

UiO **Department of Informatics**

University of Oslo

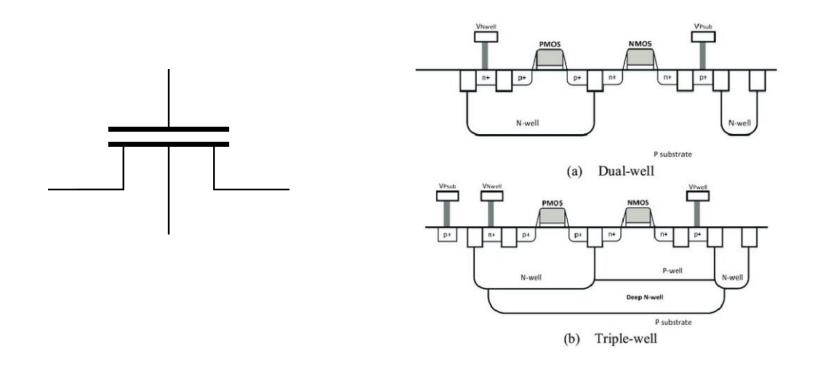
IN4180 - Analog Microelectronics Design

Advanced MOSFET modelling, passives and EDA tools

Kristian G. Kjelgård

Topics

Body effect


Short channel effects

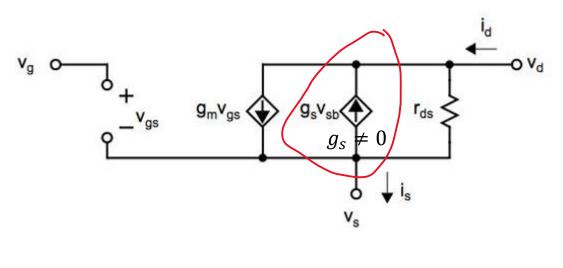
- Mobility Degradation
- Drain Induced Barrier Lowering
- Hot carriers

Passives

EDA tools

The 4th terminal

Body effect


- Back-gate effect, substrate effect
- Current change as V_{SB} is different from zero
- Modeled as change in threshold voltage $V_{tn} = V_{tn0} + \gamma \left(\sqrt{V_{SB} + \left| 2\phi_F \right|} - \sqrt{\left| 2\phi_F \right|} \right)$

 $-V_{tn0}$ – zero biased threshold voltage

$$\gamma = \sqrt{\frac{2qN_A K_S \varepsilon_0}{C_{ox}}}$$

 ϕ_{F} - Fermi potential

Body effect – small signal

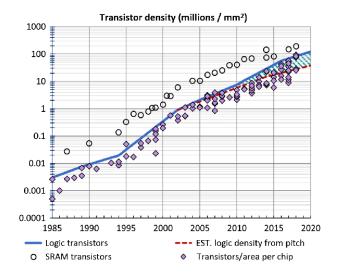
$$g_{s} = \frac{\partial I_{D}}{\partial V_{SB}} = \frac{\partial I_{D}}{\partial V_{tn}} \frac{\partial V_{tn}}{\partial V_{SB}} = \frac{\gamma g_{m}}{2\sqrt{V_{SB} + \left|2\phi_{F}\right|}}$$

