Refinement II

Inherent nondeterminism versus underspecification

And weak sequencing

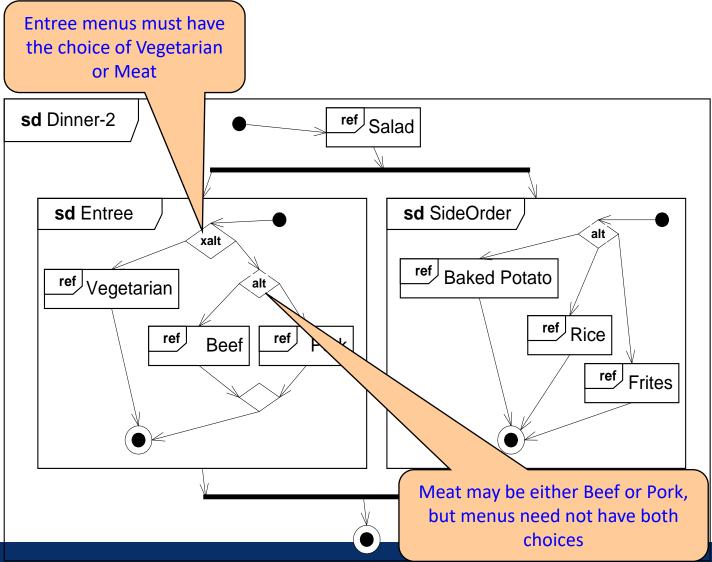
Ketil Stølen

Outline

- Two kinds of nondeterminism
 - Underspecification
 - Inherent (explicit) nondeterminism
- The need for both alt and xalt
- Semantics in the general case
- Refinement in the general case

Underspecification and inherent nondeterminism

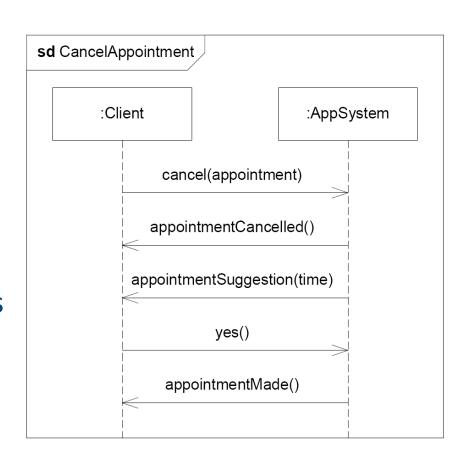
- Underspecification:
 - Several alternative behaviours are considered equivalent (serve the same purpose)
- Inherent nondeterminism:
 - Alternative behaviours that must all be possible for the implementation
- These two should be described differently!



The need for both alt and xalt

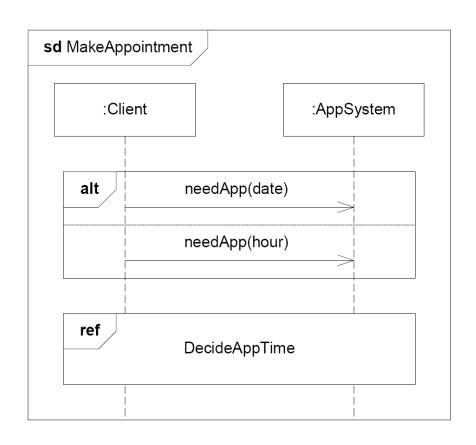
- Potential non-determinism captured by alt allows abstraction and inessential non-determinism
- Inherent or explicit non-determinism captured by xalt characterizes non-determinism that must be reflected in every correct implementation in one way or another

