where we have assumed that $G_{m2}R \gg 1$. If $G_{m2}R$ and $G_{m1}R$ are large, as in the op amp of Fig. 14.35(b), then $V_{OS,tot}$ is very small.

The offset cancellation of Fig. 14.35 warrants a cautionary note. Upon turning off, S_3 and S_4 may inject slightly unequal charges onto C_1 and C_2 , respectively, creating an error voltage that is *not* corrected because the feedback loop is opened. The reader can prove that for a differential injection-induced error voltage of ΔV , the resulting input-referred offset voltage equals $(G_{m2}/G_{m1})\Delta V$. For this reason, G_{m2} is usually chosen to be on the order of $0.1G_{m1}$.

We should also mention that the unity-gain and precision multiply-by-two circuits described in Chapter 13 cancel the offset of the op amp as well. The proof is left to the reader.³

It is important to note that the offset cancellation techniques studied here require periodic refreshing because the junction and subthreshold leakage of the switches eventually corrupts the correction voltage stored across the capacitors. In a typical design, the offset must be refreshed at a rate of at least a few kilohertz.

14.2.3 Reduction of Noise by Offset Cancellation

Recall from previous sections that the offset of a differential amplifier can be viewed as a noise component having a very low frequency. We therefore expect that periodic offset cancellation can potentially reduce the (low-frequency) noise of the circuit as well.

Consider a simple differential amplifier that is to be used in the front end of a sampling system [Fig. 14.37(a)]. Here, the noise of A_1 directly corrupts V_{in} . The 1/f noise of A_1 proves especially problematic if the signal spectrum extends from zero to only a few megahertz, because the 1/f noise corner frequency is typically around 500 kHz to 1 MHz.

Figure 14.37 (a) Front end of a sampler; (b) circuit of (a) with offset cancellation applied to the first stage.

Now suppose the amplifier undergoes offset cancellation before *every* sampling operation [Fig. 14.37(b)]. That is, as depicted in Fig. 14.38, the input is disabled; the offset of A_1 is stored on C_1 and C_2 ; the input is enabled and amplified by A_1 and A_2 and stored on C_3 and C_4 ; and finally the sampling switches are turned off. How does the noise of A_1 affect the final output? Denoting the time elapsed from the end of offset cancellation to the end of sampling by $\Delta t = t_2 - t_1$, we recall that at $t = t_1$, $V_{XY} = 0$. Thus, from t_1 to t_2 , only *high-frequency* noise components of A_1 , on the order of $> 1/\Delta t$, change V_{XY} significantly. In other words, offset cancellation suppresses noise frequencies below roughly $1/\Delta t$.

To better understand this concept, let us consider a numerical example. Assuming that $\Delta t = 10$ ns, we examine two noise components, one at 1 MHz and another at 10 MHz, approximating each with a sinusoid (Fig. 14.39). For a sinusoid of amplitude A and frequency f, the maximum slew rate is equal to $2\pi f A$,

³If, as shown in Fig. 13.35, an equalizing switch is added to the circuit, then the op amp offset may not be removed.

Figure 14.39 Variation of 1-MHz and 10-MHz noise components in a time interval of 10 ns.

 t_2

t

 t_1

and hence the maximum variation in Δt seconds is $2\pi f A \Delta t$. Normalizing this value to the amplitude, we obtain the change for the 1-MHz and 10-MHz components as $\Delta V_1/A = 6.3\%$ and $\Delta V_2/A = 63\%$, respectively. We therefore conclude that noise frequencies below a few megahertz do not have sufficient time to change if the sampling occurs only 10 ns after the end of offset cancellation.

Originally utilized in charge-coupled devices (CCDs), the foregoing property of offset cancellation is called "correlated double sampling" (CDS) because it involves two consecutive sampling operations (the first being offset storage) that are so tightly spaced in time that they do not allow (low-frequency) noise components to vary significantly. A powerful technique, CDS finds wide usage in suppressing the 1/f noise of MOS circuits. Nonetheless, it leads to aliasing of wideband noise [5].

14.2.4 Alternative Definition of CMRR

Recall from Chapter 4 that common-mode rejection is represented by the change in the differential output divided by the change in the input common-mode level, and the CMRR is defined as the differential gain divided by this quantity. We also noted that in fully differential circuits, the finite output impedance of the tail current source and asymmetries limit the common-mode rejection.

Now consider a differential circuit sensing an input CM change, $\Delta V_{in,CM}$. If the differential output voltage changes by ΔV_{out} while the differential input voltage is zero, we can say that the output *offset* voltage of the circuit has changed by ΔV_{out} . In other words, common-mode rejection can be viewed as the change in the output offset divided by the change in the input CM level. Following the notation in