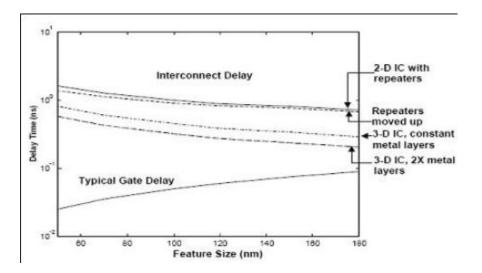
• If bulk connected to source

$$g_s = 0$$

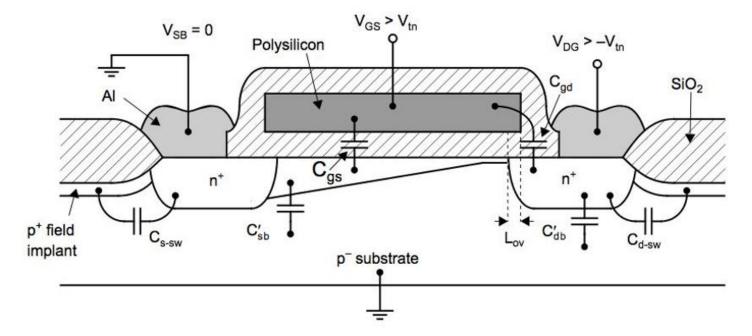
• If Vsb
$$\neq 0$$

 $g_s \neq 0$

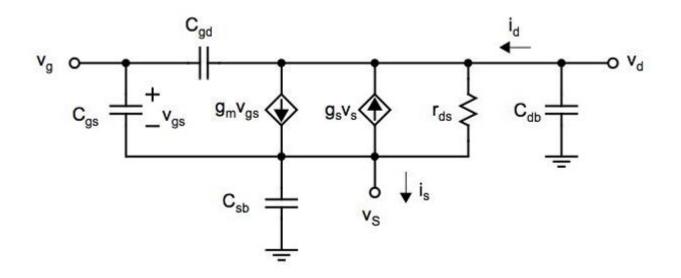

UiO **Department of Informatics**


University of Oslo

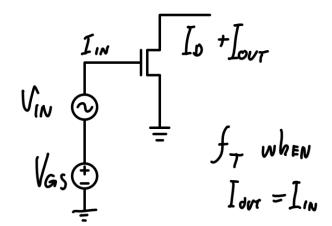
Why scaling?


Transistor density

• Speed

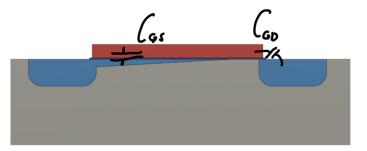


X-section with capacitance



Small signal model with capacitances

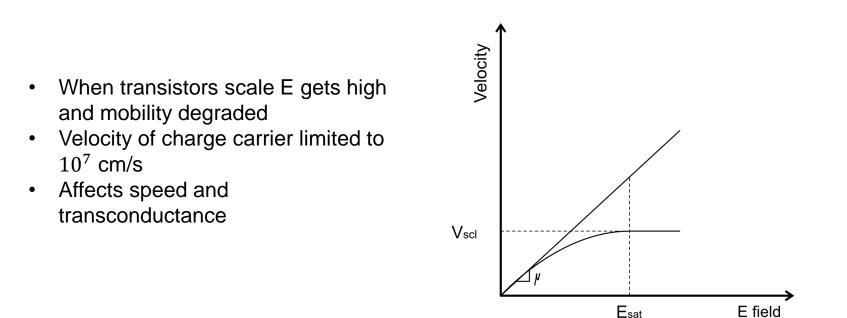
f_T transition frequency - transistor speed


 Higher f_T -> faster digital systems and analog/RF (ie mmwave radio / radar systems)

Current gain unity gain frequency

UiO **Content of Informatics**

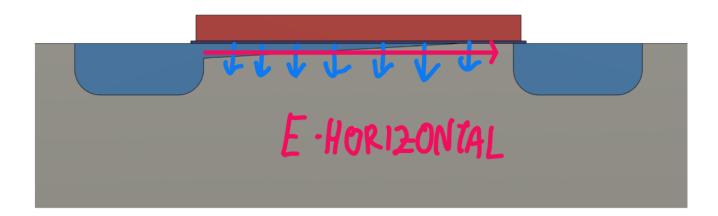
University of Oslo


 $f_T \gtrsim g_n$ $\frac{1}{2n'(c_o + C_{op})}$

- Lower capacitance and higher Gm with shorter L
- ft proportional to $1/L^2$

Assumes μ_n constant...

