

EXAMPLE-DRIVEN INTRODUCTION TO CORAS PART-I

Ketil Stølen

Content

- Other literature
- Tool
- Main concepts
- Process of eight steps
- Risk modeling
- Guided tour

Other Literature

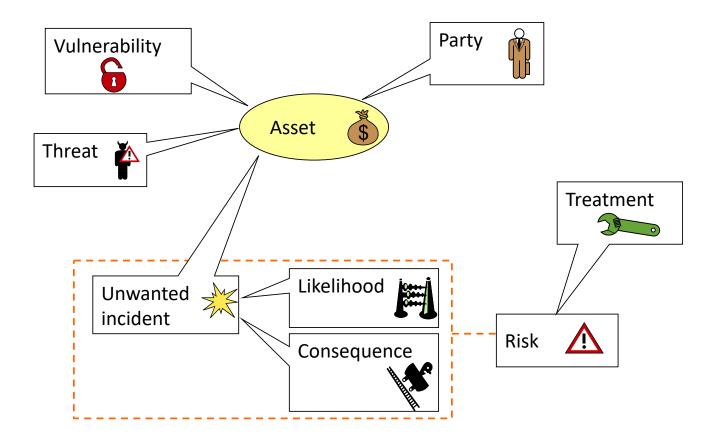
- Kristian Beckers, Maritta Heisel, Bjørnar Solhaug, Ketil Stølen. ISMS-CORAS: A structured method for establishing an ISO 27001 compliant information security management system.
 http://heim.ifi.uio.no/~ketils/kst/Articles/2014.NESSOS-ISMS-CORAS.pdf
- Bjørnar Solhaug, Ketil Stølen. The CORAS Language Why it is designed the way it is. http://heim.ifi.uio.no/~ketils/kst/Articles/2013.ICOSSAR.pdf
- Mass Soldal Lund, Bjørnar Solhaug, Ketil Stølen. Risk analysis of changing and evolving systems using CORAS.
 http://heim.ifi.uio.no/~ketils/kst/Articles/2011.FOSAD.pdf

Tool

https://stverdal.github.io/

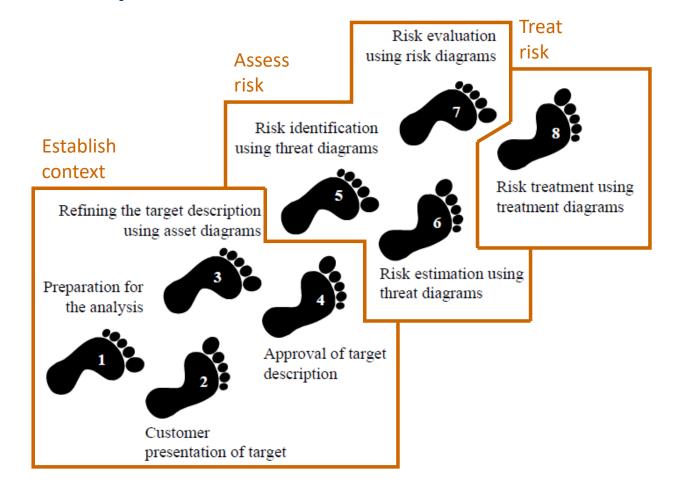
I will make a tutorial made by Simeon Tverdal available on the course pages.

The tool has been improved since this tutorial was made a year ago, but the tutorial is still relevant.



The CORAS Method

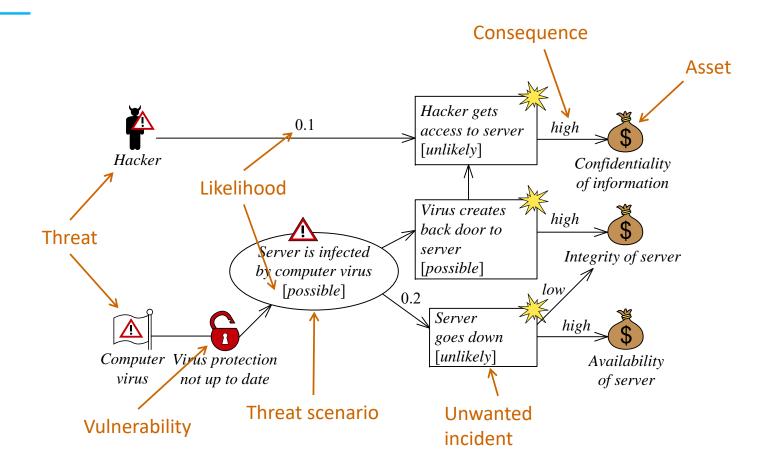
- Asset-driven defensive risk analysis method
- Operationalization of ISO 31000 and ISO 27005 risk analysis process in 8 steps
- Detailed guidelines explaining how to conduct each step in practice
- Modeling guidelines for how to use the CORAS language



