

Figure 12.21 Constant- G_m biasing by means of a switched-capacitor "resistor."

The switched-capacitor approach of Fig. 12.21 can be applied to other circuits as well. For example, as shown in Fig. 12.22, a voltage-to-current converter with a relatively high accuracy can be constructed.

12.6 Speed and Noise Issues

Even though reference generators are low-frequency circuits, they may affect the speed of the circuits that they feed. Furthermore, various building blocks may experience "crosstalk" through reference lines. These difficulties arise because of the finite output impedance of reference voltage generators, especially if they incorporate op amps. As an example, let us consider the configuration shown in Fig. 12.23, assuming that the voltage at node N is heavily disturbed by the circuit fed by M_5 . For fast changes in V_N , the op amp cannot maintain V_P constant, and the bias currents of M_5 and M_6 experience large transient changes. Also, the duration of the transient at node P may be quite long if the op amp suffers from a slow response. For this reason, many applications may require a high-speed op amp in the reference generator.

In systems where the power consumed by the reference circuit must be small, the use of a high-speed op amp may not be feasible. Alternatively, the critical node, e.g., node P in Fig. 12.23, can be bypassed to ground by means of a large capacitor (C_B) so as to suppress the effect of external disturbances. This approach involves two issues. First, the stability of the op amp must not degrade with the addition of the capacitor, requiring the op amp to be of a one-stage nature (Chapter 10). Second, since C_B generally slows down the transient response of the op amp, its value must be much greater than the capacitance that couples the disturbance to node P. As illustrated in Fig. 12.24, if C_B is not sufficiently large, then V_P

experiences a change and takes a long time to return to its original value, possibly degrading the settling speed of the circuits biased by the reference generator. In other words, depending on the environment, it may be preferable to leave node P agile so that it can quickly recover from transients. In general, as depicted in Fig. 12.25, the response of the circuit must be analyzed by applying a disturbance at the output and observing the settling behavior.

Example 12.7

Determine the small-signal output impedance of the bandgap reference shown in Fig. 12.23 and examine its behavior with frequency.

Solution

Figure 12.26 depicts the equivalent circuit, modeling the open-loop op amp by a one-pole transfer function $A(s) = A_0/(1 + s/\omega_0)$ and an output resistance R_{out} and each bipolar transistor by a resistance $1/g_{mN}$. If M_1 and M_2 are identical, each having a transconductance of g_{mP} , then their drain currents are equal to $g_{mP}V_X$, producing a differential voltage at the input of the op amp equal to

$$V_{AB} = -g_{mP} V_X \frac{1}{g_{mN}} + g_{mP} V_X \left(\frac{1}{g_{mN}} + R_1\right)$$
(12.55)

$$=g_{mP}V_XR_1\tag{12.56}$$

Figure 12.26 Circuit for calculation of the output impedance of a reference generator.

The current flowing through R_{out} is therefore given by

$$I_X = \frac{V_X + g_{mP} V_X R_1 A(s)}{R_{out}}$$
(12.57)

yielding

$$\frac{V_X}{I_X} = \frac{R_{out}}{1 + g_{mP} R_1 A(s)}$$
(12.58)

$$= \frac{R_{out}}{1 + g_{mP} R_1 \frac{A_0}{1 + s/\omega_0}}$$
(12.59)

$$= \frac{R_{out}}{1 + g_{mP}R_1A_0} \frac{1 + \frac{s}{\omega_0}}{1 + \frac{s}{(1 + g_{mP}R_1A_0)\omega_0}}$$
(12.60)

Thus, the output impedance exhibits a zero at ω_0 and a pole at $(1 + g_{mP}R_1A_0)\omega_0$, with the magnitude behavior plotted in Fig. 12.27. Note that $|Z_{out}|$ is small for $\omega < \omega_0$, but it rises to a high value as the frequency approaches the pole. In fact, setting $\omega = (1 + g_{mP}R_1A_0)\omega_0$ and assuming $g_{mP}R_1A_0 \gg 1$, we have

$$|Z_{out}| = \frac{R_{out}}{1 + g_{mP}R_1A_0} \left| \frac{1 + j(1 + g_{mP}R_1A_0)}{1 + j} \right|$$
(12.61)

$$=\frac{R_{out}}{\sqrt{2}}$$
(12.62)

which is only 30% lower than the open-loop value.