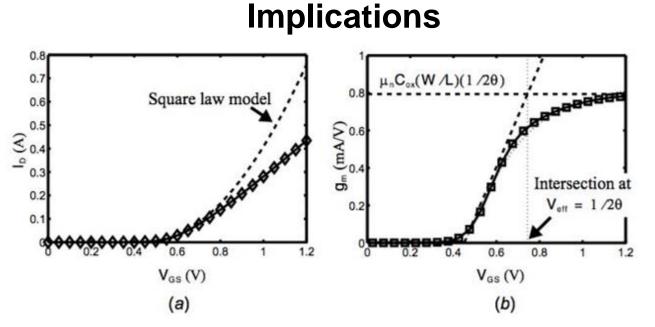
 $f_{T} = \frac{N_{n} \left(O_{X} \left(\frac{W}{L} \right) \right) V_{EFF}}{2 P \left(O_{X} W \left(\frac{1}{2} \right) \right)} = \frac{3 N_{n} V_{EFF}}{4 P L^{2}}$


Mobility degradation - μ_n with high E

UiO **Content of Informatics**

University of Oslo

E.VERTICAL


UiO **Content of Informatics**

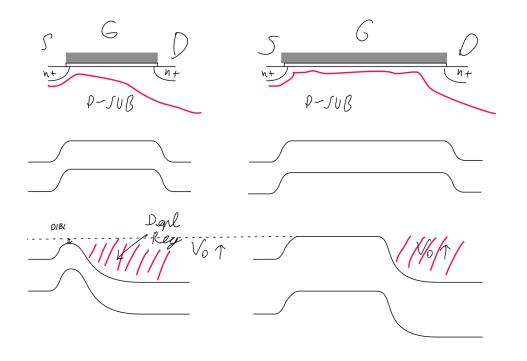
University of Oslo

 $\mathcal{V}_{n,l\neq f} = \frac{\mathcal{V}_{n}}{\left(1 + \left(\Theta V_{EFF}\right)^{m}\right)^{V_{in}}}$

VEFF >> 1/A MOBILITY DAGRADATION AVEF # $\int_{0}^{1} SQUARE$ LAW $\int_{0}^{1} = \int_{0}^{1} \mu_{n} C_{OX} \frac{VV}{L} \frac{V_{EFF}}{\Theta V_{EFF}}$

High V_{eff} -> less control of channel Square law -> linear University of Oslo

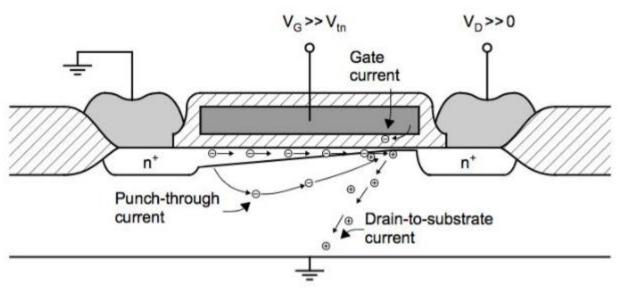
- Small-signal transconductance limited
- Reduced available signal swing
- Reduction in intrinsic gain A_i


Scaling of CMOS -> large constraints on analog design

Example

- **1.25** Make a qualitative sketch of transistor intrinsic gain A_i versus V_{eff} for:
 - a. Constant device width W

In each case what is the relationship between A_i and V_{eff} in weak-inversion, active mode and under mobility degradation


Drain Induced Barrier Lowering (DIBL)

Drain Induced Barrier Lowering (DIBL)