Main Concepts

The 8 Steps of the CORAS Method

Risk Modeling


The CORAS language consists of five kinds of diagrams

- Asset diagrams
- Threat diagrams
- Risk diagrams
- Treatment diagrams
- Treatment overview diagrams

Each kind supports concrete steps in the risk analysis process

CORAS Example: Threat Diagram

Example Case

- Customer is a national air navigation service provider
- The customer decides on an assessment of 250 person-hours on behalf or the external assessment team
- Focus should be on the role of the Air Traffic Controllers (ATCOs) in the process of arrival management
- Main concerns
 - Information provisioning
 - Compliance

Air Traffic Control (ATC)

- Maintain horizontal and vertical separation among aircrafts and possible obstacles
- Limited interaction with the external world
- Humans at the centre of decisions and work process

Step 1: Preparation for the assessment

Objectives

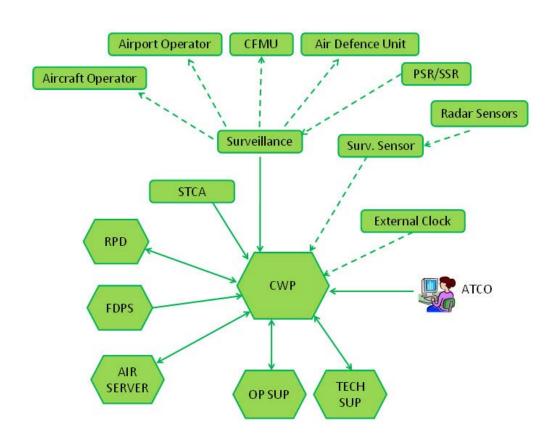
- Obtain information about customer, purpose and domain of assessment
- Decide size of assessment
- Ensure customer is prepared
- Practical organization of analysis

Interaction between the customer and the analysis team

• By mail, phone or face-to-face

Step 2: Customer presentation of target

Objectives


- Obtain understanding of what to assess
- Identify focus, scope and assumptions

Face-to-face between the customer and the assessment team

- Present CORAS terminology and method
- Collect as much information as possible

Typical documentation provided by customer

Problem:

- Difficult to comprehend
- No clear semantics

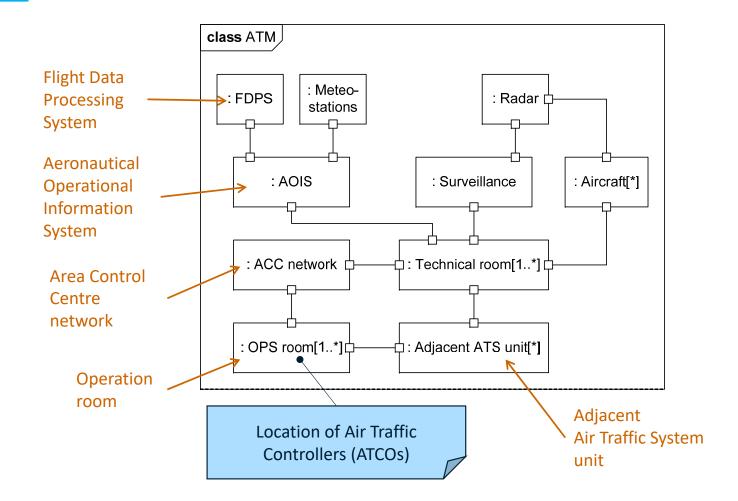
Step 3: Refine target description using asset diagrams

