

UiO **Department of Informatics** University of Oslo

IN4180 - Analog Microelectronics Design

Basic Operational Amplifier Design and Compensation - Part 2 Compensation and stability

Kristian G. Kjelgård and Dag T. Wisland

UiO **Contemportation** Department of Informatics University of Oslo

CMOS OPAMP topology

- PMOS diff input stage
- Numbers realistic transistor widths
 - Length 1-2 times minimum
- Output buffer may not be needed for capacitive loads

• Not needed for capacitive loads

UiO **Content of Informatics**

University of Oslo

Frequency response – First order model

University of Oslo

Feedback stability

University of Oslo

Feedback stability

University of Oslo

Frequency response - First order model

Midband frequencies

- Below unit-gain frequency
- Above frequencies without compensation effects
- Ignore all C except C_c
- Ignore R_c which only has effect at ω_{ta}

University of Oslo

Frequency response Second order model

Assume R_c=0 give transfer function

$$\frac{v_{out}}{v_{in}} = \frac{g_{m1}g_{m7}R_1R_2\left(1 - \frac{sC_C}{g_{m7}}\right)}{1 + sa + s^2b}$$
$$a = (C_1 + C_C)R_2 + (C_1 + C_C)R_1 + g_{m7}R_1R_2C_C$$
$$b = R_1R_2(C_1C_2 + C_1C_C + C_2C_C)$$

University of Oslo

• Assume widely separated poles

$$D(s) = \left(1 + \frac{s}{\omega_{p1}}\right) \left(1 + \frac{s}{\omega_{p2}}\right) \approx 1 + \frac{s}{\omega_{p1}} + \frac{s^2}{\omega_{p1}\omega_{p2}}$$

• Dominant pole

$$\begin{split} \omega_{p1} &= \frac{1}{R_1 [C_1 + C_C (1 + g_{m7} R_2)] + R_2 (C_1 + C_C)} \\ &\approx \frac{1}{R_1 C_C (1 + g_{m7} R_2)} \\ &\approx \frac{1}{g_{m7} R_1 R_2 C_C} \end{split}$$

• Non-dominant pole

$$\begin{split} & \omega_{p2} \\ = \frac{g_{m7} C_C}{C_1 C_2 + C_1 C_C + C_2 C_C} \\ & \approx \frac{g_{m7}}{C_1 + C_2} \end{split}$$

- Increasing g_{m7}
- \rightarrow increased pole distance
 - •Pole splitting compensation
- •Cc may decrease ω_{p1}

University of Oslo • Additional zero

$$\frac{v_{out}}{v_{in}} = \frac{g_{m1}g_{m7}R_1R_2\left(1 - \frac{sC_c}{g_{m7}}\right)}{1 + sa + s^2b} \qquad \Rightarrow \omega_Z = -\frac{g_{m7}}{C_c}$$

I use $\beta = 1$ (max feedback) in this analysis

- Right half-plane→negative phase shift with decreased PM
- Stability issues
- Hard to get rid of, but pole distance is increased with g_{m7}
- Have to make $R_c > 0$
 - Zero with some resistive element
 - May eliminate that zero by setting
 - Alternatively try to cancel ω_{p2} with ω_z

$$\frac{g_{m7}}{C_1 + C_2} = -\frac{1}{C_C(1/g_{m7} - R_C)} \Rightarrow R_C = \frac{1}{g_{m7}} \left(1 + \frac{C_1 + C_2}{C_C}\right)$$

• "Overcompensation" might even be wise:
$$\omega_Z = 1.7 \omega_t$$

$$R_C >> 1/g_{m7} \Rightarrow \omega_Z \approx \frac{1}{R_C C_C}$$
 $\omega_t \approx g_{m7}/C_C$ gives $R_C = \frac{1}{1.7g_{m7}}$

TSL inf3410

$$\omega_Z = -\frac{1}{C_C(1/g_{m7} - R_C)}$$

$$R_C = \frac{1}{g_{m7}}$$

12

UiO **Department of Informatics** University of Oslo

Two-pole amplifier

• Dominant poles of two-stage amps

University of Oslo

General form:

From two-stage second order analysis:

$$A(s) = \frac{V_{ov_T}}{V_{Ir}} = \frac{-g_m R_2 \left[(+s \frac{G_0}{g_{m,i}}) - \frac{1}{1 + sa + s^2 b} \right]}{1 + sa + s^2 b}$$

$$a = R_{s} L C_{GSI} + C_{GBI} (1 + g_{R_{1}} R_{2})] + R_{2} (C_{GBI} + (2))$$

$$h^{2} R_{s} R_{2} (C_{GBI} - C_{GBI} + C_{GBI} (2))$$

University of Oslo

UiO **Contemportation** Department of Informatics University of Oslo

Opamp compensation

- Dominant-pole compensation
 - Forcing a feedback system to have
 1. order response up to loop unitgain frequency ω_t
 - First order system unconditional stable with > 90 phase margin
- Lead compensation
 - Adding zero, ω_z,
 just above ω_t
 - May improve PM with 20°