Restaurant example with both alt and xalt

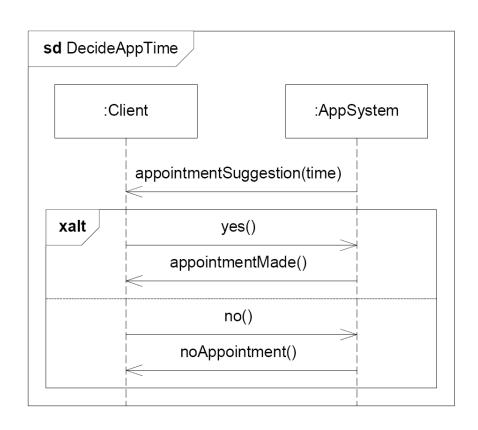


Example: an appointment system

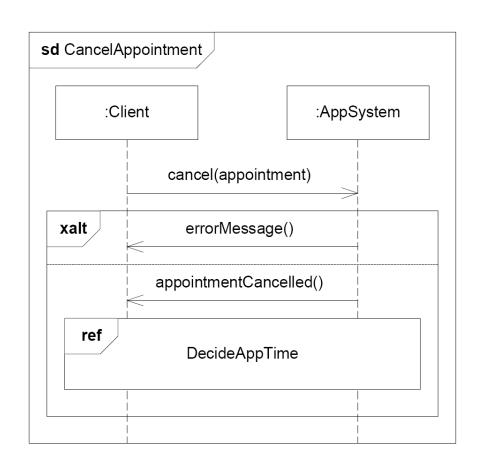
- A system for booking appointments used by e.g. dentists
- Functionality:
 - MakeAppointment: The client may ask for an appointment
 - CancelAppointment: The client may cancel an appointment


CancelAppointment

- This specification has two positive traces
- Whether reception of appointmentCancelled() occurs before or after sending of appointmentSuggestion(...) is not important
- Underspecification due to weak sequencing


MakeAppointment

- May ask for either a specific date or a specific hour of the day (e.g. in the lunch break)
- The system is not required to offer both alternatives
- Underspecification expressed by the alt operator


DecideAppTime

- The system must be able to handle both yes() and no() as reply messages from the client
- This is not underspecification
- Therefore the alternatives are expressed by the xalt operator

CancelAppointment - revised

- The condition for choosing errorMessage() or appointmentCancelled() is not shown
- Both alternatives should be possible
- The choice is made by the system

Use of alt versus xalt

The crucial question when specifying alternatives:

 Do these alternatives represent similar traces in the sense that implementing only one is sufficient?

When to use alt

- Use alt to specify alternatives that represent similar traces i.e. to model
 - underspecification

When to use xalt

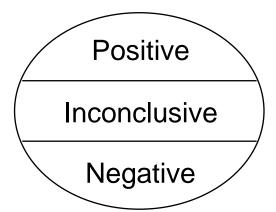
- Use xalt to specify alternatives that must all be present in an implementation, i.e. to model
 - inherent nondeterminism, as in the specification of a coin toss or a password generator
 - alternative traces due to different inputs that the system must be able to handle (as in DecideAppTime)
 - alternative traces where the conditions for these being positive are abstracted away (as in revised version of CancelAppointment)

Semantics

So far I have told you that the semantics of a sequence diagram is an interaction obligation

• In the general case, this is not sufficiently expressive

Semantics – general case


 The semantics of a sequence diagram <u>without occurrences</u> of xalt is a set of a single interaction obligation

```
{ (p,n) }
```

 The semantics of a sequence diagram <u>with occurrences</u> of xalt is a set of arbitrarily many interaction obligations

```
{ (p1,n1), (p2,n2), ..., (pK,nK) }
```

alt

Positive

Inconclusive

Negative

Positive

Inconclusive

Negative

Positive

Inconclusive

Negative

xalt

Positive

Inconclusive

Negative

Positive

Inconclusive

Negative

Positive

Inconclusive

Negative

As before

For any sequence diagram d, [[d]] denotes its semantics

We may think of [[]] as a function of the following type

• [[]]: SequenceDiagram → Set of InteractionObligation

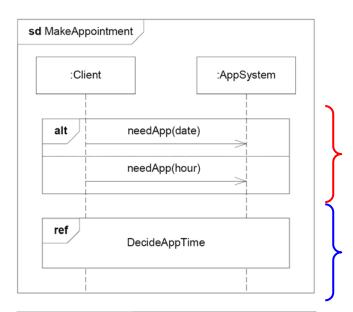
⊎ - the inner union operator

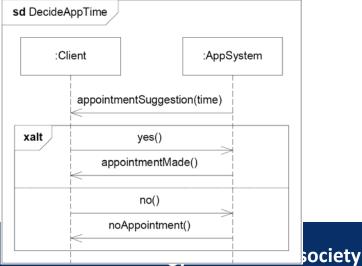
The inner union of two interaction obligations yields the interaction obligation whose

- positive set = the union of the argument's positive sets
- negative set = the union of the argument's negative sets

$$(p_1, n_1) \uplus (p_2, n_2) \stackrel{\text{def}}{=} (p_1 \cup p_2, n_1 \cup n_2)$$

Formal semantics of alt and xalt


• **alt** joins interaction obligations:


$$- [[d_1 \text{ alt } d_2]] \stackrel{\text{def}}{=} \{o_1 \uplus o_2 \mid o_1 \in [[d_1]] \land o_2 \in [[d_2]]\}$$

