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Figure 9.83 Equivalent circuits for path from VDD to output.

9.12 Noise in Op Amps

In low-noise applications, the input-referred noise of op amps becomes critical. We now extend the noise
analysis of differential amplifiers in Chapter 7 to more sophisticated topologies. With many transistors
in an op amp, it may seem difficult to intuitively identify the dominant sources of noise. A simple rule
for inspection is to (mentally) change the gate voltage of each transistor by a small amount and predict
the effect at the output.

Let us first consider the telescopic op amp shown in Fig. 9.84. At relatively low frequencies, the
cascode devices contribute negligible noise, leaving M1–M2 and M7–M8 as the primary noise sources.
The input-referred noise voltage per unit bandwidth is therefore similar to that in Fig. 7.59(a) and given by
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where K N and K P denote the 1/ f noise coefficients of NMOS and PMOS devices, respectively.
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Figure 9.84 Noise in a telescopic
op amp.

Next, we study the noise behavior of the folded-cascode op amp of Fig. 9.85(a), considering only
thermal noise at this point. Again, the noise of the cascode devices is negligible at low frequencies,
leaving M1–M2, M7–M8, and M9–M10 as potentially significant sources. Do both pairs M7–M8 and
M9–M10 contribute noise? Using our simple rule, we change the gate voltage of M7 by a small amount
[Fig. 9.85(b)], noting that the output indeed changes considerably. The same observation applies to M8–
M10 as well. To determine the input-referred thermal noise, we first refer the noise of M7–M8 to the
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Figure 9.85 Noise in a folded-cascode op amp.

output:
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where the factor 2 accounts for the (uncorrelated) noise of M7 and M8 and Rout denotes the open-loop
output resistance of the op amp. Similarly,
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Dividing these quantities by g2
m1,2 R2

out and adding the contribution of M1–M2, we obtain the overall noise:

V 2
n,int = 8kT

�
γ

gm1,2
+ γ gm7,8

g2
m1,2

+ γ gm9,10

g2
m1,2

�
(9.91)

The effect of flicker noise can be included in a similar manner (Problem 9.15). Note that the folded-
cascode topology potentially suffers from greater noise than its telescopic counterpart. In applications
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where flicker noise is critical, we opt for a PMOS-input op amp as PMOS transistors typically exhibit
less flicker noise than do NMOS devices.

As observed for the differential amplifiers in Chapter 7, the noise contribution of the PMOS and
NMOS current sources increases in proportion to their transconductance. This trend results in a trade-
off between output voltage swings and input-referred noise: for a given current, as implied by gm =
2ID/(VGS − VT H ), if the overdrive voltage of the current sources is minimized to allow large swings,
then their transconductance is maximized.
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Figure 9.86 Noise in a two-stage op amp.

As another case, we calculate the input-referred thermal noise of the two-stage op amp shown in
Fig. 9.86. Beginning with the second stage, we note that the noise current of M5 and M7 flows through
rO5∥rO7. Dividing the resulting output noise voltage by the total gain, gm1(rO1∥rO3) × gm5(rO5∥rO7),
and doubling the power, we obtain the input-referred contribution of M5–M8:
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The noise due to M1–M4 is simply equal to
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It follows that
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Note that the noise resulting from the second stage is usually negligible because it is divided by the gain
of the first stage when referred to the main input.

▲ Example 9.26

A simple amplifier is constructed as shown in Fig. 9.87. Note that the first stage incorporates diode-connected—rather
than current-source—loads. Assuming that all of the transistors are in saturation and (W/L)1,2 = 50/0.6, (W/L)3,4 =
10/0.6, (W/L)5,6 = 20/0.6, and (W/L)7,8 = 56/0.6, calculate the input-referred noise voltage if µnCox =
75 µA/V2, µpCox = 30 µA/V2, and γ = 2/3.
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Figure 9.87

Solution

We first calculate the small-signal gain of the first stage:

Av1 ≈ gm1

gm3
(9.96)

=
�
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10× 30
(9.97)

≈ 3.54 (9.98)

The noise of M5 and M7 referred to the gate of M5 is equal to 4kT (2/3)(gm5 + gm7)/g2
m5 = 2.87× 10−17 V2/Hz,

which is divided by A2
v1 when referred to the main input: V 2

n |M5,7 = 2.29× 10−18 V2/Hz. Transistors M1 and M3

produce an input-referred noise of V 2
n |M1,3 = (8kT/3)(gm3 + gm1)/g2

m1 = 1.10 × 10−17 V2/Hz. Thus, the total
input-referred noise equals

V 2
n,in = 2(2.29× 10−18 + 1.10× 10−17) (9.99)

= 2.66× 10−17 V2/Hz (9.100)

where the factor of 2 accounts for the noise produced by both odd-numbered and even-numbered transistors in the
circuit. This value corresponds to an input noise voltage of 5.16 nV/

√
Hz.

▲

The noise-power trade-off described in Chapter 7 is present in op amps as well. Specifically, the
devices and bias currents in an op amp can be linearly scaled so as to trade power consumption for noise.
For example, if all of the transistor widths and ISS in Fig. 9.87 are halved, then so is the power, while
V 2

n,in is doubled and the voltage gain and swings remain unchanged. This simple scaling can be applied
to all of the op amps studied in this chapter. We exploit this principle in the nanometer op amps designed
in Chapter 11.
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