◀

The output noise of reference generators may affect the performance of low-noise circuits considerably. Figure 12.28 illustrates an example: the load current source of a common-source stage is driven by a bandgap circuit with a current multiplication factor of N. Thus, the noise current of M_1 (or M_2) is amplified by the same factor as it appears in M_3 . Note that M_1-M_3 carry noise due to the op amp A_1 as well.

Figure 12.28 Effect of bandgap circuit noise on a CS stage.

As another example, if a high-precision A/D converter employs a bandgap voltage as the reference with which the analog input signal is compared (Fig. 12.29), then the noise in the reference is directly added to the input.

Figure 12.29 A/D converter using a reference generator.

As a simple example, let us calculate the output noise voltage of the circuit shown in Fig. 12.30, taking into account only the input-referred noise voltage of the op amp, $V_{n,op}$. Since the small-signal drain currents of M_1 and M_2 are equal to $V_{n,out}/(R_1 + g_{mN}^{-1})$, we have $V_P = -g_{mP}^{-1}V_{n,out}/(R_1 + g_{mN}^{-1})$, obtaining the differential voltage at the input of the op amp as $-g_{mP}^{-1}A_0^{-1}V_{n,out}/(R_1 + g_{mN}^{-1})$. Beginning

Figure 12.30 Circuit for calculation of noise in a reference generator.

528

Sec. 12.7 Low-Voltage Bandgap References

from node A, we can then write

$$\frac{V_{n,out}}{R_1 + g_{mN}^{-1}} \cdot \frac{1}{g_{mN}} - \frac{V_{n,out}}{g_{mP}A_0(R_1 + g_{mN}^{-1})} = V_{n,op} + V_{n,out}$$
(12.63)

and hence

$$V_{n,out}\left[\frac{1}{R_1 + g_{mN}^{-1}}\left(\frac{1}{g_{mN}} - \frac{1}{g_{mP}A_0}\right) - 1\right] = V_{n,op}$$
(12.64)

Since typically $g_{mP}A_0 \gg g_{mN} \gg R_1^{-1}$,

$$|V_{n,out}| \approx V_{n,op} \tag{12.65}$$

suggesting that the noise of the op amp directly appears at the output. Note that even the addition of a large capacitor from the output to ground may not suppress low-frequency 1/f noise components, a serious difficulty in low-noise applications. The noise contributed by other devices in the circuit is studied in Problem 12.6.

12.7 Low-Voltage Bandgap References

The bandgap voltage expressed by Eq. (12.20) is around 1.25 V, eluding implementation with today's low supplies. The fundamental limitation is that we must add about $17.2V_T$ to one V_{BE} so as to achieve a net zero temperature coefficient.

Is it possible to add two *currents* with positive and negative TCs and then convert the result to an arbitrary voltage that has a zero TC (Fig. 12.31)? Recall from Fig. 12.18 that we can readily generate a PTAT current given by $V_T \ln n/R$. We also envision another current of the form V_{BE}/R serving as that with a negative TC, but how can we generate such a current with minimal complexity?

Let us return to the circuit of Fig. 12.18, assume that M_3 and M_4 are identical, and note that $|I_{D4}| = V_T \ln n/R_1$ is a PTAT current. We place a resistor in parallel with Q_2 as shown in Fig. 12.32(a). We recognize that R_1 now carries an additional current equal to $|V_{BE2}|/R_2$, i.e., a current with a negative TC. Unfortunately, however, the PTAT behavior is now disturbed because $I_{C1} \neq I_{C2}$. Fortunately, a simple modification resolves this issue: as shown in Fig. 12.32(b), we tie R_2 from Y to ground and place another resistor in parallel with Q_1 . Proposed by Banba et al. [8], this topology lends itself to low-voltage implementation, requiring a minimum V_{DD} of $V_{BE1} + |V_{DS3}|$.

To analyze the circuit, we observe that $V_X \approx V_Y \approx |V_{BE1}|$ and $I_{D3} = I_{D4}$. Thus,

$$I_{C1} + \frac{|V_{BE1}|}{R_3} = I_{C2} + \frac{|V_{BE1}|}{R_2}$$
(12.66)