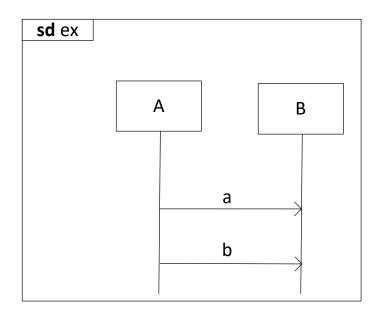
- xalt keeps the interaction obligations:
 - $[[d_1 \text{ xalt } d_2]] \stackrel{\text{def}}{=} [[d_1]] \cup [[d_2]]$

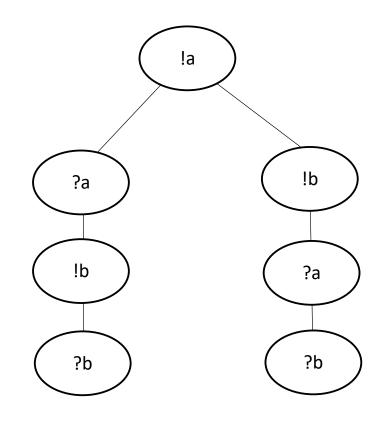
Informal illustration of MakeAppointment

Sequential composition

Basic rules

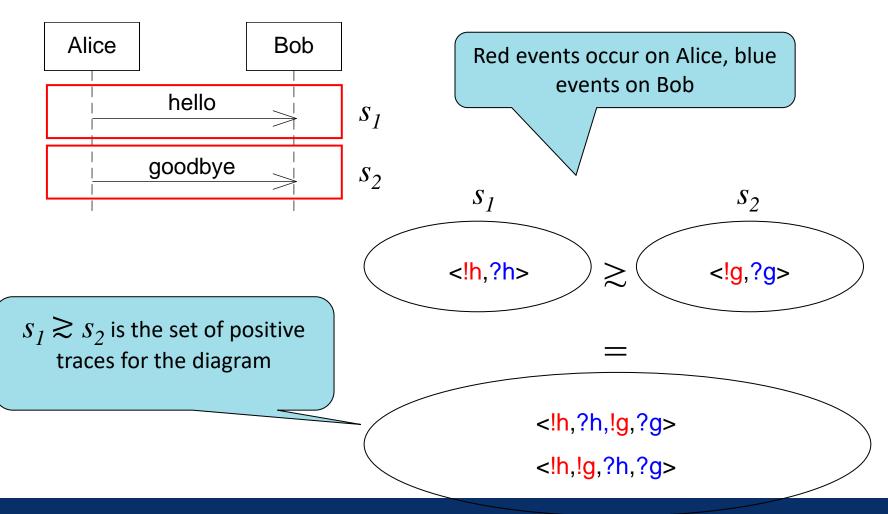
Causality


- a message can never be received before it has been transmitted
- the transmission event for a message is therefore always ordered before the reception event for the same message


Weak sequencing

 events from the same lifeline are ordered in the trace in the same order as on the lifeline (from top to bottom)

Example


Mathematically !a and ?a (etc.) are shorthands for !(a,A,B) and ?(a,A,B) Hence, each event contains the names of its sending and receiving lifelines

Sequential composition of trace sets s_1 and s_2

$$s_1 \gtrsim s_2$$

the set of all traces obtained by merging traces t_1 from s_1 and t_2 from s_2 in such a way that for each lifeline, the events from t_1 comes before the events from t_2

Sequential composition of trace sets

Note

• if s_1 or s_2 is empty then $s_1 \gtrsim s_2$ is also empty

Sequential composition of interaction obligations

- $(p_1, n_1) \succeq (p_2, n_2) \stackrel{\text{def}}{=} (p_1 \succeq p_2, (n_1 \succeq p_2) \cup (n_1 \succeq n_2) \cup (p_1 \succeq n_2))$
- Traces composed exclusively by positive traces become positive
- Traces composed with at least one negative trace become negative

Formal semantics of seq

- $[[d_1 \operatorname{seq} d_2]] \stackrel{\text{def}}{=} \{o_1 \gtrsim o_2 \mid o_1 \in [[d_1]] \land o_2 \in [[d_2]]\}$
- o_i is shorthand for (p_i, n_i)

Remember: By sequential composition

- positive followed by positive is positive
- positive followed by negative is negative
- negative followed by negative is negative
- negative followed by positive is negative