- V_t dependence on V_{ds}
- Current dependent on V_{ds} -> reduced r_{ds}

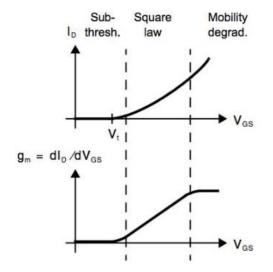
Hot carriers

High velocity carriers

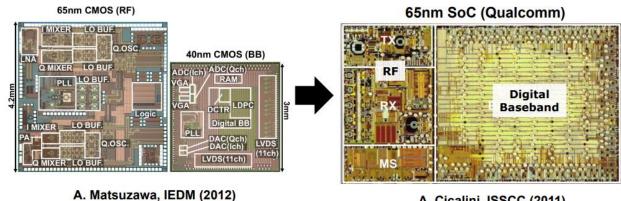
- E-H pairs -> Drain-tosubstrate current
 - Gate oxide tunnel

•

Electrons in oxide trapped

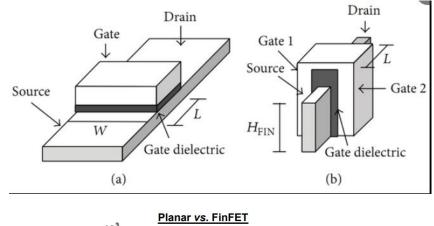

Leakage Current

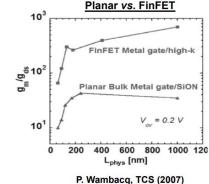
- Gate -> channel quantum-mechanical tunnel
- pn reverse junction leakage


$$I_{IM} = \frac{qAni xd}{2T_{o}}$$

Summary

- In modern CMOS technology a large variety of effects gives a non-ideal transistor behaviour
- Basic models used for "intuition" and design ideas
- Non-ideal characteristics very significant
- When to use simulator?

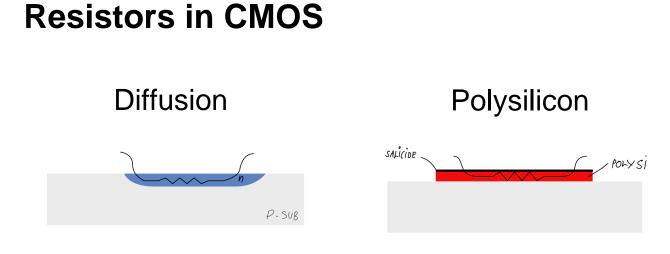

SoC integration planar mosfet technology



A. Cicalini, ISSCC (2011)

Sub 40 nm technologies -> finfet

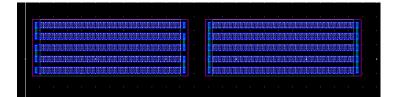
 Next generation analog / Radio Frequency SoC in finfet technology?



UiO **Content of Informatics**

University of Oslo

CMOS passives


UiO **Contemportation** University of Oslo

Metal

METAL

Meandering / layout of resistors

Cadence Instances

Diffusion: rpod rpodwo

rnod rnodwo

Poly: rnpoly rnpolywo

Metal: rmN (n=metal layer)

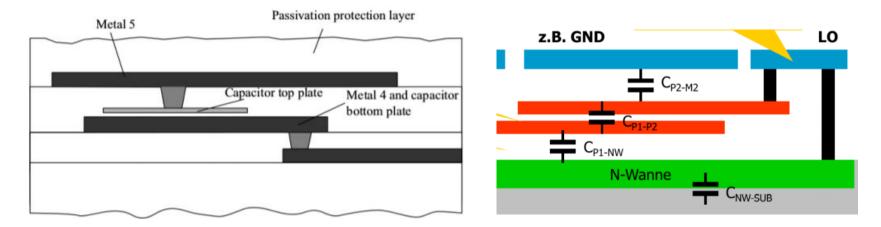
Wo = without silicide -> higher resistrance

UiO **Department of Informatics**

University of Oslo

Cadence crtmom MOMCAP 40 121d 22c41 22b 421b 22a 411d 421a 4120 41 412b 411b 412a