Objectives

• Ensure common understanding of target including scope, focus and assets

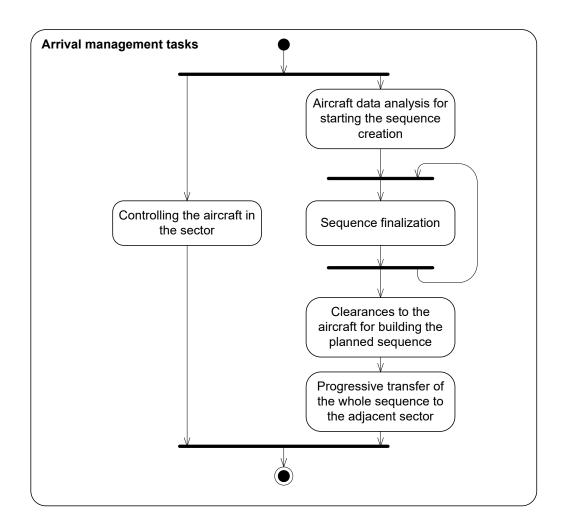
Face-to-face meeting

- Assessment team presents their understanding of the target
- Assets are identified
- High-level assessment

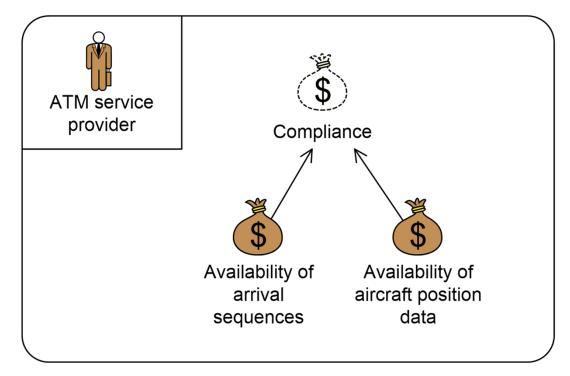


Target description made by external assessment team

- Conceptual overview specified in UML class diagrams
- Activities specified using UML internal structure and activity diagrams



Example of Internal Structure Diagram


Example of Activity Diagram

Asset Identification Using Asset Diagrams

 Assets are the values the party of the assessment wants to protect

High-level assessment

- Threat, vulnerabilities, threat scenarios and unwanted incidents are identified in a brainstorming session
- Aims to identify biggest worries and increase understanding of focus and scope

Results from High-level Assessment

	⚠ ★ ♦	6		
Who/what causes it?	How? What is the scenario or incident? What is harmed	What makes it possible?		
Component failure; power loss	Provisioning of information to ATCO fails due to loss of CWP (Controller Working Position)	Insufficient CWP maintenance		
Software error	The consolidation of data from several radar sources fails	Lack of redundant aircraft tracking systems		
Component failure; radar disturbance	Malfunctioning of radar antenna; loss of aircraft tracking	Insufficient radar maintenance		
Software bugs	False or redundant alerts from safety tool	Insufficient software testing		

Step 4: Approval of Target Description

Objectives

- Ensure target description is correct and complete
- Ranking of assets
- Scales for risk estimation
- Risk evaluation criteria

Face-to-face meeting

- Structured walk-through of target description
- Plenary discussion on assets, scales and criteria

Consequence Scales

- One consequence scale for each asset is defined
 - Note: Sometimes one scale applies to several assets
- Consequences can be qualitative or quantitative
- Scales can be continuous, discrete or with intervals

Qualitative Consequence Scale

 The same consequence scale applies to the two direct availability assets

Consequence	Description
Catastrophic	Catastrophic accident
Major	Abrupt maneuver required
Moderate	Recovery from large reduction in separation
Minor	Increasing workload of ATCOs or pilots
Insignificant	No hazardous effect on operations

The consequence and likelihood scales are partly based on requirements and advisory material provided by EUROCONTROL

Likelihood Scale

- One likelihood scale is defined
 - The scale is used for all unwanted incidents and threat scenarios
- Likelihoods can be
 - Qualitative or quantitative
 - Probabilities or frequencies
- Scales can be continuous, discrete or with intervals

Qualitative Likelihood Scale

Likelihood	Description
Certain	A very high number of similar occurrences already on record; has occurred a very high number of times at the same location/time
Likely	A significant number of similar occurrences already on record; has occurred a significant number of times at the same location
Possible	Several similar occurrences on record; has occurred more than once at the same location
Unlikely	Only very few similar incidents on record when considering a large traffic volume or no records on a small traffic volume
Rare	Has never occurred yet throughout the total lifetime of the system

Risk Evaluation Criteria

Consequence

		Insignificant	Minor	Moderate	Major	Catastrophic
Likelihood	Rare					
	Unlikely					
	Possible					
_	Likely					
	Certain					

High risk: Unacceptable and must be treated

■ **Medium risk:** Must be evaluated for possible treatment

Low risk: Must be monitored

