Refinement IlI

The general case

Ketil Stglen

SINTEF Technology for a better society

Topics

* Sequential composition
* Negative behaviour

* Refinement in the general case

SINTEF Technology for a better society

Sequential composition

SINTEF Technology for a better society

Basic rules

Causality

* a message can never be received before it has been
transmitted

* the transmission event for a message is therefore always
ordered before the reception event for the same message

Weak sequencing

* events from the same lifeline are ordered in the trace in the
same order as on the lifeline (from top to bottom)

SINTEF Technology for a better society

Example

sd ex o

?a b

D G
(») "

Mathematically !a and ?a (etc.) are shorthands for !(a,A,B) and ?(a,A,B)
Hence, each event contains the names of its sending and receiving lifelines

a

SINTEF Technology for a better society

Sequential composition of trace sets S, and S,

S, Z S,

the set of all traces obtained by merging traces
t, froms; and t,froms,
in such a way that for each lifeline,
the events from t; comes before the events from t,

SINTEF Technology for a better society

Sequential composition of trace sets

Alice Bob Red events occur on Alice, blue
: : events on Bob
| hello | S
I =T 1
: goodbye : S,
| | S
| | 2
2
Sq = S, is the set of positive
traces for the diagram —
<!h,?h,!g,?g>
<!h,!g,?h,?g>

SINTEF Technology for a better society

Note

* ifs;ors,is empty thens, Z s, is also empty

SINTEF Technology for a better society

Sequential composition of interaction obligations

* (PLNDZ(P,Ny) & (PP, , (N ZP)UNZN,)U(P,2N,))

* Traces composed exclusively by positive traces become positive

* Traces composed with at least one negative trace become
negative

SINTEF Technology for a better society

Formal semantics of seq

* [[dyseqdy]] £ {0,%20, | 0,€[[d;]]A0,E[[d]]}

* 0 is shorthand for (p;, n;)

SINTEF Technology for a better society

Remember: By sequential composition

* positive followed by positive is positive
* positive followed by negative is negative
* negative followed by negative is negative

* negative followed by positive is negative

SINTEF Technology for a better society

Opt and skip

SINTEF Technology for a better society

opt and skip
* [[optd]] & [[skip alt d]]

* [[skip]] € {({<>},{})}

— A single interaction obligation where only the empty trace
<> is positive and the set of negative traces is empty

SINTEF Technology for a better society

Negative behaviour

SINTEF Technology for a better society

Specifying negative behaviour with refuse

* [[refused]] € {({ }, pun) | (p,n)E([[d]]}

 All interaction obligations in [[refuse d]] have empty positive
sets

* Hence, all interaction obligations in [[d, seq (refuse d,)]] have
empty positive sets

* The same applies to [[(refuse d,) seq d,]]

SINTEF Technology for a better society

Example use of refuse

sd Heads)

9
4 Q
]
=
O
Q
S5

| 1| I R O I A N2 ‘ _

* [[Heads]] = {({<!f, ?f, h, ?h>}, {<!f, ?f, It, ?t>})}

SINTEF Technology for a better society

Specifying negative behaviour with veto

sd Heads)
Player Coin
[[veto d]] & [[skip alt (refuse d)]] : fip |
alt Ji/ heads /i
This means: : i
veto) | |
[[veto d]] = {({<>}, pun) | (p,ME[[d]]} | talls |

[[Heads]] = {({<!f, ?f 'h, ?h>, <If, ?f>}, {<!f, ?f, It, ?t>})}

SINTEF Technology for a better society

Specifying negative behaviour with assert

* By using assert, all inconclusive traces are redefined as
negative

* This ensures that for each interaction obligation, at
least one of its positive traces will be implemented in
the final implementation

* [[assertd]] £ {(p, nU(FE\p)) | (p.n) € [[d]]}

« Jf =all possible traces
« J€\p = all possible traces minus those in p

SINTEF Technology for a better society

Example use of assert

Y,
J Q)
)
=
O
o
-}

* [[Heads]] = {({<!f, ?f, Ih, ?h>}, n)} ; fip

I U A 2 ‘

* n =all traces where the first event on the lifeline of Player is
If and the first event on the lifeline of Coin is ?f except the
trace <!If, ?f Ih, ?h>