431 Use the standar BOEL (back end of line) metal layers and Silicon Oxide to form capacitor.


In modern process high density (fF/um3) can be achieved

411a

UiO **Department of Informatics**

University of Oslo

MIMCAP

Extra high permittivity layer between Met_(n) and Met_(n-1) Added cost to production with extra steps Sensitive to antenna errors UiO **Content of Informatics**

University of Oslo

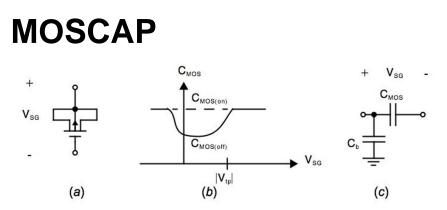
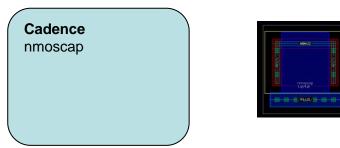
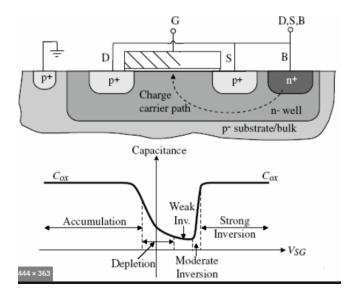
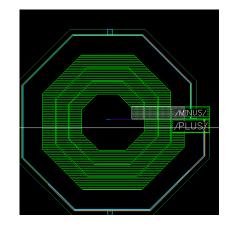




Fig. 1.36 A PMOS capacitor: (a) schematic symbol; (b) nonlinear capacitance; (c) small-signal model.


- Use transistor gate oxide for capacitor
- Capacitance dependent on voltage
- High C- bulk

Inductors

- Spiral inductors with and without centre tap
- On chip inductors mainly used for RF applications
- Doping under inductor coil is critical due to eddy currents loss. -> low Q

Passives summary

Different implantations of passives.

Trade-off between area, quality, cost

IC process is stochastic -> random variation in values

Layout of passives critical for high precision values.,

UiO **Content of Informatics**

University of Oslo

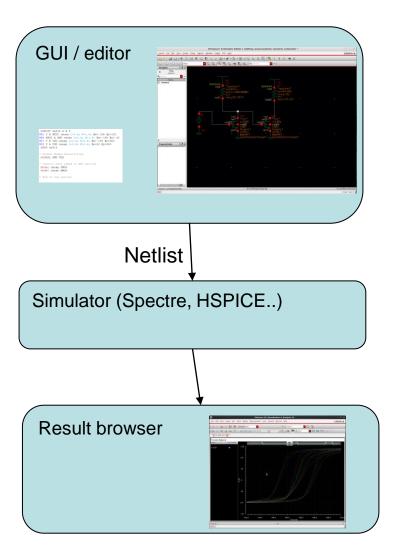
EDA – Electronic Design Automation

- Modelling of the MOSFET is very complex and too much to consider for analytic expressions and hand calculations
- Numerical computational methods
- Berkeley Short-channel IGFET Model BSIM widely used developed at Berkeley

UiO **Content of Informatics**

University of Oslo

* PTM High Performance 45nm Metal Gate / High-K / Strained-Si * nominal Vdd = 1.0V

