} 6=<!\mathrm{a}, ? \mathrm{a},!\mathrm{b}, ? \mathrm{~b},!\mathrm{d},!\mathrm{c}, ? \mathrm{~d}, ? \mathrm{c}> \\
& \mathrm{t} 7=<!\mathrm{a},!\mathrm{b}, ? \mathrm{a}, ? \mathrm{~b},!\mathrm{d},!\mathrm{c}, ? \mathrm{~d}, ? \mathrm{c}>
\end{array}
$$

$[[\operatorname{Ex} 1]]=\{(\{t 1, t 2\}, \varnothing)\}$
$[[\operatorname{Ex} 2]]=\{(\{\mathrm{t} 3\},\{\mathrm{t} 1, \mathrm{t} 2\})\}$
$[[\operatorname{Ex} 3]]=\{(\{\mathrm{t} 1, \mathrm{t} 2\},\{\mathrm{t} 4, \mathrm{t} 5, \mathrm{t} 6, \mathrm{t} 7\})\}$

2) Answer the following

a. Is Ex2 a refinement of Ex1?

Yes; t 1 and t 2 have been moved from the positive to the negative (narrowing), while $t 3$ has been moved from the inconclusive to the positive (supplementing).
b. Is Exl a refinement of Ex2?

No; tl and t2 have been moved from the negative to the positive, while $t 3$ has been moved from the positive to the inconclusive.
c. Is Ex3 a refinement of Ex1?

Yes; The positive traces of Exl remain positive, while the traces $\mathrm{t} 4, \mathrm{t} 5, \mathrm{t} 6$ and t 7 have been moved from the inconclusive to the negative (supplementing)
d. Is Ex1 a refinement of Ex3?

No; $t 4, \mathrm{t} 5, \mathrm{t} 6$ and t 7 have been moved from the negative to the inconclusive.

3) Make MySpec that refines Ex3

This can of course be solved in many ways; below is one suggestion. A new positive trace $\mathrm{t} 8=<!\mathrm{e}$,? $\mathrm{e}>$ has been added (supplementing).

3) Continued

a. Is Ex1 a refinement of MySpec?

No; the traces $\mathrm{t} 4, \mathrm{t} 5, \mathrm{t} 6, \mathrm{t} 7$ and t 8 are inconclusive in Ex1, but not in MySpec.
b. Is MySpec a refinement of Ex1?

Yes; The traces that are positive in Ex1 remain positive in MySpec, while new traces that were inconclusive in Ex1 have become either positive (t 8) or negative ($\mathrm{t} 4, \mathrm{t} 5, \mathrm{t} 6, \mathrm{t} 7$) in MySpec (supplementing).

4) Is Ex7 a refinement of Ex6?

Yes. Let
$\mathrm{t} 9=<!\mathrm{f}, ? \mathrm{f},!\mathrm{g}, ? \mathrm{~g}>\quad \mathrm{t} 10=<!\mathrm{f}, \mathrm{f},!\mathrm{h}, ? \mathrm{~h},!\mathrm{g}, ? \mathrm{~g}>$

$$
\mathrm{t} 11=<!\mathrm{f}, \mathrm{f},!\mathrm{h},!\mathrm{g}, ? \mathrm{~h}, ? \mathrm{~g}>
$$

Then
$[[E x 6]]=\{(\{t 1, \mathrm{t} 2, \mathrm{t} 9\}, \varnothing)\}$
$[[E x 7]]=\{(\{\mathrm{t} 1, \mathrm{t} 2, \mathrm{t} 9\},\{\mathrm{t} 4, \mathrm{t} 5, \mathrm{t} 6, \mathrm{t} 7, \mathrm{t} 10, \mathrm{t} 11\})\}$
The positive traces of [[Ex6]] remain positive in [[Ex7]], while new negative traces have been added (supplementing)

Does the refinement relation hold between Ex1 and

 Ex6?Let
$\mathrm{ol}=(\{\mathrm{t} 1, \mathrm{t} 2\}, \varnothing) \quad \mathrm{o} 2=(\{\mathrm{t} 1, \mathrm{t} 2, \mathrm{t} 9\}, \varnothing)$
Then
$[[E x 1]]=\{01\} \quad[[E x 6]]=\{02\}$
We then have
[[Ex1]] $\leadsto[[E x 6]]$ holds, since o2 refines o1 (supplementing).
$[[E x 6]] \leadsto[[E x 1]]$ does not hold, since ol does not refine 02 . So there is no interaction obligation in [[Ex1]] that refines o2.

Remember

- Weak sequencing:
- events from the same lifeline are ordered in the trace in the same order as on the lifeline
- events on different lifelines from different operands may come in any order

6)

<!a, ?a>seq<!b, ?b>seq<!c, ?c>= \{<!a, !b, !c, ?a, ?b, ?c>, <!a, !b, ?a, !c,?b, ?c>,
<!a, !b, ?a,?b, !c, ?c>,
<!a, ?a, !b, !c, ?b, ?c>,
<!a, ?a, !b, ?b, !c, ?c>\}

7) Combine the two previous diagrams (note the importance of changing the direction for the last two)

8)

- We may repeat the trick from the previous excercise as many times we want. Each time we get twice as many traces as long as we change the transmission direction.