SINTEF Technology for a better society

-

Negative behaviour

From

Oto4

Kiterations

appointmentMade() may not
here

OCcur

N

noAppointment() may not occur
instead of appointmentMade() here

noAppointment () is the only
message that may occur here

N N

SINTEF

sd DecideAppTime/

:Client

:AppSystem

I appointmentSuggestion(time)

no()

e

appointmentMade()

appointmentSuggestion(time)

yes()

appointmentMade()

noAppointment()

no()

noAppointment()

I
|
|
1
|
|
|
|
|
]
|
I
|
|
1
|
|
|
|
|
]
1
|
|
|
|
I
|
|
1
|
|
|
|
|
|
|
|
|
|
|
|
|
f
|
|
}
T
|
|
4
|
I
|
|
1
|
|
|
|
|
|
|

veto or refuse?

Should doing nothing be possible in
the otherwise negative situation?

— |If yes, use veto

— If no, use refuse

ok to do nothing between no() and
appointment-Suggestion(time)

[not ok to do nothing after yes()

sd DecideAppTime >/

:Client

AppSystem

[
|

I appointmentSuggestion(time)

f
|

loop {0...4}

no()

o

L
|
T
|
|
t
|
|
| i
assert noAppointment()
i
i
|
|
|
|
|

| no()
i |
| I
veto ! appointmentMade() [
g | |
7 I .
| |
| |
:LappointmentSuggestion(time) :
| |
| |
| |
I I
xalt/ : yes() :
| I 1
alt/ i appointmentMade() i
| |
| |
|
| refuse) :
;/ ~ noAppointment() |
|
|
I
|
i
|
|
I
|
|
|
|
|
|
|
|
|

sd DecideAppTime /
:Client :AppSystem
When to use assert? — |
: gpp0|ntmentSuggestlon(tlme) :
loop {0...4} |
I no() :
veto / i appointmentMade() E
i appointmentSuggestion(time) i
/ Sending \ | |
o . xalt) : yes() :
noAppointment() is the ; :
Only acce pta ble alt i appointmentMade() i
response tO the no() refuieg
message at this point T/ noAppointment) |
i no() i
. assert/ noAppointment() i
| B :
SINTEF

The pragmatics of negative behaviour

* To effectively constrain the implementation, the specification
should include a reasonable set of negative traces

* Use refuse when specifying that one of the alternatives in an
alt represents negative traces

* Use veto when the empty trace (i.e. doing nothing) should be

positive, as when specifying a negative message in an otherwise
positive scenario

* Use assert on an interaction fragment when all positive traces
for that fragment have been described

SINTEF Technology for a better society

Refinement in the general case

SINTEF Technology for a better society

Supplementing

* Inconclusive trace are recategorized as either positive or
negative (for an interaction obligation)

* New situations are considered
— adding fault tolerance
— Nnew user requirements

* Typically used in early phases

SINTEF Technology for a better society

sd DecideAppTime /
M :Client ‘AppSystem

Example of supplementing ‘
T . T
: appointmentSuggestion(time) }
ey 1
sd DecideAppTime L— ‘
PP / loop {0...4} ~ :
— no() N
| —
:Client AppSystem : ‘ |

| ‘ ‘ | vett}, :r::_ appointmentMade() i ‘
I I L |
| appointmentSuggestion(time) } m—> | |
< | :gppointmentSuggestion(time) :
xalt/ : yes() | i i
| | | |
!/ appointmentMade() 1 xalt i yes() i
I . |
: no() } altl/ : appointmentMade() |
i d I~ |
|) noAppointment() | | E
| \ refuse > |
,' ‘1 - :-::/'_'_j noAppointment() |
| |
g | |
Positive == : > ;

|

I ‘ =
Negative ===> ! |
assert/ noAppointment() :
) |]r.-;:' i
| |
: |
I |
|

The pragmatics of supplementing

* Use supplementing to add positive or negative traces to the
specification

* When supplementing, all of the original positive traces must
remain positive, and all of the original negative traces must
remain negative