Lead comp using Rc

Dominant pole comp using miller Cc

University of Oslo

Compensation procedure

Dominant pole

– From first order model C_c and ω_t is given as:

$$\omega_t = L_0 \omega_{p1} = \beta \frac{g_{m1}}{C_C}$$

- Find C_C

$$C_C' = \left(\beta \, \frac{g_{m1}}{g_{m7}}\right) C_L$$

setting unit-gain frequency close to second pole

 $\beta = \frac{Z_1}{Z_1 + Z_2}$

UiO **Department of Informatics** University of Oslo

Compensation procedure

Lead compensation - controlling Zero

$$\omega_z \approx \frac{-1}{C_C \left(\frac{1}{g_{m7}} - R_C\right)}$$

Several possibilities for R_C :

$$R_C = \frac{1}{g_{m7}} \quad -> \omega_z = \infty$$

$$R_c > \frac{1}{g_{m7}}$$
 RHPZ -> LHPZ and cancel ω_{p2}

Two stage opamp small signal model $g_{m1}v_{in} \underbrace{\downarrow}_{\overline{x}} \underbrace{\overline{x}} \underbrace{\downarrow}_{\overline$

 $R_C \gg \frac{1}{g_{m7}}$

Moving LHPZ to a frequency slightly higher than ω_t (*wo* R_c) Recommended to get more PM (20-30 degrees)

$$\omega_{p2} = \frac{g_{m7}C_C}{C_1C_2 + C_1C_C + C_2C_C} = \frac{-1}{C_C\left(\frac{1}{g_{m7}} - R_C\right)} \Rightarrow R_C = \frac{1}{g_{m7}}\left(1 + \frac{C_1 + C_2}{C_C}\right)$$

UiO **Contemportation Department of Informatics** University of Oslo

R_C as transistor

- Compensation resistor
 - Replaced by transistor in triode region

University of Oslo

Start with

1.

Opamp compensation design stategy

 $C_C' = \left(\beta \, \frac{g_{m1}}{g_{m7}}\right) C_L$

setting unit-gain frequency close to second pole

- 2. By simulation (SPICE, CADENCE) find frequency with -125° phase shift (called gain A') This is our unit gain frequency ω_t target
- 3. Choose new C_C such that ω_t is unit-gain freq of L(s)
 - C_C=C_C'A' giving 55° phase margin
 - A couple of simulation iterations may be necessary

4. Choose
$$R_C$$
: $R_C = \frac{1}{1.7\omega_t C_C}$ Almost optimum lead compensation for any opamp

- Giving phase margin of 85 $^\circ$ (+30 $^\circ$) leaving 5 $^\circ$ for variations
- 1. Sometimes phase margins are not adequate, then increase C_C
- 2. Replace R_C with a transistor

$$R_{C} = \frac{1}{\mu_{n}C_{ox}\left(\frac{W}{L}\right)_{16}V_{eff16}}$$

Opamp compensation Cadence example

• Find best compensation network C_c and R_c for:

University of Oslo

Find bias voltage:

Vbias1=2.3V give 84µA tail current

Found by simple simulation run displaying tail current

University of Oslo

Find (180-125)=55° phase shift at ω t=50.1MHz with gain A'=3.7

 $C_C = C'_C A' = 0.5 pF \cdot 3.7 \approx 1.9 pF$

University of Oslo

• New simulation with Cc=1.9pF give $-\omega_t$ =44.7MHz with A'=1.32 $C_c = C'_c A' = 1.3pF \cdot 1.32 \approx 2.5pF$

• New simulation with Cc=2.5pF give $- \omega_t$ =41MHz with A'=1.2

 $C_C = C'_C A' = 2.5 pF \cdot 1.2 \approx 3.1 pF$

• New simulation with Cc=3.1pF give $-\omega_t$ =37.7MHz with A'=1.00

• Finding Rc

$$R_{C} = \frac{1}{1.2\omega_{t}C_{C}} = \frac{1}{1.2 \cdot 37.7 \cdot 10^{6} \cdot 3.1 \cdot 10^{-12}} \approx 7132\Omega$$

University of Oslo

• Adding compensation resistor Rc

University of Oslo

Phase margins? Expressions =: phase(VF(''/Vout'')) 20 =: db20(mag(VF(''/Vout'')))

1

University of Oslo

- What to do?
 - Book: increase Cc
 - Try to decrease Rc

Give unit-gain freq of 133MHz with PM=84 $^{\circ}$ with Rc=2050 Ω