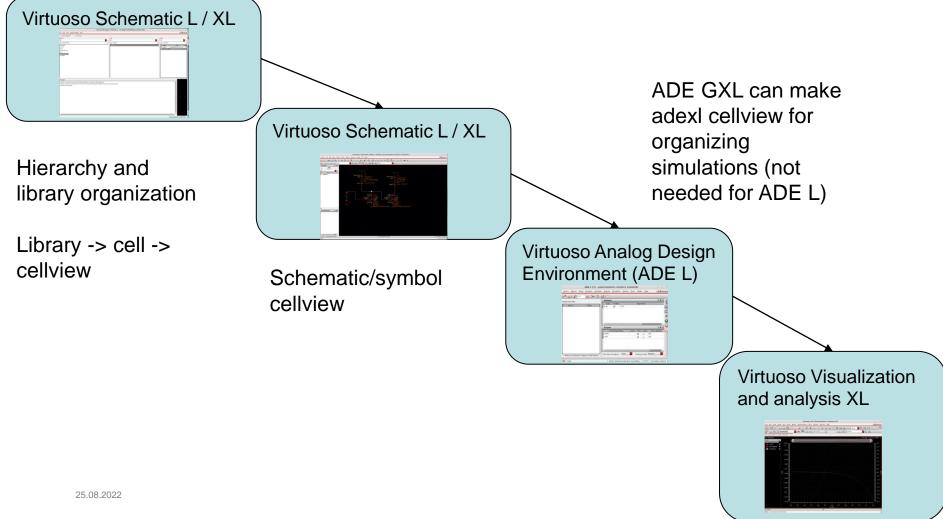

.model nmos nmos level = 54

+version		binunit			paramchk			mobmod		
+capmod		igcmod			igbmod			geomod		
+diomod		rdsmod			rbodymod			rgatemoc	=	1
+permod	- 1	acnqsmod	-	0	trnqsmod	-	0			
+tnom	= 27	toxe	-	1.25e-009	toxp	-	1e-009	toxm	-	1.25e-009
+dtox	= 2.5e-010	epsrox	=	3.9	wint	=	5e-009	lint	=	3.75e-009
+11	= 0	wl	=	0	11n	=	1	wln	=	1
+lw	- 0	WW	-	0	lwn	-	1	wwn	-	1
	= 0	wwl	=	0	xpart	=	0	toxref	=	1.25e-009
+xl	= -20e-9									
+vth0	= 0.46893	k1	=	0.4	k2	=	0	k3	=	0
+k3b	- 0	w0	-	2.5e-006	dvt0	-	1	dvt1	-	2
	= 0		=		dvt1w		0	dvt2w		0
	= 0.1			0.05	voffl		0	dvtp0	=	1e-010
	= 0.1		-		lpeb		0	xj		1.4e-008
+ngate	= 1e+023			3.24e+018	nsd		2e+020	phin		0
	- 0		=		cdscd		0	cit		0
	= -0.13	nfactor			eta0		0.0055	etab	=	
	= -0.55			0.054	ua		6e-010	ub		1.2e-018
	- 0			170000	a0		1	ags		0
	= 0		=		bØ		0	b1		0
	= 0.04		=		dwb		0	pclm		0.02
+pdiblc1		pdiblc2			pdiblcb			drout		0.5
	= 1e-020			0.01			8.14e+008	pscbe2		
+fprout				0.08	pditsd			pditsl		
	= 5			155	rsw .		80	rdw		80
+rdswmin		rdwmin					0	prwg		0
	= 0 = 30		-	1 0.0002	alpha0			alpha1		
	= 30						2.1e+009			0.0002
		aigbacc aigbinv			bigbacc bigbinv			cigbacc		
+nigbacc +eigbinv		nigbinv					0.02	cigbinv bigc		0.004
	= 1.1 = 0.002	aigsd					0.0025			0.0025
	= 0.002	poxedge			pigcd		1	ntox		1
+xrcrg1		xrcrg2			pigen	-	1	ncox	-	1
TALCIBL	- 12	XI CI 62		-						
	= 1.1e-010			1.1e-010			2.56e-011	cgdl		2.653e-010
	= 2.653e-010	ckappas			ckappad			acde	-	1
+moin	= 15	noff	=	0.9	voffcv	=	0.02			
	-0.11	kt1l	-	0	kt2	-	0.022	ute		-1.5
	= 4.31e-009	ub1	=	7.61e-018	uc1	=	-5.6e-011	prt	=	0
+at	= 33000									
+fnoimod	= 1	tnoimod	=	0						
+jss	= 0.0001	jsws	=	1e-011	jswgs	=	1e-010	njs	=	1
+ijthsfwd	= 0.01	ijthsrev	=	0.001	bvs	=	10	xjbvs	=	1
+jsd	= 0.0001	jswd	-	1e-011	jswgd	=	1e-010	njd	=	1
+ijthdfwd	= 0.01	ijthdrev	=	0.001	bvd	=	10	xjbvd	=	1
+pbs	- 1	cjs	-	0.0005	mjs	-	0.5	pbsws	-	1
+cjsws	= 5e-010	mjsws	=	0.33	pbswgs	=	1	cjswgs	=	3e-010
+mjswgs			=		cjd		0.0005	mjd		0.5
	- 1			5e-010	mjswd		0.33		-	
+cjswgd		mjswgd			tpb		0.005	tcj		0.001
	= 0.005			0.001	tpbswg	-	0.005	tcjswg	-	0.001
+xtis	= 3	xtid	=	3						
	- 0		-		dmdg		0	dmcgt	-	0
+dwj	= 0	×gw	=	0	×gl	=	0			
	= 0.4			1e-010	rbpb	-		rbpd		15
+rbps	= 15	rbdb	=	15	rbsb	=	15	ngcon	=	1