* Do not use supplementing on the operand of an assert

— no traces are inconclusive in the operand

SINTEF Technology for a better society

Narrowing

* Reduce underspecification by redefining positive traces as
negative
* For example adding guards, or replacing a guard with a stronger
one
— traces where the guard is false become negative

SINTEF Technology for a better society

Example of narrowing

sd CanceIAppointment/ sd CancelAppointmenQ

:Client :AppSystem :Client AppSystem

cancel(appointment) cancel(appointment)

\|/
\/
L ——

I I [
:;_;J	
	!
xalt	errorMessage()
— * '	
} appointmentCancelled() } : :	
= \ i 1	
: : : [else]	
ref/	appointmentCancelled() i
DecideAppTime <	
DecideAppTime	

For each operand, traces where the
guard is false become negative

e Technology for a better society

The pragmatics of narrowing

* Use narrowing to remove underspecification by redefining
positive traces as negative

* In cases of narrowing, all of the original negative traces must
remain negative

* Guards may be added to an alt as a legal narrowing step
* Guards may be added to an xalt as a legal narrowing step

* Guards may be narrowed, i.e. the refined condition must imply
the original one

SINTEF Technology for a better society

General refinement

* d’is a general refinement of d if

— for every interaction obligation o in [[d]] there is at |least
one interaction obligation o’ in [[d’]] such that 0’ is a
refinement of o

* Interaction obligations that do not refine any obligation at the
abstract level may be added

SINTEF Technology for a better society

General refinement illustrated

[[a]]: (ﬂ\(p1un1)> (7{\(pzunz)>

P, P, /p?\
[[d’]]: (}[\(pllkljnll)> (}[\(pzpnzw (5’{\(p3'yn3')>

N e N

SINTEF Technology for a better society

The pragmatics of general refinement

* General refinement is required for specifications with xalt

* It corresponds to the pointwise application of refinement for
each single interaction obligation

* General refinement supports the introduction of additional
inherent nondeterminism

SINTEF Technology for a better society

Limited refinement

* d’is alimited refinement of d if
— d’ is a general refinement of d, and

— every interaction obligation in [[d’]] is a refinement of at
least one interaction obligation in [[d]]

* Limits the possibility of adding new interaction obligations
* Typically used at a later stage

SINTEF Technology for a better society

Limited refinement illustrated

[[a]]: (H\p, ;)) (7{\(p2un2)>

P1 A /p—s\
[[d’]]: (FH NP, Unl)) (}[\(pz'unz')> (7'[\(p?,lu'qsl)>

SINTEF Technology for a better society

The pragmatics of limited refinement

* Limited refinement is a special case of general refinement

* Limited refinement disallows the introduction of additional
inherent nondeterminism

* Limited refinement is normally used in the later stages of a
system development

SINTEF Technology for a better society

Compositionality

A refinement operator ~ is compositional if it is
reflexive: d~-d
transitive: d~d’A d’+wd” = d~d”
the operators refuse, veto, alt, xalt and seq are monotonic w.r.t. ~ :
d-+-d’ = refuse d ~ refuse d’
dwd’ = vetod ~ veto d’
d,~ d’Ad,~ d,”= d; altd, ~ d; altd,’
d;~ d’A d,~ d,” = d; xaltd, ~ d;’xalt d,’
d,~ d’Ad,~ d,”= d; seqd, ~ d;’seqd,’
* Transitivity allows stepwise development

* Monotonicity allow different parts of the specification to be refined
separately

SINTEF Technology for a better society

Supplementing, narrowing, general refinement and limited
refinement are all compositional ©

SINTEF Technology for a better society

The mathematical foundation

* Haugen, Husa, Runde, Stglen: STAIRS towards formal design
with sequence diagrams, 2005. SoSyM, Springer.

— http://heim.ifi.uio.no/~ketils/kst/Articles/2005.SoSyM-
onlinefirst.pdf

* Runde, Haugen, Stglen: The Pragmatics of STAIRS, 2006.
Springer-Verlag. LNCS 4111.

— http://heim.ifi.uio.no/~ketils/kst/Articles/2006.FMCO-
LNCS4111.pdf

SINTEF Technology for a better society