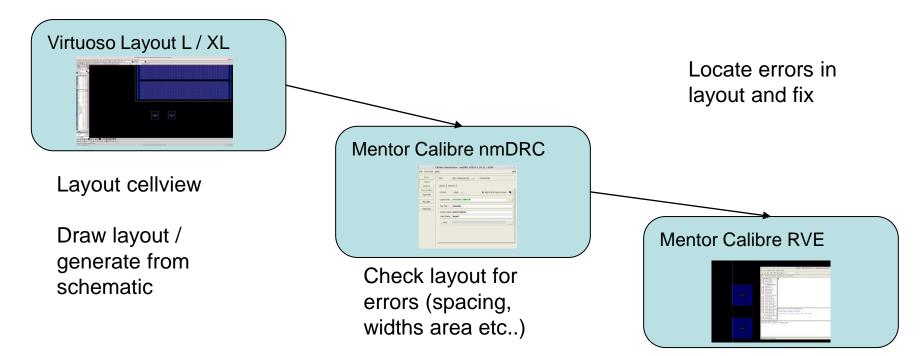
Circuit simulation

• Spectre – Cadence

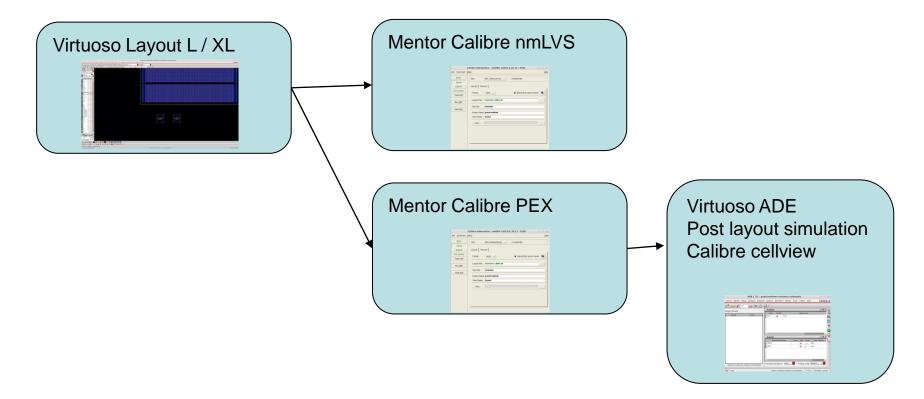
• HSPICE – synopsis



• UltraSIM


UiO **Compartment of Informatics**

University of Oslo


IN5180 – Tool flow schematic simulation

IN5180 – Tool flow layout and DRC

IN5180 – post layout extraction flow

